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Abstract: The red seaweed Kappaphycus alvarezii is an economically important gelling agent κappa
carrageenan source. Phytochemical analysis has pointed to the presence of various other inorganic
and organic compounds, which are expanding the application of biomass as a biostimulant in the
agroindustry and as a source of new bioactive molecules in the food, chemical, and pharmaceutical
industries. Native to Southeast Asia, K. alvarezii has been introduced as an exotic species in Brazil for
commercial large-scale farming. Nowadays, legal farming areas are located in the South and on the
South-East coast, but with initiatives to be authorized in the country’s Northeast. The biomass yield
in a large-scale farming system can be affected by cultivation techniques and environmental stressors,
such as temperature, salinity, water quality, disease, and predators. The use of high-resolution
images obtained with unmanned aerial vehicles (UAV or drones) is becoming a popular technology
in agriculture, and it has the potential to be employed in seaweed farming to extract a variety of
variables and features to predict biomass yield throughout the cultivation period. The present study
was conducted to analyze and select multispectral indices obtained from images collected by drone
for the detection and quantification of K. alvarezii in a commercial cultivation environment in Brazil.
Frequency analysis of pixel values, statistical analyses, and visual interpretations for 24 pre-selected
indices was applied according to scores attributed to the efficiency of image segmentation. This
analysis resulted in the selection of four indices (ABDI1, ABDI2, CIG, and GNDVI) as the best ones
for the segmentation of images in the K. alvarezii commercial farms analyzed. The data obtained are
the first step in improving the analysis process of images generated by drones, which will facilitate
decision-making and better management, and help scale-up K. alvarezii farming in Brazil.

Keywords: Kappaphycus alvarezzi; unmanned aerial vehicles; drones; multispectral indices

1. Introduction

Seaweed farming, i.e., the cultivation of seaweed on a commercial scale, has gained
attention worldwide because of its broad biotechnological applications, including agribusi-
ness and the food, pharmaceutical, cosmetic, textile, and manufacturing industries [1].
In Brazil, one of the most common seaweed species found in commercial crops is Kappa-
phycus alvarezii (Rhodophyta, Gigartinales), which is mainly used for the production of
carrageenan, a colloid widely used in the pharmaceutical and food industries [2,3].

This species of macroalgae has a variable color, which defines three basic morphotypes:
green, red, and brown. However, depending on pigment concentration, it can vary between
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reddish, yellowish, brown, and green colors. Native to Southeast Asian countries like
Malaysia and the Philippines, it became one of the most cultivated seaweeds in tropical
regions of the world [4]. In Brazil, the commercial cultivation of this seaweed was started
in São Paulo in 1998 and was later authorized on the coasts of Rio de Janeiro and Santa
Catarina states [2]. There are also initiatives to be authorized in the Northeast of the
country. One reason for choosing this species is its rapid growth rate with a cultivation
cycle (planting to harvest) that usually lasts from 35 to 60 days, depending on the time of
the year. Depending on the cultivation method, the seaweed biomass can increase rapidly
during this period and reach an average relative growth rate of 7.24%/day [5,6].

According to FAO [7], the reported global production of K. alvarezii in 2020 was
1.604 million tons (fresh weight), accounting for 4.6% of total algal production. In Brazil,
according to the Ministry of Fisheries and Aquaculture, production was estimated to be
545 tons in the year 2022 [8].

Since the commercial cultivation of K. alvarezii is a relatively new economic activity
still not widespread in Brazil, producers face various challenges. Commercial crops in the
southern coastal region of the State of Rio de Janeiro and northern São Paulo have been
implemented with a high proportion of manual labor, a low degree of computerization of
processes and controls, and practically no type of automation.

Fixing the seaweed using tubular netting or tie–tie techniques in floating linear mod-
ules is one of the main methods of rational cultivation of K. alvarezii. These structures
are usually set up in coastal areas where the depth of the sea does not exceed 20 m, and
relatively close to the mainland. This approach provides sufficiently controlled cultiva-
tion conditions in terms of insolation, ease of inspection and repair of the structures, and
monitoring of predators (mainly turtles and crustaceans) or competitors, among other ad-
vantages [9]. However, the location of the cultivation modules in the semi-open sea impairs
overall monitoring. Access is by boat or barge, restricting mobility among modules. Under
Brazilian production conditions, the quantification and monitoring of growth are mainly
based on visual criteria and, therefore, depend on the producer’s practical experience. Thus,
no scientifically proven correlations or indirect measurement methods would allow mass,
area, or volume quantification. In addition, the damage caused by the action of predators
is also difficult to quantify.

