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Abstract: The study of microplastics (MPs) in soils is impeded by similarities between plastic and
non-plastic particles and the misidentification of MP by current analytical methods such as visual
microscopic examination. Soil MPs pose serious ecological and public health risks because of their
abundance, persistence, and ubiquity. Thus, reliable identification methods are badly needed for
scientific study. One possible solution is UV–Vis–NIR spectroscopy, which has the ability to rapidly
identify and quantify concentrations of soil microplastics. In this study, a full-range, field portable
spectrometer (350–2500 nm) with ultra-high spectral resolution (1.5 nm, 3.0 nm, and 3.8 nm) identified
three types of common plastics: low-density polyethylene (LDPE), polyvinyl chloride (PVC), and
polypropylene (PP). Three sets of artificially MP-treated vermiculite soil samples were prepared for
model prediction testing and validation: 150 samples for model calibration and 50 samples for model
validation. A partial least square regression model using the spectral signatures for quantification
of soil and MP mixtures was built with all three plastic polymers. Prediction R2 values of all three
polymers showed promising results: polypropylene R2 = 0.943, polyvinyl chloride R2 = 0.983, and
polyethylene R2 = 0.957. Our study supports previous work showing that combining ultra-high-
resolution UV–Vis–NIR spectrometry with quantitative modeling can improve the accuracy and
speed of MP identification and quantification in soil.
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1. Introduction

Plastic pollution is a rapidly growing global problem, receiving significant attention
in all environmental sciences. Indeed, some researchers now refer to the “Plasticene” as
our current geological epoch [1]. Microplastics (MPs) are plastics with particle sizes < 5
mm. They form when larger plastic pieces are exposed to erosion, degradation, photo-
thermal oxidation, UV degradation, or friction [2,3]. Primary MPs come directly from
the production of tiny plastic particles, and secondary MPs come from the fragmentation
of larger particles. Both are transported via several media [4]. Freshwater systems carry
a significant number of MPs providing nearly 80% of the total input of plastic into the
oceans [5]. This poses significant concerns about mechanisms of transport and the toxic
effects of MPs, including the adsorption of many other chemicals or toxic substances [5].

To fully understand the impacts of MPs on the environment, better quantification of
their abundance and composition is necessary. Many studies use vibrational spectroscopy
methods such as Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy
for these goals [6,7]. However, both techniques have limitations when used for MP analysis.
Raman spectroscopy requires extensive data processing and sample pre-treatment [8]. FTIR,
on the other hand, can be used without any pre-treatment of the samples [9]. However, the
application of FTIR is limited to dry samples with sizes above 10 µm for Mid-Wavelength
Infrared-FTIR [10] and is limited to transparent or white samples for Near-Infrared-FTIR.
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The limitations of both techniques make it clear that additional spectroscopic techniques
are required to cover the large diversity of microplastics in the environment. Other mass
spectrometry methods such as Pyrolysis–Gas Chromatography–Mass Spectrometry (Pyr-
GC-MS) and Thermal Desorption–GC-MS (TED-GC-MS) have been used as an analytical
method for the identification of microplastics in the environment [11]. However, both
of these mass spectrometry methods also present significant drawbacks, including the
most important deficiency of their inability to be used in the field. Pyr-GC-MS presents
drawbacks since it needs adequate concentration and separation steps, which could limit
the analysis of large quantities of MPs. TED-GC-MS requires extensive sample preparation
steps, not limited to model building itself, with a density separation approach.

