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Abstract: Cancer stem cells (CSCs) are a dynamic population of tumor cells characterized by long-term
self-renewal, high tumorigenicity, resistance to conventional therapies such as radio- and chemother-
apy, and capacity to recapitulate the tumor heterogeneity. Similar to other tumor cells, C5Cs need to
carry critical mutations and epigenetic changes to acquire their aberrant phenotype. Confirmed in
various hematologic and solid malignancies, the critical need to deepen our understanding of CSC
biology, including identification of CSC biomarkers, and develop novel CSC-targeted therapies has
been clearly recognized. Here, we review the L1 cell adhesion molecule (L1CAM) as a CSC-associated
biomarker in ovarian cancer. Furthermore, we inform on the promising potential of anti-L1CAM
radioimmunotherapy with 1®!Tb as a novel CSC-targeted therapeutic approach to overcome CSC
radioresistance in comparison to 77 Lu.

Keywords: LICAM; cancer stem cells; ovarian cancer; HGSOC; radioresistance; radioimmunotherapy;
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1. Introduction

Ovarian cancer (OC) is a severe disease which represents the most common and
lethal gynecologic malignancy in developed countries [1-3]. High-grade serous ovarian
carcinoma (HGSOC) is the most common OC histotype characterized by relapse in >70%
of the cases and poor survival outcomes despite the successful first line of therapy [2].
The development and progression of OC, including HGSOC, points to the cancer stem
cell (CSC) disease maintenance. More aggressive and therapy-resistant relapsed OC as
well as accumulation of ascitic fluid with high tumor cell content could be explained by
the presence of ovarian CSCs, which could acquire dynamic states, allowing them to sur-
vive conventional therapies in anchorage-independent cell growth conditions and invade
and metastasize to distant sites [2,4-6]. This highlights the necessity to investigate CSCs
and CSC mechanisms of therapy resistance, including radioresistance, and identify CSC
biomarkers to inform the development of novel targeted therapies for clinical application.

The L1 cell adhesion molecule (L1ICAM) has been confirmed as a CSC-associated
biomarker in various malignancies, including OC [7-10]. A recent study validated in vitro
and in vivo LICAM+/CD133+ cells as an ovarian CSC population while also identifying
the L1CAM as a biomarker of radioresistance in OC [11]. Previous work demonstrated
the efficacy of anti-L1CAM radioimmunotherapy (RIT) with the monoclonal antibody
chCE?7 radiolabeled with the 3 —/conversion (CE)/Auger electron (AE)-emitter Terbium-
161 (**1'Tb) in comparison to the p—-emitter Lutetium-177 (1”’Lu) [12]. Due to their high
cytotoxicity, CE/AE have the potential to overcome the radioresistance of CSCs and,
therefore, propose a promising novel alternative for CSC-targeted therapies [13,14].
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In this paper, we review OC with a focus on HGSOC, cancer stem cell properties and
current methods to study and characterize CSCs. Furthermore, we specifically discuss the
role of LICAM in health and disease including cancer stemness as well as anti-L1CAM RIT
as a novel therapeutic modality against CSCs.

2. Ovarian Cancer—Epidemiology, Histotypes, and Current Standard of Treatment of
Epithelial Ovarian Cancer

2.1. Epidemiology, Histological Subtypes, and Molecular Features of HGSOC

The latest worldwide cancer statistics by the Global Cancer Observatory (GLOBOCAN)
reported 313,959 new cases and 207,252 death cases of OC for 2020 [3,15]. OC ranks eighth
in terms of both incidence and mortality rate among women while it remains the deadliest
gynecologic malignancy [2,16]. It is difficult to detect due to asymptomatic early stages
(International Federation of Gynecology and Obstetrics (FIGO) stages I and II) and limited
screening options. For most cases, it is diagnosed at later stages (FIGO stages Il and IV) when
the cancer has already metastasized [2]. Late-stage OC symptoms are non-specific and overlap
with symptoms of more common diseases. These symptoms could encompass abdominal
swelling, pelvic pain, weight loss, nausea, fatigue, and urinary frequency or urgency [17].

