Sequential Hydrolysis of Chicken Feathers Composed of Ultrasound and Enzymatic Steps: An Enhanced Protein Source with Bioactive Peptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents
2.2. Chicken Feather Pre-Treatment
2.3. Centesimal Composition of Feathers
2.4. Alkaline Dissolution of Ground Chicken Feathers
2.5. Optimization of Enzymatic Hydrolysis
2.6. Sequential Hydrolysis Composed of Ultrasound and Enzymatic Steps
2.7. Microfiltration of Amino Acids and Peptides
2.8. Analytical Methods
2.8.1. Degree of Hydrolysis
2.8.2. Ultrasound Effect on Particle Size Distribution of Dissolved Feathers
2.8.3. Peptide Profile
2.8.4. Biological Properties of Chicken Feathers Hydrolysate
Digestibility
Antioxidant Activity
2.9. Statistical Analyses
3. Results
3.1. Proximate Composition of Feathers
3.2. Alkaline Dissolution of Ground Chicken Feathers
3.3. Optimization of Enzymatic Hydrolysis of Chicken Feathers
3.4. Sequential Hydrolysis Composed of Ultrasound and Enzymatic Steps
3.5. Hydrolyzate Microfiltration
3.6. Peptide Profile
3.7. Biological Properties of Chicken Feathers Hydrolyzate
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ossai, I.C.; Hamid, F.S.; Hassan, A. Valorisation of keratinous wastes: A sustainable approach towards a circular economy. Waste Manag. 2022, 151, 81–104. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture (USDA), National Agricultural Statistics Service, Southern Region News Release Hatchery and Poultry Production and Value. 2022. Available online: https://www.nass.usda.gov/Statistics_by_State/Regional_Office/Southern/includes/Publications/Livestock_Releases/Poultry_PDI/HatchandPoultryPDI2022.pdf (accessed on 10 September 2022).
- Onifade, A.A.; Al-sane, N.A.; Ai-musallam, A.A.; Al-zarban, S. A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 1998, 66, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.X.; Cao, X.J. Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem. 2012, 47, 896–899. [Google Scholar] [CrossRef]
- Tiwary, E.; Gupta, R. Rapid Conversion of chicken feather to feather meal using dimeric keratinase from Bacillus licheniformis ER-15. J. Bioprocess Biotech. 2012, 2, 1000123. [Google Scholar] [CrossRef]
- Lange, L.; Huang, Y.; Busk, P.K. Microbial decomposition of keratin in nature—A new hypothesis of industrial relevance. Appl Microbiol. Biotechnol. 2016, 100, 2083–2096. [Google Scholar] [CrossRef]
- Mazotto, A.M.; Ascheri, J.L.R.; Godoy, R.L.O.; Damaso, M.C.T.; Couri, S.; Vermelho, A.B. Production of feather protein hydrolyzed by B. subtilis AMR and its application in a blend with cornmeal by extrusion. LWT 2017, 84, 701–709. [Google Scholar] [CrossRef]
- Campos, I.; Valente, L.M.P.; Matos, E.; Marques, P.; Freire, F. Life-cycle assessment of animal feed ingredients: Poultry fat, poultry by-product meal and hydrolyzed feather meal. J. Clean. Prod. 2020, 252, 119845. [Google Scholar] [CrossRef]
- Callegaro, K.; Brandelli, A.; Daroit, D.J. Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Manag. 2019, 95, 399–415. [Google Scholar] [CrossRef]
- Eliuz, E.A.E.; Yabalak, E. Chicken feather hydrochar incorporated with phenolic extract of Rosa damascena Mill. to enlarge the antibacterial performance against Acinobacter baumannii and Staphylococcus aureus. J. Environ. Chem. Eng. 2022, 10, 108289. [Google Scholar] [CrossRef]
- Qin, X.; Xu, X.; Guo, Y.; Shen, Q.; Liu, J.; Yang, C.; Scott, E.; Bitter, H.; Zhang, C. A sustainable and efficient recycling strategy of feather waste into keratin peptides with antimicrobial activity. Waste Manag. 2022, 144, 421–430. [Google Scholar] [CrossRef]
- Kshetri, P.; Singh, P.L.; Chanu, S.B.; Singh, T.S.; Rajiv, C.; Tamreihao, K.; Singh, H.N.; Chongtham, T.; Devi, A.K.; Sharma, S.K.; et al. Biological activity of peptides isolated from feather keratin waste through microbial and enzymatic hydrolysis. Electron. J. J. Biotechnol. 2022, 60, 11–18. [Google Scholar] [CrossRef]
- Sarma, A. Biological importance and pharmaceutical significance of keratin: A review. Int. J. Biol. Macromol. 2022, 219, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, M.C.; Boushy, A.R.E.; Roodbeen, A.E.; Ketelaars, E.H. Effects of processing time and moisture content on amino acids composition and nitrogen characteristics of feather meal. Animal Feed Sci. Technol. 1986, 14, 279–290. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservationand extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Abadía-garcía, L.; Castaño-tostado, E.; Ozimek, L.; Romero-gómez, S.; Ozuna, C.; Amaya-llano, S.L. Impact of ultrasound pretreatment on whey protein hydrolysis by vegetable protease. Innov. Food Sci. Emerg. Technol. 2016, 37, 84–90. [Google Scholar] [CrossRef]
- D584-96; Standard Test Method for Wool Content of Raw Wool. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2005.