In qualitative terms, there are still no consolidated instruments or methodologies
for standardizing the colors or levels of pigments present in cultured seaweed. This fact
hinders the segregation of produced batches based on the levels of chlorophyll or other
commercially important pigments.

Santos et al. (2022) [10] list some reasons for the relative delay in the consolidation
of commercial seaweed cultivation in the southeast region of Brazil, including the need
for mechanization of the production process, the lack of management of marine seaweed
farms, and the lack of researchers focusing on seaweed production technology. On the
other hand, the use of small unmanned aerial vehicles (UAVs), commonly known as drones,
has increased over recent years with the expansion of their application to the most diverse
sectors. Prominent sectors include agriculture and other economic exploitation of natural
resources, such as mining and forestry. In addition, computer techniques for processing
the images obtained via cameras embedded in drones have provided relevant data on the
monitored activities.

There is an urgent need to generate technological information for the operational
support, improvement of management, and optimization of commercial seaweed crops in
Brazil. Within this context, remote sensing techniques for seaweed mapping are important
for complementing and enhancing conventional field methods (collection of samples from
the sea), which are accurate but limited to small areas and expensive [11]. On the other
hand, remote sensing techniques permit the simultaneous photographing of large areas
(and at different wavelengths) at a relatively small cost per unit of monitored area. Remote
sensing enables the mapping and classification of shallow marine waters, the detection and
monitoring of kelp forests, the differentiation between different types of aquatic vegetation,
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the classification of macroalgae, the detection of submerged seaweed habitats, and even
the mapping of benthic macroalgae habitats in turbid coastal waters [11].

Recent developments in drone technology and transitioning from military applica-
tions to environmental research have opened the door to drone-based monitoring of algal
blooms [12]. Although drones currently cannot compete with the spatial extent and spectral
capacity offered by satellite or aircraft sensors, they enable greater temporal revisitation
and better spatial resolution, thus facilitating real-time monitoring.

The use of drones as a data-collection tool has led to significant advances in the field of
algal monitoring for the most diverse purposes because of the increasing flight autonomy,
possibility of access to remote locations, payload capacity, and easy adaptation of sensors,
among other advantages [13–15]. Within this context, the present study aims to analyze
and select multispectral indices obtained from images collected by drone for the detection
and quantification of the seaweed K. alvarezii in a commercial cultivation environment
in Brazil.

The present paper is part of a larger study that aims to develop a platform to manage
algae production, mostly based on drone imagery. Nowadays, practically all the steps in
the cultivation process are done manually; the grower must take a vessel and go to the
cultivation, grab the algae lines out of the water to check or estimate the growing rate,
weight, predator signs, etc. Selecting a proper index to segregate the algae biomass in the
cultivation is the first step towards using drone imagery to manage K. alvarezii cultivation.

2. Materials and Methods
2.1. Contextualization

The use of drones allows the remote collection of data and details of the surfaces of
interest. Professional drones of larger size and operational capacity can be equipped with
different cameras, depending on the analysis to be carried out. Drones are usually equipped
with RGB cameras (or “sensors”), which record images only in the visible range of the light
spectrum, specifically blue (450 ± 50 nm), green (550 ± 50 nm) and red (650 ± 50 nm) [16].
However, there are multispectral and hyperspectral cameras that, in addition to the visible
spectrum, also record images in the non-visible spectrum, specifically the infrared spectrum
(700–15,000 nm).

Multispectral indices are dimensionless radiometric parameters that combine and
transform the spectral reflectance response of the target (seaweed) into numerical values,
enabling the study and modeling of spectral data in conjunction with other interesting data.
In the case of seaweed, the spectral reflectance behavior cannot be explained only by the
intrinsic characteristics of their components (thalli) but must also include the interference
from other variables, such as the turbidity of seawater, depth of seaweed, predominant
color, and scattering of sunlight.