OC is a heterogeneous disease with distinct sites of origin, morphology, molecular al-
terations, treatment, and prognosis [2,18]. Generally, it is divided into non-epithelial and
epithelial cancers. Non-epithelial OC represents approximately 10% of the cases and in-
cludes ovarian germ cell cancer, ovarian sex cord-stromal cancer, and small carcinoma of
the ovary (Figure 1A). Epithelial OC (EOC) represents more than 90% of all ovarian malig-
nancies (Figure 1A). According to the most up-to-date classification by the World Health
Organization (WHO), EOC is divided into five histological subtypes (Figure 1B)—high-grade
serous ovarian carcinoma (HGSOC), low-grade serous ovarian carcinoma (LGSOC), clear cell
carcinoma (CCC), endometrioid carcinoma (EC), and mucinous carcinoma (MC) [4,18]. Each
EOC histotype is characterized by distinct clinical and molecular characteristics represented
by the cancer incidence, age at diagnosis, origin, histology, mutational profile, tumor microen-
vironment, major signaling pathways affected, treatment, and clinical outcome [2,4,16,19].
In parallel, FIGO has determined the surgical stages I-IV of EOC as follows: stage I (tumor
confined to the ovaries), stage Il (tumor involves one or both ovaries with pelvic extension or
primary peritoneal cancer), stage III (tumor involves the ovaries, or primary peritoneal cancer,
with spread to the peritoneum outside pelvis and/or metastasis to the retroperitoneal lymph
nodes), and stage IV (distant metastasis) [19].

Ovarian cancer cases/diagnoses B Epithelial ovarian cancer cases/diagnoses
m EOC | HGSOC
B Germ cell LGSOC

I Endometrioid carcinoma
Mucinous carcinoma
I Clear-cell carcinoma

I Sex cord-stromal
Other, unspecified

Figure 1. Representation of proportion of cases/diagnoses of ovarian cancer (A) and epithelial ovarian
cancer (B). EOC, Epithelial OC; HGSOC, high-grade serous ovarian carcinoma; LGSOC, low-grade
serous ovarian carcinoma. Sources: GLOBOCAN [3,15], World Ovarian Cancer Coalition [1].

HGSOC is the most common and lethal EOC histotype with >75% (Figure 1B) of the
cases diagnosed at advanced FIGO stages III and IV, while the rest of EOC cases are shared
between LGSOC, CCC, EC, and MC. For HGSOC, the overall patient prognosis is poor with
a high risk of aggressive and treatment-resistant relapse [2,16]. HGSOC is characterized by
a high frequency of somatic TP53 mutation. As a result, the TP53 protein loses its tumor-
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suppressive function. In addition, 15-20% of the patients carry germline mutations in
breast cancer gene 1 and 2 (BRCA1, BRCA2). The BRCA genes participate in the homologous
recombination (HR) repair of double-strand DNA breaks. Further analysis points out that
most of the cases with germline BRCA mutations also have somatic mutations in other HR
genes such as Fanconi anemia genes, mismatch repair genes, DNA damage response genes,
and RAD family genes collectively referred to as HR deficiency (HRD) genes [20]. Cells
with non-functioning HR utilize other pathways of DNA repair such as non-homologous
end-joining (NHE]) which is more error-prone and could further increase the genomic
instability. An analysis by The Cancer Genome Atlas Research Network (TCGA) reports
that almost 50% of the HGSOC cases are HRD [21]. A recent report on the origin of HGSOC
demonstrated that it can originate from both the fallopian tube epithelium (FTE) as well
as the ovarian surface epithelium (OSE). The results point out the prognostic value of the
tissue of origin providing evidence that FTE- and OSE-originated HGSOC possess specific
transcriptional profiles, with OSE-originated cancer correlating with a higher invasiveness
and immunomodulatory phenotype [22].

2.2. Current Standard of Treatment of Epithelial Ovarian Cancer and Therapies
under Investigation

To improve EOC treatment and increase patient survival, it is crucial to consider the
clinicopathological characteristics and molecular heterogeneity of EOC. Although early-
stage OC is curable, most of the patients are diagnosed at advanced stages III-IV due to
the display of non-specific or no symptoms and the lack of effective screening methods.
The OC risk factors include inherited risk (germline mutations in the BRCA1/BRCA2 breast
cancer susceptibility genes), infertility, endometriosis, obesity, age, and nulliparity [16].
In addition, the dissemination of OC to the peritoneal cavity and the abdomen, which
results in accumulation of ascetic fluid and bowel obstruction, is facilitated by the lack of
an anatomical barrier around the ovaries [18].