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2012. [Google Scholar]
- Ramnani, P.; Gupta, R. Keratinases vis-a’-vis conventional proteases and feather degradation. World J. Microbiol. Biotechnol. 2007, 23, 1537–1540. [Google Scholar] [CrossRef]
- Eslahi, N.; Dadashian, N.; Nejad, F.N.H. An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis. Prep. Biochem. Biotechnol. 2013, 43, 624–648. [Google Scholar] [CrossRef]
- Brand-wiliams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Medic. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Rodrigues, M.I.; Lemma, A.F. Experimental Design and Process Optimization, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Fakhfakh, N.; Ktari, N.; Haddar, A.; Mnif, I.H.; Dahmen, I.; Nasri, M. Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochem. 2011, 46, 1731–1737. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, S. Sustainable management of keratin waste biomass: Applications and future perspectives. Braz. Arch. Biol. Technol. 2016, 59, 1–14. [Google Scholar]
- Adler, S.A.; Slizyte, R.; Honkapa, K.; Løes, A.K. In vitro pepsin digestibility and amino acid composition in soluble and residual fractions of hydrolyzed chicken feathers. Poult. Sci. 2018, 97, 3343–3357. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Parsons, C.M. Effect of processing systems on protein quality of feather meal and hair meals. Poult. Sci. 1997, 76, 491–496. [Google Scholar] [CrossRef]
- Mokrejs, P.; Svoboda, P.; Hrncirik, J.; Janacova, D.; Vasek, V. Processing poultry feathers into keratin hydrolysate through alkaline-enzymatic hydrolysis. Waste Manag. Res. 2011, 29, 260–267. [Google Scholar] [CrossRef]
- Gupta, A.; Kamarudin, N.B.; Kee, C.Y.G.; Yunus, R.B.M. Extraction of keratin protein from chicken feather. J. Chem. Chem. Eng. 2012, 6, 732–737. [Google Scholar]
- Branska, B.; Fortová, L.; Dvoraková, M.; Liu, H.; Patakova, P.; Zhang, J.; Melzoch, M. Feather and wheat straw hydrolysate for direct utilization inbiobutanol production. Renew. Energy 2020, 145, 1941–1948. [Google Scholar] [CrossRef]
- Nyo, M.K.; Nguyen, L.T. Value-addition of defatted peanut cake by proteolysis: Effects of proteases and degree of hydrolysis on functional properties and antioxidant capacity of peptides. Waste Biomass Valorization 2019, 10, 1251–1259. [Google Scholar] [CrossRef]
- Uluko, H.; Li, H.; Cui, Z.; Zhang, Z.S.; Liu, L.; Chen, J.; Sun, Y.; Su, Y.; Lv, J. Response surface optimization of angiotensin converting enzyme inhibition of milk protein concentrate hydrolysates in vitro after ultrasound pretreatment. Innov. Food Sci. Emerg. Technol. 2013, 20, 133–139. [Google Scholar] [CrossRef]
- Gbogouri, G.A.; Linder, M.; Fanni, J.; Parmentier, M. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci. 2006, 69, 615–622. [Google Scholar] [CrossRef]
- Romanova, E.V.; Sweedler, J.V. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol. Sci. 2015, 36, 579–586. [Google Scholar] [CrossRef]