The thalli of macroalgae are the main fixation organ that absorbs electromagnetic
radiation, which depends on their composition, pigment content, level of photosynthetic
activity, morphology, and internal structure [17]. Due to their photosynthetic function, the
absorption spectra of solar radiation of macroalgal thalli differ according to the pigments
present (Figure 1). Figure 1 illustrates the wavelengths of light absorbed by different
pigments during photosynthesis. Blue wavelengths possess higher energy and shorter
wavelengths than red wavelengths, which are longer and have lower energy. In aquatic
environments, red wavelengths are absorbed near the surface, while blue wavelengths
can penetrate more deeply into the water. Green, red, and brown seaweed all contain
carotenoids and chlorophyll a, however, they differ in their photosynthetic accessory
pigments [18]. The absorption peaks for Chlorophyll a (blue line), Chlorophyll b (red line),
and Chlorophyll c (green line) are approximately 430 nm and 662 nm, 453 nm and 642 nm,
and 460 nm and 630 nm, respectively. For Carotenoids (purple line), Phycocyanin (light
blue line), and Phycoerythrin (orange line), the absorption peaks are around 450 nm and
480 nm, 620 nm, and 565 nm, respectively.
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Figure 1. Spectral absorption behavior in the visible range according to the pigments (adapted
from [18]).

However, like the leaves of taller plants, healthy macroalgae reflect most of the infrared
radiation (Figure 2a). As mentioned earlier, the depth of seaweed is also an important
factor affecting their spectral response. The spectrum reflectance, as depicted in Figure 2a,
demonstrates the reflective properties of various materials across different wavelengths
(nm). Green seaweed exhibits a notable increase in reflectance beyond 700 nm, indicating a
higher reflectance in the near-infrared region. Similarly, red seaweed shows an enhanced
reflectivity above 700 nm, although to a lesser extent than green seaweed. In contrast,
brown seaweed displays a reflectance that progressively rises with increasing wavelengths.
Regarding mineral reflectance, stones present a relatively stable reflectance curve, with a
slight upward trend at longer wavelengths. Sand, however, shows a consistent increase
in reflectance over the entire wavelength spectrum. The reflectance of clay also rises
steadily and smoothly across the wavelength range. These distinct reflectance patterns
are fundamental for various applications, such as vegetation and soil analysis via remote
sensing. They enable the differentiation of vegetation types, minerals, and other materials
based on their spectral signatures.

Figure 2b shows how the presence of water at different depths affects the reflectance
of seaweed. It can be seen that reflection by the macroalgae in the infrared spectral range
(<700 nm) decreases as the depth increases. Longer wavelengths (about 700–800 nm)
without water have increased reflectance, particularly in the near-infrared. This increased
reflectance is expected, as a dry surface reflects more light directly. As the water depth
increases (20 cm, 40 cm, 60 cm), the reflectance decreases, especially at longer wavelengths.
This reduction occurs because deeper water absorbs more light, leading to a decline in
reflectance. Variations in spectral signatures can be utilized in remote sensing studies to
detect the presence of water and estimate its depth.

In the present study, multispectral indices were analyzed in orthomosaics derived
from drone images to indirectly measure the cultivated K. alvarezii area. Once the surface
area of the seaweed is obtained, other parameters, such as volume and weight, can easily
be correlated and calibrated from field measurements.

An orthomosaic is the product of the superimposed unification of isolated aerial
images obtained by orthorectification and orthomosaicking. To achieve a high-quality
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orthomosaic with minimal distortions and high spatial resolution (measured in centimeters
per pixel), careful planning of the drone image acquisition process is crucial. This planning,
known as a flight plan, involves determining the flight altitude, camera angle, horizontal
travel speed, image exposure time (aperture setting), and the percentage of front and side
overlap between images.
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2.2. Study Area

In the present study, two commercial K. alvarezii crops were analyzed, located in
Paraty/RJ, Brazil (co-ordinates 23◦13′39.6′′ S and 44◦37′25.6′′ W), as shown in Figure 3.
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2.3. Image Sampling and Equations

Images were collected on 29 April 2023. A total of 380 images, among RGB and
multispectral images, were collected. This day was chosen because it was sunny, with
clear water and adequate seaweed biomass for generating images that could be used
in comparing methods. Also, the K. alvarezii cultivation presented several development
classes according to the different days of replication in each block, providing a variety of
tali dimensions and biomass volume categories. The hardware used for image collection
consisted of one DJI Matrice 300 RTK drone (SZ DJI Technology Co., Shenzhen, Guangdong,
China) equipped with a Micasense Altum-PT multispectral camera (AgEagle Aerial Systems
Inc., North Wichita, KS, USA), DLS2 sensor, and radiometric calibration panel. A DJI D-
RTK2 GPS base (SZ DJI Technology Co., Shenzhen, Guangdong, China) was used to position
the images spatially. The spectrum bands of the multispectral Micasense Altum-PT camera
used in this study are shown in Table 1.