In the last five years, there has been increasing interest in the various types of Vis–
NIR lab spectrometers as reflected light can be used to identify and even quantify MP
polymers [12–15]. The increasing popularity of these spectrometers is due to their great
potential for rapid, low-cost, non-destructive, and accurate use for MP analysis compared to
traditional methods. Most of these benefits occur because they allow real-time assessment
of minimal-to-no sample pre-treatment such as time-consuming MP extraction from soils
by filtration, gravitation, or other means (Junhao et al., 2021) [16]. However, nearly all
previous soil MP spectral studies have been completed with standard spectral resolution
spectrometers (e.g., [13–15,17–20]). An exception to this use of standard resolution was
carried out by Corradini et al., 2019 [12], by testing a device that has a higher spectral
resolution. Corradini’s approach was to use spectral resolutions of 3.0 nm (UV–Vis), 8 nm
(SWIR1), and 6 nm (SWIR2). Our study takes this approach further by using ultra-high
spectral resolutions of 1.5 nm (UV–Vis), 3.0 nm (SWIR1), and 3.8 nm (SWIR2) to measure
the reflectance spectra. This is important to the microplastic community because ultra-high
spectral resolution allows us to better identify microplastics at a smaller concentration by
identifying key absorption features that are not visible with standard spectral resolution.
This also allows us to experiment whether the additional absorption features may increase
the accuracy of quantitative modeling.

Our study also uses a portable instrument so it can be used in the field. Several types
of portable and handheld devices for MP analysis were recently reviewed [21]. Of these
devices, the use of portable equipment in the near-infrared region is commonly used in
quality control [22] and for polymer-type identification of macroplastics [23,24]. However,
there has been very little spectral analysis of soil MPs using the broader spectrum of UV–
Vis–NIR reflectance, with almost all studies relying on NIR or Vis–NIR or only part of that
spectrum (e.g., [17,18,20]). The benefits of a higher spectral resolution seem theoretically
obvious (e.g., more ways to characterize and thus identify polymers), but its utility has yet
to be demonstrated, which is our goal here.

In addition to these advances in the spectroscopic equipment, this paper also advances
MP analysis by using MP soil contamination as the focus of our study. As reviewed by
Junhao et al. [16], MP studies of soils have lagged far behind studies of MPs in other media.
For example, the first study of MPs in ocean waters was published in 1974 [25], but it
was 2012 [26] before an MP soil study was published. This lack of MP studies in soils is
highly significant because, by one estimate at least, terrestrial soils may contain 4–23 times
more plastic contamination than the ocean basics [27]. The main reason for this neglect
of soil in MP studies is that soils are heterogeneous, complex media that require much
preparation. Soils also contain many particles besides MPs, which makes it difficult to
identify and quantify MP particles [16]. Thus, the use of accurate and low-cost methods of
MP identification using spectroscopy, especially in the field, could be a very effective way
to make soil MP analysis much more available and common.

Here, we examine MP spectral data from artificial vermiculite soil mixed with plastic
polymers. The polymers examined were low-density polyethylene (LDPE), polyvinyl
chloride (PVC), and polypropylene (PP). These three polymers were selected because they
are commonly found in sedimentary environments (e.g., [19,28,29]). We also analyze which
plastic polymer model performed best for individual and mixture samples. This study aims
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to show that increased (ultra-high) spectral resolution can have an impact on more accurate
identification of MPs in soils and increase the confidence of quantification via chemometric
modeling. This proof-of-concept study will be used as a basis and application for future
field studies.

2. Materials and Methods
2.1. Experimental Methods

Pure vermiculite soil, Grade 4, mesh size 7.9 mm, was purchased from Uline (Pleasant
Prairie, WI, USA. Pure polypropylene (PP) and low-density polyethylene (LDPE) pellets
were purchased from Scientific Polymer Products Inc. along with pure polyvinyl chloride
(PVC). A portable UV–Vis–NIR spectrometer from Spectral Evolution, Inc (Haverhill, MA,
USA) with an ultra-high spectral resolution of 1.5 nm, 3.0 nm, and 3.8 nm was used to mea-
sure the reflectance spectra of artificial vermiculite soil polluted with known concentrations
plastic polymers. Three sets of samples were treated with individual polymers of PP, PE,
and PVC in a range of MP concentration of 0.5–10%.