- Lemes, A.C.; Sala, L.; Ores, J.C.; Braga, A.R.C.; Egea, M.B.; Fernandes, K.F. A review of the latest advances in encrypted bioactive peptides from protein-rich waste. Int. J. Mol. Sci. 2016, 17, 950. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Aslanian, A.; Yates, J.R. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 2008, 12, 483–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kshetri, P.; Roy, S.S.; Sharma, S.K.; Singh, T.S.; Ansari, M.A.; Prakash, N.; Ngachan, S.V. Transforming chicken feather waste into feather protein hydrolysate using a newly isolated multifaceted keratinolytic bacterium Chryseobacterium sediminis RCM-SSR-7. Waste Biomass Valorization 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Kim, S.-K.; Kang, K.-H. Medicinal effects of peptides from marine microalgae. Adv. Food Nutr. Res. 2011, 64, 313–323. [Google Scholar] [CrossRef] [PubMed]
Average Value (%) | |
---|---|
Proteins | 84.28 ± 3.91 |
Lipids | 8.08 ± 0.39 |
Moisture | 7.98 ± 0.24 |
Ash | 0.42 ± 0.02 |
Experiments | E/S * (%) | T (°C) | Degree of Hydrolysis (%) | ||||
---|---|---|---|---|---|---|---|
2 h | 4 h | 6 h | 8 h | 10 h | |||
1 | 5 (−1) | 45 (−1) | 3.2 | 5.3 | 5.3 | 5.3 | 5.3 |
2 | 5 (−1) | 55 (1) | 5.3 | 5.3 | 6.3 | 6.3 | 6.3 |
3 | 20 (1) | 45 (−1) | 5.3 | 5.3 | 5.3 | 5.3 | 6.3 |
4 | 20 (1) | 55 (1) | 5.3 | 5.3 | 5.3 | 6.3 | 7.4 |
5 | 1.9 (−1.414) | 50(0) | 5.3 | 5.3 | 5.3 | 6.3 | 6.3 |
6 | 23.1 (1.414) | 50 (0) | 6.3 | 6.3 | 8.4 | 8.4 | 8.4 |
7 | 12.5 (0) | 43 (−1.414) | 5.3 | 6.3 | 6.3 | 6.3 | 6.3 |
8 | 12.5 (0) | 58 (1.414) | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 |
9 | 12.5 (0) | 50.0 (0) | 7.4 | 7.4 | 8.4 | 8.4 | 8.4 |
10 | 12.5 (0) | 50.0 (0) | 5.3 | 7.4 | 8.4 | 8.4 | 8.4 |
11 | 12.5 (0) | 50.0 (0) | 5.3 | 6.3 | 7.4 | 7.4 | 7.4 |
Coefficients | Degree of Hydrolysis (%) | ||||
---|---|---|---|---|---|
2 h | 4 h | 6 h | 8 h | 10 h | |
βo | 6.00 * | 6.40 * | 8.07 * | 7.61 * | 7.74 * |
Linear | |||||
β1 | 0.44 | 0.18 | 0.42 | 0.37 | 0.63 * |
β2 | 0.07 | −0.37 | −0.74 * | −0.48 | −0.35 |
Quadratic | |||||
β11 | −0.23 | −0.68 | −0.25 | −0.12 | −0.11 |
β22 | −0.75 | −0.76 * | −1.54 * | −1.40 * | −1.31 * |
Interactions | |||||
β12 | −0.53 | 0.00 | −0.25 | 0.00 | 0.03 |
R2 | 0.53 | 0.36 | 0.61 | 0.60 | 0.74 |
Fcalculated | - | 5.10 | 6.20 | 13.72 | 11.45 |
Ftabulated | - | 3.36 | 3.11 | 3.36 | 3.11 |
Flack of fit | - | 1.90 | 4.12 | 3.08 | 2.05 |
Ftabulated* | - | 9.35 | 3.46 | 9.35 | 9.33 |
SM and PM | SM | SM and PM | SM and PM |
Mean * | 10% ≤ | 16% ≤ | 50% ≤ | 84% ≤ | 90% ≤ | Smallest | Largest | |
---|---|---|---|---|---|---|---|---|
Control | 194.9 | 163.3 | 167.1 | 193.7 | 323.0 | 404.2 | 150.7 | 911.8 |
Ultrasound | 155.1 | 88.9 | 99.0 | 172.2 | 151.8 | 387.1 | 63.7 | 542.7 |
Assay | Power (W) | Time (min) | Degree of Hydrolysis (%) | |||
---|---|---|---|---|---|---|
2 h | 4 h | 6 h | 8 h | |||
1 | 200.0 (−1) | 5.0 (−1) | 4.8 | 6.0 | 6.0 | 6.0 |
2 | 200.0 (−1) | 20.0 (1) | 7.2 | 7.2 | 7.2 | 7.2 |
3 | 400.0 (1) | 5.0 (−1) | 6.0 | 7.2 | 6.0 | 7.2 |