Table 1. Spectral bands of the multispectral Micasense Altum-PT camera used in this research.

Spectral Bands Wavelength

Blue 475 nm ± 32 nm
Green 560 nm ± 27 nm
Red 668 nm ± 14 nm

Red-edge 717 nm ± 12 nm
Near-infrared (NIR) 842 nm ± 57 nm

Thermal infrared or long-wave infrared (LWIR) 7.5–13.5 µm
Panchromatic 634.5 nm ± 463 nm

No correction was applied to the RGB images. The drone was equipped with the
Downwelling Light Sensor (DLS 2), an incident light sensor connecting directly to the mul-
tispectral sensor. During the flights, the DLS 2 measured the ambient light and sun angle
for each camera band and recorded this information in the metadata of the TIFF images
captured by the camera. This information was then used during the image processing step
to correct global lighting changes in the middle of a flight, such as those that can happen
due to clouds covering the sun.

The following flight parameters were used: flight altitude of 100 m, horizontal speed
of 8 m/s, camera angle of 100% nadir, and frontal and lateral overlap of 75%. The initial
processing of the images and generation of the orthomosaics were carried out using the
Agisoft Metashape® 1.8.4 software (64-bit, Agisoft, St. Petersburg, Russia). This software
provides alignment of points at the highest accuracy and depth maps at high resolution and
moderate filtering, and generates dense point clouds, resulting in multispectral orthomo-
saics with spatial resolution (GSD) of 1.97 cm/pixel. The orthomosaics were georeferenced
in the SIRGAS 2000 UTM 23S system. Pan-sharpening was carried out, as well as raster
transformation, to obtain reflectance values in each band. The processed orthomosaics
were then exported in TIFF format to a single file.

Flying drones over bodies of water is a hard task considering the image collection
and next step, which is orthomosaicking the images in order to map a larger area. This is
because the waves on the water’s surface constantly move the target, making the process of
stitching neighbor images difficult. Technically, the moving surface decreases the number
of tie points among the images, making the orthomosaicking process a challenge. As
shown in Figure 3, the studied area is formed by various islands and rock formations, and
the seaweed cultivations are installed beside these areas. When flying at lower altitudes
(20–50 m above sea level), more details are registered, although the images only capture
the constantly moving algae cultivation itself and the seawater. Flying higher (around
100 m above sea level), not only is the algae cultivation captured in the images, but so
are the fixed rocks and other static formations surrounding the algae blocks. These static
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features in the images allow higher-quality orthomosaics, with perfect stitching between
neighboring images.

The next processing step was performed using the QGIS 3.26.2 software (open source),
with calculation of the multispectral indices. Table 2 shows the 24 indices calculated.

Table 2. Multispectral indices analyzed and their respective calculation equations.

Index Equation

Near-infrared (NIR) false color Composition NIR RG

Normalized difference vegetation index (NDVI) NDVI = (NIR−R)
(NIR+R)

Normalized difference red edge (NDRE) NDRE = (NIR−RE)
(NIR+RE)

Chlorophyll index—green (CIG) CIG = (NIR)
(G)

− 1

Chlorophyll index—red edge (CIRE) CIRE = (NIR)
(RE) − 1

Merris terrestrial chlorophyll index (MTCI) MTCI = (NIR−RE)
(RE−R)

Green normalized difference vegetation index (GNDVI) GNDVI = (NIR−G)
(NIR+G)

Red edge difference vegetation index (REDVI) REDVI = NIR − RE

Structure insensitive pigment index (SIPI) SIPI = (NIR−B)
(NIR−R)

Optimized red edge vegetation index (REVIopt) REVIopt = 100 × (lnNIR − lnRE)

Normalized green index (NGI) NGI = G
(NIR+RE+G)

Algal bloom detection index 1 (ABDI1) ABDI1 =
[
RE − R − (NIR − R)× (λRE−λR)

(λNIR−λR)

]
− (R − 0.5G)