2.2. Sample Preparation

A total of 150 calibration samples and 50 test samples (3:1) were prepared in this
study. The pure vermiculite soil was milled to an 840–250-micron particle size. The three
polymers were also milled to coincide with the same particle size of 840–250 microns and
sieved. The mixture of vermiculite and each individual polymer was created at a 0–10%
concentration with 0.5% increments. Once the mixtures were made, a mortar and pestle
were used to grind the mixture samples in order to separate the MP particles from adhering
to the individual vermiculite soil particles. After grinding a 5 g mixture of vermiculite soil,
MPs were created and divided into 10 samples at 0.5 g increments for data acquisition.
Figure 1 shows examples of the final soil and MP mixtures divided into sample cups that
were used in the study.

Figure 1. Soil and polypropylene (PVC) mixtures shown at 0.5% increments.
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2.3. Spectral Signatures of Treated Samples

Spectral Evolution’s oreXpert™ spectrometer was used to take the spectral measure-
ments of both pure vermiculite soil and pure polymers along with all mixture samples. A
benchtop probe with a sample compactor and sample trays was the appropriate accessory
for this study due to the thin layer of soil and MP mixture. This allows for more precise
and steady measurements to ensure the MP particles were captured within the spectral
data. For each sample, 5 measurements were taken by rotating the sample puck between
each measurement. Spectral Evolution’s DARWin acquisition software v.1.5.8852 allowed
for spectral measurements to be obtained and combined with the EZ-ID™ identification
tool to ensure the MP particles were being identified at each concentration range.

3. Results
3.1. Standard vs. Ultra-High Resolution

In order to prove the importance of ultra-high spectral resolution of 1.5 nm (UV–Vis),
3.0 nm (SWIR1), and 3.8 nm (SWIR2) for microplastic polymer identification, Figures 2–4
show the spectral resolution difference compared to the standard resolution that Corridini
et al., 2019 [12], used for their initial research of 3.0 (UV–Vis), 8 nm (SWIR1), and 6 nm
(SWIR2). Corridini’s findings show great improvement in the technology standards for
using UV–Vis–NIR technology for this application. However, as technology has improved,
there is a need to visit the theory that ultra-high spectral resolution can improve identi-
fication and provide more accurate quantitative models. To show distinct improvement
between the two different resolution spectrometers, data were taken on the same sample
using both instruments. The findings from this increase in spectral resolution of microplas-
tic spectral data indicate that identification will be more accurate when presented with
mixture samples, where a problem of mis-identification could occur with standard spectral
resolution.

The increase in spectral resolution of PVC is shown in Figure 2 where two regions of
interest show improvement compared to spectral data taken with a standard resolution
instrument (3.0 nm, 8.0 nm, 6 nm). The 1400 nm spectral region improves using ultra-high
resolution (1.5 nm, 3.0 nm, 3.8 nm) with the addition of an additional absorption feature at
1386 nm, not seen with the standard spectral resolution. A doublet now appears at 1750 nm,
as well as a more defined 1900 nm feature using ultra-high spectral resolution, which is an
improvement compared to the standard resolution data.

Figure 2. Ultra-high-resolution data (green) vs. standard resolution spectral data (red) of PVC.
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Figure 3. Ultra-high-resolution data (red) vs. standard spectral resolution data (green) of PP.

Figure 4. Ultra-high-resolution data (red) vs. standard spectral resolution data (green) of PE.

Figure 3 shows improvement in four different regions throughout the spectrum of
PP. The 1200 nm ultra-high-resolution data show a sharper, more well-defined doublet
compared to that of the standard resolution data. Additonal absorption features have
now developed at the 1400 nm region where a triplet forms using ultra-high resolution,
previously shown as a doublet with standard resolution. The 1700 nm region shows great
improvement in spectral resolution where the traditional singlet feature using standard reso-
lution has improved with multiple new spectral features at 1715 nm, 1750 nm, and 1760 nm
in the ultra-high-resolution data. The final region of interest is the 2300 nm–2500 nm region
where the ultra-high resolution shows significant improvement compared to that of the
standard resolution where new absorption features are evident.