4 | 400.0 (1) | 20.0 (1) | 9.6 | 9.6 | 10.8 | 10.8 |
5 | 160.0 (−1.41) | 12.5 (0) | 7.2 | 7.2 | 7.2 | 7.2 |
6 | 442.0 (1.41) | 12.5 (0) | 9.6 | 9.6 | 10.8 | 10.8 |
7 | 300.0 (0) | 1.9 (−1.41) | 4.8 | 4.8 | 4.8 | 4.8 |
8 | 300.0 (0) | 23.1 (1.41) | 9.6 | 10.8 | 9.6 | 9.6 |
9 | 300.0 (0) | 12.5 (0) | 6.0 | 6.0 | 7.2 | 7.2 |
10 | 300.0 (0) | 12.5 (0) | 6.0 | 7.2 | 8.4 | 8.4 |
11 | 300.0 (0) | 12.5 (0) | 7.2 | 7.2 | 7.2 | 7.2 |
Coefficients | Degree of Hydrolysis (%) | |||
---|---|---|---|---|
2 h | 4 h | 6 h | 8 h | |
βo | 7.09 * | 7.53 * | 7.75 * | 7.85 * |
Linear | ||||
β1 | 0.87 * | 0.87 * | 1.09 * | 1.24 * |
β2 | 1.60 * | 1.51 * | 1.60 * | 1.45 * |
Quadratic | ||||
β11 | 0.78 | 0.65 | 0.55 | 0.63 |
β22 | 0.17 | 0.35 | −0.35 | −0.28 |
Interactions | ||||
β12 | 0.30 | 0.30 | 0.9 | 0.60 |
R2 | 0.81 | 0.76 | 0.78 | 0.81 |
Fcalculated | 16.51 | 12.87 | 13.89 | 17.60 |
Ftabulated | 3.11 | 3.11 | 3.11 | 3.11 |
Flack of fit | 1.90 | 2.29 | 2.65 | 1.96 |
Ftabulated* | 9.33 | 9.33 | 9.33 | 9.33 |
SM and PM | SM and PM | SM and PM | SM and PM |
Hydrolyzate | Measured (m/z) | Time (min) | Peptide Size |
---|---|---|---|
Enzymatic hydrolysis | 399.2250 | 4.46 | tripeptide |
640.3880 | 5.08 | oligopeptide | |
732.4290 | 3.39 | oligopeptide | |
797.4817 | 3.98 | oligopeptide | |
845.4755 | 1.52 | oligopeptide | |
908.5819 | 0.90 | oligopeptide | |
1370.7317 | 6.18 | oligopeptide | |
Sequential hydrolysis composed of ultrasound and enzymatic steps | 245.1868 | 1.96 | dipeptide |
399.2250 | 4.46 | tripeptide | |
640.3673 | 5.23 | oligopeptide | |
732.4279 | 3.36 | oligopeptide | |
797.4784 | 3.91 | oligopeptide | |
908.5825 | 1.01 | oligopeptide |
Hydrolyzate | Digestibility (%) |
---|---|
Enzymatic hydrolysis | 80.23 a ± 0.20 |
Sequential hydrolysis (ultrasound and enzymatic steps) | 100.00 b ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrosa, N.d.A.; de Andrade, C.J.; Petrus, J.C.C.; Monteiro, A.R. Sequential Hydrolysis of Chicken Feathers Composed of Ultrasound and Enzymatic Steps: An Enhanced Protein Source with Bioactive Peptides. Biomass 2022, 2, 237-249. https://doi.org/10.3390/biomass2040016
Pedrosa NdA, de Andrade CJ, Petrus JCC, Monteiro AR. Sequential Hydrolysis of Chicken Feathers Composed of Ultrasound and Enzymatic Steps: An Enhanced Protein Source with Bioactive Peptides. Biomass. 2022; 2(4):237-249. https://doi.org/10.3390/biomass2040016
Chicago/Turabian StylePedrosa, Nely de Almeida, Cristiano José de Andrade, José Carlos Cunha Petrus, and Alcilene Rodrigues Monteiro. 2022. "Sequential Hydrolysis of Chicken Feathers Composed of Ultrasound and Enzymatic Steps: An Enhanced Protein Source with Bioactive Peptides" Biomass 2, no. 4: 237-249. https://doi.org/10.3390/biomass2040016
APA StylePedrosa, N. d. A., de Andrade, C. J., Petrus, J. C. C., & Monteiro, A. R. (2022). Sequential Hydrolysis of Chicken Feathers Composed of Ultrasound and Enzymatic Steps: An Enhanced Protein Source with Bioactive Peptides. Biomass, 2(4), 237-249. https://doi.org/10.3390/biomass2040016