Euonymus alatus Extract Reduces Insulin Resistance in db/db Mice by Regulating the PI3K–AKT Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of E. alatus Twigs
2.3. Chromatographic and ESI-MS Detection
2.4. Animal Experiment and Drug Administration
2.5. Glycogen Synthase Activity
2.6. Glycogen Determination
2.7. Western Blot
2.8. Statistical Analysis
3. Results
3.1. HPLC Analysis for EA Twig Extracts
3.2. Effect of EA Extract on Body Weight
3.3. Effect of Oral Administration of Extract on Glycogen Content in Different Tissues
3.4. Effect of Oral Administration of EA Extract on the Liver Insulin PI3K–AKT–GSK3β Signaling Pathway
3.5. Effect of Oral Administration of EA Extract on Muscle PI3K–AKT–GSK3β Expression
3.6. Effect of Oral Administration of Extract on Glycogen Synthase (GS) Activity in the Liver and Muscles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rom, S.; Zuluaga-Ramirez, V.; Gajghate, S.; Seliga, A.; Winfield, M.; Heldt, N.A.; Kolpakov, M.A.; Bashkirova, Y.V.; Sabri, A.K.; Persidsky, Y. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol. Neurobiol. 2019, 56, 1883–1896. [Google Scholar] [CrossRef]
- Zarch, S.M.A.; Tezerjani, M.D.; Talebi, M.; Mehrjardi, M.Y.V. Molecular biomarkers in diabetes mellitus (DM). Med. J. Islam Repub. Iran 2020, 34, 28. [Google Scholar]
- Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 2020, 11, 1582. [Google Scholar] [CrossRef]
- Han, H.-S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.-H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016, 48, e218. [Google Scholar] [CrossRef]
- Sharabi, K.; Tavares, C.D.; Rines, A.K.; Puigserver, P. Molecular pathophysiology of hepatic glucose production. Mol. Asp. Med. 2015, 46, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483. [Google Scholar] [CrossRef]
- Cao, R.; Tian, H.; Zhang, Y.; Liu, G.; Xu, H.; Rao, G.; Tian, Y.; Fu, X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. Med. Comm. 2023, 4, e283. [Google Scholar] [CrossRef] [PubMed]
- Schultze, S.M.; Hemmings, B.A.; Niessen, M.; Tschopp, O. PI3K/AKT, MAPK and AMPK signalling: Protein kinases in glucose homeostasis. Expert Rev. Mol. Med. 2012, 14, e1. [Google Scholar] [CrossRef] [PubMed]
- Khursheed, R.; Singh, S.K.; Wadhwa, S.; Kapoor, B.; Gulati, M.; Kumar, R.; Ramanunny, A.K.; Awasthi, A.; Dua, K. Treatment strategies against diabetes: Success so far and challenges ahead. Eur. J. Pharmacol. 2019, 862, 172625. [Google Scholar] [CrossRef]
- Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother. 2020, 131, 110708. [Google Scholar] [CrossRef]
- Joung, K.-I.; Jung, G.-W.; Park, H.-H.; Lee, H.; Park, S.-H.; Shin, J.-Y. Gender differences in adverse event reports associated with antidiabetic drugs. Sci. Rep. 2020, 10, 17545. [Google Scholar] [CrossRef]
- Alema, N.M.; Periasamy, G.; Sibhat, G.G.; Tekulu, G.H.; Hiben, M.G. Antidiabetic activity of extracts of Terminalia brownii Fresen. Stem bark in mice. J. Exp. Pharmacol. 2020, 12, 61–71. [Google Scholar] [CrossRef]
- Mechchate, H.; Es-Safi, I.; Louba, A.; Alqahtani, A.S.; Nasr, F.A.; Noman, O.M.; Farooq, M.; Alharbi, M.S.; Alqahtani, A.; Bari, A. In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Withania frutescens L. Foliar extract. Molecules 2021, 26, 293. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; Akther, S.; Hannan, J.; Seidel, V.; Nujat, N.J.; Abdel-Wahab, Y.H. Pharmacologically active phytomolecules isolated from traditional antidiabetic plants and their therapeutic role for the management of diabetes mellitus. Molecules 2022, 27, 4278. [Google Scholar] [CrossRef]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef]
- Zhai, X.; Lenon, G.B.; Xue, C.C.; Li, C.-G. Euonymus alatus: A review on its phytochemistry and antidiabetic activity. Evid.-Based Complement. Altern. Med. 2016, 2016, 9425714. [Google Scholar] [CrossRef]
- Shin, D.Y.; Kim, B.S.; Lee, H.Y.; Park, Y.M.; Kim, Y.W.; Kim, M.J.; Yang, H.J.; Kim, M.S.; Bae, J.S. Euonymus alatus (Thunb.) Siebold leaf extract enhanced immunostimulatory effects in a cyclophosphamide-induced immunosuppressed rat model. Food Nutr. Res. 2023, 67, 9422. [Google Scholar] [CrossRef]