The spectral data of PE are shown in Figure 4 with two regions of improvement with
ultra-high spectral resolution. The 1400 nm absorption feature has an additional absorption
feature not seen with standard spectral resolution. Throughout the 1700 nm–2100 nm
region, ultra-high resolution offers increased detail in the absorption features and also an
additional feature at 1750 nm where a doublet forms. The 1750 nm feature with standard
spectral resolution appears only as a single feature.

The increase in spectral resolution compared to the standard resolution of relevant
MPs documents how enhanced identification is possible. Figure 5 shows a plot with ultra-
high-resolution spectral data of all pure materials used in the study. All pure materials
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have outlined sections below to describe the specific absorption features seen with using
an ultra-high spectral resolution spectrometer.

Figure 5. Plot showing pure vermiculite soil (Purple), polypropylene (PP, Green), low-density
polyethylene (LDPE, Red), and polyvinyl chloride (PVC, Blue).

3.2. Vermiculite Soil

The main absorption features of note are seen at 1371 nm, 1394 nm, and 1418 nm due
to OH. Water is observed at 1911 nm and can be used as a means for expansion capabilities
in the vermiculite. The main Mg-OH features seen at 2320 nm indicate that this vermiculite
is Mg-dominant.

3.3. Polypropylene (PP)

Spectral features occur in the 350–2500 nm wavelength range. The main absorption
features are seen in the 914 nm–934 nm region, 1020 nm–1052 nm region, 1158 nm–1214 nm
region, 1707 nm–1763 nm region, 1824 nm–1983 nm region, and the 2067 nm–2466 nm
region.

3.4. Low-Density Polyethylene (LDPE)

Spectral features occur in the 350–2500 nm wavelength range. The main absorption fea-
tures are seen at 932 nm, 1039 nm, 1166–1217 nm region, 1389 nm–1438 nm region, 1535 nm,
1615 nm, 1726 nm–1835 nm region, 2009 nm–2139 nm region, and the 2308 nm–2343 nm
region.

3.5. Polyvinyl Chloride (PVC)

Spectral features occur in the 350–2500 nm wavelength range. The main absorption
features occur at 930 nm, 1040 nm, 1210 nm, 1420 nm, and 1730 nm.

3.6. Treated Mixture Samples

Due to the overlapping regions of the vermiculite soil and the plastic polymers, the re-
gion of focus for plastic identification and quantification was selected at 1682 nm–1760 nm.
This region allowed for discrimination between different polymers based on the wave-
length position and shape of the plastic absorption feature. The wavelength and shape of
the 1700 nm feature varied between polymers. Figure 6 shows all three mixtures within the
full range (350 nm–2500 nm). The vermiculite and PP mixture show two sets of doublet
features: 1693 nm–1703 nm and 1722 nm–1734 nm (Figure 7). The LDPE and soil mixture
showed a sharp doublet feature at 1729 nm–1764 nm (Figure 8). Finally, the PVC and soil
mixture had a higher spectral reflectance than the PP and LDPE mixtures and showed a
sharp feature at 1713 nm accompanied by a smaller feature at 1747 nm (Figure 9).
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Figure 6. All three plastic polymer and vermiculite soil mixtures—(red) PVC, (blue) PE, (green) PP.

Figure 7. PP and soil mixture showing 1700 nm region of interest.

Figure 8. LDPE and soil mixture showing 1700 nm region of interest.



Microplastics 2024, 3 346

Figure 9. PVC and soil mixture showing 1700 nm region of interest.