Algal bloom detection index 2 (ABDI2) ABDI2 = NDVI + GNDVI

Modified triangular vegetation index 2 (MTVI2) MTVI2 = 1.5 × [1.2(RE−G)−2.5(R−G)]√
[(2RE+1)2−(6RE−5

√
R−0.5)]

Enhanced vegetation index (EVI) EVI = 2.5 (NIR−R)
(NIR+6R−7.5B+1)

Normalized green–red difference index (NGDRI) EVI = 2.5 (NIR−R)
(NIR+6R−7.5B+1)

Redness index (RI) RI = (R−G)
(R+G)

Excess red vegetative index (ExR) ExR = 1.4 × R − G

Ground-level image analysis (GLI) GLI = [(G−R)+(G−B)]
2G+R+B

Visible atmosphere resistant index (VARIGreen) VARIGreen = G−R
G+R−B

Color index vegetation extraction (CIVE) CIVE = 0.441R − 0.811G + 0.385B + 18.78745

Vegetation index (VEG) VEG = G
0.667R×B(1−0.667)

Visible band difference vegetation index (VDVI) VDVI = 2G−R−B
2G+R+B

Leaf area index (LAI) LAI = −25.838
(√

R + B2 −
√

G
)

(Initialisms of the bands in the equations: R = red, G = green, B = blue, NIR = near-infrared, RE = infrared
red edge).

All the steps, from collecting to processing the images, were executed using profes-
sional tools and the recommended techniques. As mentioned, flying over bodies of water
is challenging, and all the obstacles, such as moving water surfaces or sun glint, were
overcome to obtain high-quality images and ensure the replicability of the study.

2.4. Statistical Analysis

Data derived from the steps above were analyzed directly in QGIS software using
the tools “Zonal Statistics” and “Basic Statistics for Fields”. Complementarily, linear
regression analysis and the coefficient of determination R2 were calculated using the
software RStudio 2023.03.
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3. Results and Discussion

Raster images were then generated for each multispectral index. These indices, which
record different light wavelengths that reflect various aspects and characteristics of the
seaweed, were used to evaluate and monitor the seaweed’s growth and quality. The
symbology of each raster was adjusted to maximize contrast and allow visualization
of the cultivated seaweed. Figure 4 illustrates the results obtained with some of the
calculated indices.
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When combined, the individual indices offer a whole perspective of the crop, each
contributing distinct information. Areas of higher NIR reflectance (Figure 4A) appear in
shades of red or other colors, and indicate seaweed cultivation. Variations in crop NDVI
values are visible (Figure 4B), suggesting variations in seaweed density. The brighter
yellow sections in the image most likely indicate denser seaweed. The CIRE is handy for
monitoring chlorophyll content, thus providing information on the physiological state of the
seaweed. Different colors are seen in growing areas; brighter or more colorful tones indicate
denser or healthier seaweed. The seaweed patches appear in different shades; brighter
hues could indicate healthier seaweed with a higher chlorophyll content (Figure 4C,D).

The multispectral indices were calculated to obtain the best contrast between cultivated
seaweed, cultivation structures (ropes and buoys), and seawater. The higher the contrast
between elements, the more efficient their segmentation in the next step of image processing.
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Frequency distribution graphs of the pixel values for each calculated index were generated
and analyzed for this purpose (Figure 5).
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The joint visual analysis of the graphs and the raster layers of the generated indices
allowed the selection of multispectral indices with greater contrast between elements of the
images. The indices that resulted in graphs with a concentration of pixels of the same value
were eliminated because of the inefficiency in distinguishing the elements of the images,
notably the cultivated seaweed. Using this process, the NDVI, NDRE, CIG, MTCI, GNDVI,
REDVI, NGI, ABDI1, ABDI2, MTVI2, and EVI indices were selected, and the threshold of
the algal detection ranges was defined for each index. Based on the frequency distribution
graphs of pixel values of each selected index, maximum and minimum limits were tested
for optimization of segmentation and detection of the seaweed.

These tests were carried out by filtering pixels whose values were present in the
threshold intervals defined in the previous step. This process generated new raster layers
of filtered pixels for each index and range of thresholds of values tested. Each filtered raster
layer was then vectorized, thus generating vector layers of the threshold values.
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In parallel, the perimeter of the cultivation modules, which are the units that form
each cultivation raft, manually vectorized in each cultivation unit. Next, the useful area of
each cultivation module was calculated. Table 3 shows the characteristics of the modules in
each commercial crop analyzed.