- Gurung, P.; Shrestha, R.; Lim, J.; Thapa Magar, T.B.; Kim, H.-H.; Kim, Y.-W. Euonymus alatus Twig Extract Protects against Scopolamine-Induced Changes in Brain and Brain-Derived Cells via Cholinergic and BDNF Pathways. Nutrients 2022, 15, 128. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, C.; Ai, L.; Wang, L.; Li, L.; Fan, W.; Li, R.; He, L.; Wu, C.; Huang, Y. Traditional uses, botany, phytochemistry, pharmacology, separation and analysis technologies of Euonymus alatus (Thunb.) Siebold: A comprehensive review. J. Ethnopharmacol. 2020, 259, 112942. [Google Scholar] [CrossRef]
- Park, S.H.; Ko, S.K.; Chung, S.H. Euonymus alatus prevents the hyperglycemia and hyperlipidemia induced by high-fat diet in ICR mice. J. Ethnopharmacol. 2005, 102, 326–335. [Google Scholar] [CrossRef]
- Kim, C.H.; Kim, D.I.; Kwon, C.N.; Kang, S.K.; Jin, U.H.; Suh, S.J.; Lee, T.K.; Lee, I.S. Euonymus alatus (Thunb.) Sieb induces apoptosis via mitochondrial pathway as prooxidant in human uterine leiomyomal smooth muscle cells. Int. J. Gynecol. Cancer 2006, 16, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-K.; Hwang, J.-Y.; Song, J.-H.; Jo, J.-R.; Kim, M.-J.; Kim, M.-E.; Kim, J.-I. Inhibitory activity of Euonymus alatus against alpha-glucosidase in vitro and in vivo. Nutr. Res. Pract. 2007, 1, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Kim, E.Y.; Lee, S.U.; Kim, Y.W.; Kim, Y.H. Effect of Euonymus alatus Extracts on Diabetes Related Markers in Pancreatic β-Cells and C57BL/Ksj-db/db Mice. Available online: https://www.e-jkfn.org/journal/view.html?uid=7109&vmd=Full (accessed on 16 August 2022).
- Schaubroeck, K.J.; Leitner, B.P.; Perry, R.J. An optimized method for tissue glycogen quantification. Physiol. Rep. 2022, 10, e15195. [Google Scholar] [CrossRef] [PubMed]
- Hatting, M.; Tavares, C.D.; Sharabi, K.; Rines, A.K.; Puigserver, P. Insulin regulation of gluconeogenesis. Ann. N. Y. Acad. Sci. 2018, 1411, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, K.; Zhou, J.; Sullivan, M.A.; Liu, Y.; Gilbert, R.G.; Deng, B. Metformin and Berberine suppress glycogenolysis by inhibiting glycogen phosphorylase and stabilizing the molecular structure of glycogen in db/db mice. Carbohydr. Polym. 2020, 243, 116435. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, P.; Corraliza, L.; Villena, J.A.; Carvalho, A.R.; Garcia-Arumi, J.; Ramos, D.; Roberte, J.; Simo, R.; Hernandez, R.C. The db/db mouse: A useful model for the study of diabetic retinal neurodegeneration. PLoS ONE 2015, 9, e97302. [Google Scholar]
- Clement, K.; Vaisse, C.; Lahlou, N.; Cabrol, S.; Pelloux, V.; Cassuto, D.; Gourmelen, M.; Dina, C.; Chambaz, J.; Lacorte, J.M.; et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998, 392, 398–401. [Google Scholar] [CrossRef]
- Shi, L.; Tu, B.P. Acetyl-CoA and the regulation of metabolism: Mechanisms and consequences. Curr. Opin. Cell Biol. 2015, 33, 125–131. [Google Scholar] [CrossRef]
- Linden, A.G.; Li, S.; Choi, H.Y.; Fang, F.; Fukasawa, M.; Uyeda, K.; Hammer, R.E.; Horton, J.D.; Engelking, L.J.; Liang, G. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice [S]. J. Lipid. Res. 2018, 59, 475–487. [Google Scholar] [CrossRef]
- Adiga, U.; Banawalikar, N.; Mayur, S.; Bansal, R.; Ameera, N.; Rao, S. Association of insulin resistance and leptin receptor gene polymorphism in type 2 diabetes mellitus. J. Chin. Med. Assoc. 2021, 84, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Wauters, M.; Considine, R.; Yudkin, J.; Peiffer, F.; De Leeuw, I.; Van Gaal, L. Leptin levels in type 2 diabetes: Associations with measures of insulin resistance and insulin secretion. Horm. Metab. Res. 2003, 35, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Halaas, J.L.; Gajiwala, K.S.; Maffei, M.; Cohen, S.L.; Chait, B.T.; Rabinowitz, D.; Lallone, R.L.; Burley, S.K.; Friedman, J.M. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995, 269, 543–546. [Google Scholar] [CrossRef]