4. Discussion

The main focus of this study is to show how spectral data can be used for quantitative
purposes. In order to do so, a chemometric model needed to be built from known calibration
samples and then tested to ensure the model was performing accurately. Multivariate
statistical approaches [30] and filter selection play a significant role in the calibration method
used to analyze spectral data. Eigenvector SOLO+Model Exporter software (Manson, WA,
USA) was used to calibrate spectral data using UV–Vis–NIR spectra and their matching
laboratory data. Approximately 70% of the data in the data set were used for training
and 30% were used for validation. The training set was then analyzed to choose the best
pre-treatment options for the prediction spectral wavelength with the PLSR (Partial Least
Square Regression) modeling technique. UV–Vis–NIR data quality can be affected by
sampling, instrumentation, environment, and other variables. To minimize these effects,
preprocessing is needed before modeling. Common preprocessing methods include outlier
removal, smoothing techniques to remove noise, derivative techniques to reduce baseline
drifting and highlight peak position, and normalization techniques to remove the sampling
and laser power fluctuations as well as mean centering. Using SOLO+Model Exporter
software), the mixed soil and MP spectral data were preprocessed and a partial least square
regression model was built.

4.1. Partial Least Square Regression (PLSR)

Partial Least Square Regression (PLSR) modeling was used to quantify the polymer
concentration in the soil. A PLSR model is a statistical modeling technique that projects the
targeted variables and observable variables into a new space. It is a bilinear factor model
that works by defining covariance pair by pair and is a commonly applied multivariate
technique in soil spectroscopy analysis [31]. A PLSR is commonly applied when variables
are highly correlated. The PLSR model seeks to maximize the covariance between the
predictor (X-block, NIR spectra) and response variables (Y-block, concentration). The
application of PLSR has been proven to be useful in studies where many predictor variables
outnumber the observations. PLSR in this paper is implemented with the SOLO software
from Eigenvector Inc. using the SIMPLS algorithm to calculate the PLSR factors [32].

Several performance matrices were used to evaluate the model quality including the
root mean square error (RMSE) and the coefficient of determination (R2). The equations are
as follows:

RMSE =

√
∑N

i=1×
(yi − ŷi)2

N
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R2 = 1 − ∑n
i=1 ×(yi − ŷi)2

∑n
i=1 ×

(
yi − y

)2

where yi hat indicates the values estimated by the model, yi indicates the observed values,
and N is the number of observations of the variable to be modeled.

4.2. Modeling

An individual model was built with calibration samples per polymer to test the
detection limit of the oreXpert. After model optimization was complete with validation
samples, the oreXpert provided an increased detection limit down to a 0.5% concentration
range. Figure 10 shows the prediction model built for PP with an R2 prediction value of
0.943. The calculated and measured data points are separated by two different variables.
Figure 11 shows the prediction model built for PVC producing an increased R2 prediction
value of 0.983. Finally, the LDPE prediction model showed similar results as the LDPE with
an R2 prediction value of 0.957 (Figure 12).

Figure 10. The prediction model built for PP has an R2 prediction value of 0.943.
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Figure 11. The prediction model built for PVC showing an R2 prediction value of 0.983. The
image above is a visual representation of the two distinct data sets; the red diamonds represent
measurements originating from test samples and the gray circles are data points obtained from the
model. The characteristics of the model can be observed in the square box above.

Figure 12. The prediction model built for LDPE showing an R2 prediction value of 0.957. The
image above is a visual representation of the two distinct data sets; the red diamonds represent
measurements originating from test samples and the gray circles are data points obtained from the
model. The characteristics of the model can be observed in the square box above.

The image above is a visual representation of the two distinct data sets; the red
diamonds represent measurements originating from test samples and the gray circles are
data points obtained from the model. The characteristics of the model can be observed in
the square box above.