Table 3. Characteristics and parameters of Kappaphycus alvarezii algal modules in the commercial
crops analyzed.

Parameter Crop A Crop B

Number of modules 47 320

Total area of modules (m2) 586.67 2854.56

Standard deviation of the area of the modules 1.06 0.82

Minimum area (m2) 8.59 6.88

Average area (m2) 12.48 8.95

Maximum area (m2) 13.96 11.37

Finally, the layers of threshold value vectors and vectors of the useful cultivation area
of the modules were superimposed. This approach permitted extracting the useful area
of each module where seaweed occupation occurred. Tables 4–6 show the results of the
parameters and statistics for each index selected in the previous step in each commercial K.
alvarezii crop analyzed.

Table 4. Parameters and statistics of multispectral indices in crop A.

Index Threshold
Total Area

with Seaweed
(m2)

%
Occupancy

Average
Total Area

(m2)

Standard
Deviation

of Total
Area (m2)

CV
(%)

Regression
Equation R2

NDVI

≥−0.1 518.82 88.43

406.55 109.42 26.91 406.547 − 1092.95x 0.998≥0 400.59 68.28

≥0.1 300.23 51.18

NDRE
≥−0.1 396.29 67.55

276.60 169.27 61.20 156.91 − 2393.8x 1.000
≥0 156.91 26.75

IGC
≥−0.1 482.69 82.28

457.38 35.80 7.83 432.06 − 506.3x 1.000
≥0 432.06 73.65

TCIM
≤0 253.38 43.19

282.11 40.63 14.40 253.38 + 229.84x 1.000
≤0.25 310.84 52.98

GNDVI
≥0 432.07 73.65

378.99 75.07 19.81 432.07 − 1061.7x 1.000
≥0.1 325.9 55.55

REDVI
≥−0.1 486 82.84

321.46 232.70 72.39 156.91 − 3290.9x 1.000
≥0 156.91 26.75

NGI 0.15 ≤ NGI ≤ 0.30 338.02 57.62
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Table 5. Parameters and statistics of multispectral indices in crop B.

Index Threshold
Total Area

with Seaweed
(m2)

%
Occupancy

Average
Total Area

(m2)

Standard
Deviation

of Total
Area (m2)

CV
(%)

Regression
Equation R2

ABDI
1

≥0 1835.94 64.32

1471.46 326.56 22.19 1850.285 − 5051x 0.997
≥0.05 1609.34 56.38
≥0.10 1365.01 47.82
≥0.15 1075.55 37.68

ABDI
2

≥0 2056.11 72.03

1777.854 223.99 12.60 2061.124 − 1416.35x 1.000
≥0.10 1922.52 67.35
≥0.20 1782.7 62.45
≥0.30 1637.49 57.36
≥0.40 1490.45 52.21

NDVI

≥0 2079.65 72.85

1814.144 213.32 11.76 2083.93 − 2697.86x 1.000
≥0.05 1951.75 68.37
≥0.10 1818.11 63.69
≥0.15 1680.3 58.86
≥0.20 1540.91 53.98

GNDVI

≥0 2022.6 70.86

1804.59 190.01 10.53 2025.33 − 2943.2x 1.000
≥0.05 1881.12 65.90
≥0.10 1733.3 60.72
≥0.15 1581.34 55.40

NGI

0 ≤ NGI ≤ 0.30 1477.34 51.75

1556.166 336.20 21.60 483.304 + 6882.984x 0.965
0 ≤ NGI ≤ 0.25 1449.8 50.79
0 ≤ NGI ≤ 0.20 1144.28 40.09

0.1 ≤ NGI ≤ 0.25 1646.5 57.68
0.15 ≤ NGI ≤ 0.30 2062.91 72.27

IGC

≥0 2022.6 70.86

1922.17 85.68 4.46 2021.716 − 1327.28x 1.000
≥0.05 1954.49 68.47
≥0.10 1888.06 66.14
≥0.15 1823.53 63.88

MTVI
2

≥0.05 2149.26 75.29

1978.8775 144.36 7.30 2370.16 − 4471.8x 1.000
≥0.075 2032.13 71.19
≥0.1 1920.2 67.27
≥0.125 1813.92 63.54

EVI
≤−0.01 1482.89 51.95

1516.496667 547.12 36.08 1814.877 + 59676x 0.297≤−0.005 986.95 34.57
≤0 2079.65 72.85

Table 6. Visual analysis factors of the selected multispectral indices and the respective scores assigned
to the segregation of each parameter.