- Harris, R.B.; Mitchell, T.D.; Yan, X.; Simpson, J.S.; Redmann Jr, S.M. Metabolic responses to leptin in obese db/db mice are strain dependent. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R115–R132. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Q.; Wang, M.; Du, Y.; Tan, X.; Xu, B.; Cheung, U.; Li, E.; Gilbert, R.G.; Tang, D. Effects of fasting on liver glycogen structure in rats with type 2 diabetes. Carbohydr. Polym. 2020, 237, 116144. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Correa, E.; González-Pérez, I.; Clavel-Pérez, P.I.; Contreras-Vargas, Y.; Carvajal, K. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: What is the best choice? Nutr. Diabetes 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Meng, Z.; Fang, T.; Liu, X.; Cheng, Y.; Xu, L.; Linxin, X.; Xiangyang, L.; Xiaoyu, L.; Mei, X.; et al. Empagliflozin inhibits hepatic gluconeogenesis and increases glycogen synthesis by AMPK/CREB/GSK3β signalling pathway. Front. Physiol. 2022, 13, 817542. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.-K.; Gao, J.; Zhu, D.-N. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci. 2008, 82, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Fan, C.; Yan, J.; Tian, N.; Ma, X. Effects of rutin on the expression of PPARγ in skeletal muscles of db/db mice. Planta Med. 2012, 78, 861–865. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, M.; Lu, X.; Wang, M.; Liang, L.; Zou, H.; Li, L. Study on the constituents from Euonymus alatus in hypoglycemic effective extract. Chin. J. Exp. Tradit. Med. Formulae 2010, 16, 42–43. [Google Scholar]
- Zhang, W.Y.; Lee, J.-J.; Kim, I.-S.; Kim, Y.; Myung, C.-S. Stimulation of glucose uptake and improvement of insulin resistance by aromadendrin. Pharmacology 2011, 88, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 135, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.K.; Gao, Y.; Yang, H.Y.; Lang, S.M.; Wang, Q.J.; Yu, B.Y.; Zhu, D.N. Alleviating effects of active fraction of Euonymus alatus abundant in flavonoids on diabetic mice. Am. J. Chin. Med. 2008, 36, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Gong, M.X.; Lai, Y.Y.; Wang, Q.; Chen, Y.H.; Tian, P.F. Pharmacological effects of different extract fractions from Guijianyu (Euonymus alatus) on diabetic rats. J. Beijing Univ. Chin. Med. 2010, 33, 179–182. [Google Scholar]
- Choi, C.-I.; Lee, S.R.; Kim, K.H. Antioxidant and α-glucosidase inhibitory activities of constituents from Euonymus alatus twigs. Ind. Crops Prod. 2015, 76, 1055–1060. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Li, P.; Hang, Q.; Zhang, P.; Jin, Y.; Chen, M. PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism: Potential targets to overcome radioresistance in small cell lung cancer. Cancer Pathog. Ther. 2023, 1, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, R.W.; Elliott, B.T. Akt/PKB activation and insulin signaling: A novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab. Syndr. Obes. 2014, 7, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, M.-S. The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res. Clin. Pract. 2007, 77, S49–S57. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; González-Lucán, M.; Donapetry-García, C.; Fernández-Fernández, C.; Ameneiros-Rodríguez, E. Glycogen metabolism in humans. BBA Clin. 2016, 5, 85–100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-U.; Gurung, P.; Thapa Magar, T.B.; Lim, J.; Shrestha, R.; Kim, Y.-H.; Kim, Y.-W. Euonymus alatus Extract Reduces Insulin Resistance in db/db Mice by Regulating the PI3K–AKT Pathway. Int. J. Transl. Med. 2024, 4, 286-297. https://doi.org/10.3390/ijtm4020018
Lee S-U, Gurung P, Thapa Magar TB, Lim J, Shrestha R, Kim Y-H, Kim Y-W. Euonymus alatus Extract Reduces Insulin Resistance in db/db Mice by Regulating the PI3K–AKT Pathway. International Journal of Translational Medicine. 2024; 4(2):286-297. https://doi.org/10.3390/ijtm4020018
Chicago/Turabian StyleLee, Seoung-Uk., Pallavi Gurung, Til Bahadur Thapa Magar, Junmo Lim, Rajeev Shrestha, Yoon-Hee Kim, and Yong-Wan Kim. 2024. "Euonymus alatus Extract Reduces Insulin Resistance in db/db Mice by Regulating the PI3K–AKT Pathway" International Journal of Translational Medicine 4, no. 2: 286-297. https://doi.org/10.3390/ijtm4020018
APA StyleLee, S. -U., Gurung, P., Thapa Magar, T. B., Lim, J., Shrestha, R., Kim, Y. -H., & Kim, Y. -W. (2024). Euonymus alatus Extract Reduces Insulin Resistance in db/db Mice by Regulating the PI3K–AKT Pathway. International Journal of Translational Medicine, 4(2), 286-297. https://doi.org/10.3390/ijtm4020018