4.3. Real-Time Quantification

Our results and analyses produced a spectral library that consists of all the spectral
data measured in the experiment. Utilizing Spectral Evolution’s DARWin software and EZ-
ID identification software, the oreXpert was able to simultaneously identify and quantify
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microplastic contamination within three seconds of the measurement being taken. The
oreXpert used the spectral data that were cataloged as a reference point and compared
all the catalog spectra to the one being measured, providing an output that most closely
resembled the spectra that were generated. The generation of a spectral library in tandem
with other software can allow for the identification and quantification of microplastic
contaminants. This approach provides a nondestructive method for MP identification and
quantification. The preservation of MP samples means that temporal analysis and studies
can be conducted using the same samples. This is not the case with other current methods
of MP analysis, e.g., gas chromatography and similar methods that destroy the samples.

Within the DARWin acquisition software is an option to import prediction models in
.xml format. After the individual polymer models were built using SOLO+Model Exporter,
they were exported to DARWin to use in real time as spectral data were being collected
from test samples. The test samples were important to this research to test the accuracy of
the models built and for the initial findings of the detection limits of the oreXpert™, which
can be further researched.

Results were promising using the real-time quantification tool. Figure 13 shows
the actual vs. predicted concentration of the polypropylene/soil mixture samples. The
prediction model for polypropylene performed well within +/−1.5% error. The real-time
quantification PVC results are shown in Figure 14 where the prediction model performed
exceedingly well with less than a 1% error. Figure 15 shows the performance of the
polyethylene model with a +/−1.7% error within the actual vs. predicted samples.

Figure 13. The bar graph illustrates the difference between measured and real PP data sets; with
the y-axis representing the concentration of microplastics by mass in each sample, and the x-axis
representing the different sample tests. The “real” data set represents the actual concentration of the
test sample, and the measured data set represents the outcome generated by the model. In the case of
polypropylene, the model had its largest difference when examining the 7.5% sample.
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Figure 14. The bar graph illustrates the difference between measured and real PVC data sets; with
the y-axis representing the concentration of microplastics by mass in each sample, and the x-axis
representing the different sample tests. The “real” data set represents the actual concentration of the
test sample, and the measured data set represents the outcome generated by the model. In the case of
polyvinyl chloride, the model had its largest difference when examining the 7.5% sample.

Figure 15. The bar graph above illustrates the difference between measured and real LDPE data sets;
with the y-axis representing the concentration of microplastics by mass in each sample, and the x-axis
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representing the different sample tests. The “real” data set represents the actual concentration of the
test sample, and the measured data set represents the outcome generated by the model. In the case of
low-density polyethylene, the model had its largest difference when examining the 6.5% sample.

The ability for real-time MP quantification will allow for MP identification and quan-
tification in situations where sample collection is not possible or difficult. For example, this
method could be used with portable spectrometers in several different media including
MP particulate movement in various liquids.

4.4. Applicability of UV–Vis–NIR Spectroscopy for Microplastic Identification

UV–Vis–NIR spectroscopy was successfully applied in tandem with model generation
for MP quantification and identification. A field portable spectrometer and associated
software allowed the quantification and identification to be performed quickly when
compared to more traditional methods. The main time requirement for the methods used in
this study is the generation and training of the model. However, this is still much faster, and
often more accurate, than most other current MP identification methods such as MP visual
identification using microscopic analysis. Microplastics can be observed in several different
types of environmental media ranging from abiotic to biotic matrices, resulting in many
different extraction or purification techniques to examine microplastics [33]. Overall, the
addition of full-range spectrographic measurements to existing microplastic methodologies
can improve the accuracy of studies and allow for quicker identification of microplastic
particles. The application of full-range spectroscopy in studies focusing on the purification
of organic matter could allow for quicker identification of microplastics post-purification
than traditional means, such as gas chromatography.