Index Cultivation
Structures

Seaweed in
Deeper Waters Propagules High Density of

Seaweed
Sensitivity between

Threshold Values

ABDI 1 1 4 4 5 4
ABDI 2 5 3 5 5 3

CIG 5 5 5 5 3
GNDVI 5 5 4 5 5
MTCI 1 2 3 2 1

MTVI2 2 5 5 5 1
NDVI 5 5 4 5 1
NGI 5 3 4 4 2
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The results of Tables 4 and 5 show that most multispectral indices had a high coefficient
of determination (R2), except EVI. Two other indices of low performance are REDVI and
NDRE, which had a high coefficient of variation (CV%). Thus, the EVI, REDVI, and NDRE
indices were discarded, and a new processing step was initiated.

The remaining indices were submitted for visual analysis of the vectorization results
compared to the RGB and NIR false color compositions of the crops. This process allowed
the identification of multispectral indices with low efficiency when segregating the seaweed
from the other components of the images (cultivation structures and seawater). Since this
subjective analysis depends on the analyst’s interpretation, it was decided to structure the
analysis factors, which received scores ranging from 1 (little or no occurrence) to 5 (high
or total occurrence). The analysis factors and the respective scores for each parameter are
shown in Table 6.

Figure 6 shows aspects that illustrate the interpretation of the visual analysis factors of
the indices and the attribution of occurrence scores.
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The MTCI and NGI indices showed both limitations and strengths. The MTCI pre-
sented difficulties in areas with a high density of seaweed, while the NGI’s challenges
were deeper waters and distinguishing between seaweed and cultivation structures. These
findings suggest that, while both indices are valuable tools, they could require additional
techniques or calibration to identify and classify seaweed in various aquatic habitats
more precisely.

Considering the results obtained by the team involved in this project, the most con-
siderable limitation of the study was the necessity of using expensive devices to achieve
reliable results. One of the team’s aims is to test the viability of using less expensive drones
directly, or with adapted infrared filters on the native camera, to relate the images with the
algae biomass.

Other limitations are related to the natural environment where the algae are cultivated.
The sunglint, the waves, and the algae block movement on the water surface, as well as
the challenge of properly stitching good-quality orthomosaics, are the main examples of
obstacles that must be overcome.

In this paper, we selected potential multispectral indices with good results when
segregating the algae inside the cultivation blocks. Thus, once the algae biomass was
derived from the drone imagery, no bias could influence the results. The bias in the results,
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considering the present study, could only originate from erroneously defining the index
value threshold to segment the algae properly.

The results obtained to date have shown that selected multispectral indices can be
used in the segmentation step of the algae analysis. As shown, ABDI1, ABDI2, CIG, and
GNDVI could do that task. However, different algae have different ways of developing,
and different tali structures or ideal depths in the seawater for good development, for
instance. All these variables need to be studied in order to apply the results of this study to
other kinds of algae. More studies and different approaches must be developed to extend
the present results to other algae species.

4. Conclusions

In this study, we aimed to select multispectral indices derived from images collected
by drones that have practical applications in the operational and production management
of commercial cultivation of K. alvarezii in Brazil. In summary, the aim was to increase
efficiency when segmenting the seaweed in the images so that their exposed surface (area)
could be calculated, and subsequently allow the calculation of other production parameters
related to the growth rate of the algal biomass. Success in this process will lead to gains
in automating the cultivation process, reducing manual activities, improving production
management, and facilitating decision-making by seaweed farmers.

Starting from a set of 24 pre-selected indices, a series of image-processing steps were
carried out, including frequency analysis of pixel values, statistical analyses, and visual
interpretations according to scores attributed to the efficiency of seaweed segmentation.
The last step of index analysis included only eight indices. Given the low efficiency of
seaweed segmentation, represented by low sensitivity scores between limit values and
detection of seaweed in deeper waters, the MTCI, MTVI2, NDVI, and NGI indices do
not represent the best options for achieving the outlined objectives. We conclude that the
multispectral ABDI1, ABDI2, CIG, and GNDVI indices provided the best segmentation
results for K. alvarezii in the commercial crops analyzed. However, further studies are
necessary to increase the definition of limit ranges of the selected multispectral indices.
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