Karami et al. [34] used acids or bases to digest organic matrices. The microplastics
recovered from acid or alkaline digestion can then be examined by a mass spectrometer to
allow for the identification of microplastic polymers quickly using full-range spectroscopy.
The microplastic soil study conducted by Liu et al. [35] focused on the identification of
microplastics and meso plastics in farmland soils; their study involved taking soil sam-
ples and identifying the plastics using µ-FT-IR spectroscopy, but with the application of
a portable full-range spectrometer, measurements could have been taken in the field in
addition to sample collection. Tian et al. [36] discuss the various pathways of microplas-
tic contamination in agricultural soils, but the application of full-range spectroscopy in
agricultural fields could help determine the origin of selected microplastic particles. The
application of machine learning (e.g., [13]) and full-range spectroscopy will allow for even
faster identification and quantification of MPs.

Our study also demonstrates that full-range ultra-high-resolution spectroscopy can
serve as an additional tool for MP researchers performing light microscopy, other spectro-
scopic methods, or even gas chromatography for increased accuracy of MP identification.
However, the results of the model can only be as accurate as the data entered. Inaccurate
data may thus cause the model to misidentify plastic polymer types or misquantify the MP
concentration present in a sample. Therefore, it is crucial to thoroughly test the model with
a known, accurately measured sample in addition to the calibration sample set.

Our testing of the individual linear regression models showed promising results.
We successfully generated three different linear regression models, one for each of the
following polymers: polypropylene, polyvinyl chloride, and polyethylene. All of these
are common plastics found in sedimentary environments (e.g., [19,28,29]). Each of the
models has a coefficient of determination (R2) above 0.9, indicating that the variance of the
dependent variable is negligible. Also, each of the models was able to correctly identify the
MP particulates in the treatment samples for each of the three polymers. The models were
also able to identify the relative percentage of MPs present in each sample, although the
accuracy of the models varied with the relative value of the coefficient of determination.
The most accurate model was for polyvinyl chloride, which has the highest R2 value of
0.983. However, given that all three models were able to quantify the MPs to within a
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standard deviation of 0.1 percent indicates that this method has great potential as a research
tool for rapid and non-destructive MP identification and quantification.

5. Conclusions and Future Directions

Our study supports several previous studies that have shown that spectroscopy can
be used to identify and even quantify MP polymers in various kinds of soil media [12–15].
Specifically, our findings closely align with a recent study by Huda et al. [17] that used
experiments on treated beach sediment to successfully generate predictive models to
quantify LDPE and PET microplastics. Similarly, another recent study, by Marchesi et al.
(2023), also applied chemometric and predictive models to successfully quantify PP, PET,
and PS in experimental mixtures. However, none of the studies cited above utilized the
full-spectrum (UV–Vis–NIR) or ultra-high-resolution instrumentation that was used for
our research. In our study, we were able to identify and quantify MPs even at quite low
concentrations of less than 1%. Similarly, Corradini et al. [12] found a detection limit
of 15 g/kg using Vis–NIR to analyze PET, PVC, and LDPE. Zhao et al. [20] also found
detection limits in the 1–3% range.

This approach has great potential for rapid, low-cost, non-destructive, and accurate
use for MP analysis compared to the traditional methods described in Junhao et al. [16].
Our findings, in conjunction with other studies cited above, indicate that technological im-
provements such as increased portability, higher resolution, and increased spectral breadth
will lead to improved accuracy and reliability of MP identification and quantification.

The application of full-range spectroscopy for MP identification and quantification
is a relatively new concept, and future work needs to be conducted on the spectral char-
acteristics of polymers, and how the spectral signals of MP are changed with exposure
to chemical and physical weathering. Furthermore, plastics can be semi-crystalline to
amorphous so the ability to detect MP contamination could be strongly related to the
physical characteristics of the polymers. As the soil used here was pure vermiculite, future
work needs to be conducted on other soil types, with different characteristics (e.g., kaolinite,
quartz, even natural soils) to ensure that the application of full-range spectroscopy can be
used in multiple media for MP detection and quantification. The use of PSLR modeling for
spectral data is a widely used technique, but the use of newer modeling techniques may
yield better results for MP detection.
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