The current gold standard of care for EOC patients includes a debulking cytoreductive
surgery followed by chemotherapy as a first line of treatment. This strategy has remained
the same in clinics for the past three decades. The aim of the debulking surgery is to reduce
the amount of cancer in the patient by full or partial removal of the cancer-affected organs.
It is also key in the accurate determination of the diagnosis. However, the cytoreductive
surgery is rarely curative, especially in patients with advanced disease. It is currently com-
bined with adjuvant chemotherapy. The standard combination chemotherapy comprises
taxane-based (paclitaxel, docetaxel, cabazitaxel) and platinum-based (cisplatin, carboplatin,
oxaliplatin) drugs (Table 1).

Although the patients respond well to the first line of therapy and 60-80% enter
remission, 70-80% relapse, developing more aggressive and therapy-resistant OC [23].
Recurrent OC is categorized into platinum-refractory, resistant, partially sensitive, or fully
sensitive in accordance with the period between the last platinum treatment and the
relapse. Second-line chemotherapy with various drugs such as carboplatin, gemcitabine,
topotecan, vinorelbine, or other therapeutic approaches, including targeted therapies, has
been tested [24]. Unfortunately, the efforts up to date in overcoming the therapy resistance
in recurrent OC have led to minimal improvements in patient survival. Radiotherapy
has shown a limited success in OC treatment. Its current application is for patients with
oligometastatic and oligoprogressive disease as well as palliative care, although there are
ongoing clinical trials studying modern radiotherapy techniques alone or in combination
with other therapeutic approaches [25].

Two targeted therapeutic strategies are approved up to date by the U.S. Food and
Drug Administration (FDA) and the European Medicines Agency (EMA): bevacizumab,
a recombinant humanized monoclonal anti-vascular endothelial growth factor (VEGEF)
antibody, and poly (ADP-ribose) polymerase inhibitors (PARPi) (Table 1). The establishment
of PARPi has revolutionized EOC patient treatment. They specifically inhibit the enzyme
family of poly (ADP-ribose) polymerases (PARPs), including PARP1, PARP2, and PARP3
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as its most well-studied members. PARP enzymes play a main role in the repair of single-
strand DNA breaks (55DBs) by recruiting components of the DNA repair machinery. PARPi
compete with the nicotinamide NAD™ in the PARP catalytic site, rendering the enzymes
inactive. As a result, the SSDBs persist while double-strand DNA breaks accumulate.
Healthy cells can repair the double-strand DNA breaks via the error-free HR. However,
HRD cancers such as HGSOC lack that pathway due to its BRCA1/BRCA2 deficiency. The
BRCA mutational status together with the PARPi result in the synthetic lethality of the
cancer cells. The inhibition of the SSDB repair, replication fork stalling, PARP trapping,
and activation of the more error-prone NHE] DNA repair have been proposed as PARPi
mechanisms [26]. Other targeted therapies against various EOC targets have been under
investigation, a selection of which is summarized in Table 1. To date, there are no approved
immunotherapies against OC.

Table 1. Selected therapeutic agents and targets for treatment of epithelial ovarian cancer.

Therapeutic Agent Target Status Ref.

Tubulin (inhibition of the

Taxane-based drugs microtubule disassembly) Approved [27]
Platinum-based drugs DNA cross-linking agent Approved
Bevasizumab Anti-VEGF Approved [28-30]
PARP inhibitors PARP enzymes Approved [16,30-32]
Mirvetuxirpab Folate receptor alpha NCT020631876, Phase III [33]
soravtansine

NCT02580058, Phase III

Anti-PD-1/PD-L1, NCT02811497, Phase II [16]

PD-1/PD-L1, CTLA-4

anti-CTLA-4 NCT02657889, Phase 1,2
Folate receptor alpha, Multiple ongoing or
CART cells mesothelin, MUC16 (also completed clinical and [34]

known as CA125), CD70

preclinical studies

The treatment of EOC and the observed high therapy resistant relapse with an in-
creased mortality rate continue to pose a clinical challenge. There is an urgent need to
develop novel therapies that are more successful. A key factor in achieving this goal is to
deepen our knowledge and understanding of the biology of EOC heterogeneity followed
by tailoring the therapies to the specific features of the disease. Such novel therapies could
target cancer stem cells (CSCs), as one known source of tumor recurrence, aggressiveness,
and therapy resistance, either by CSC-specific drugs or CSC-targeted radionuclide therapy
such as radioimmunotherapy utilizing suitable particle radiation emitters [35].

3. Cancer Stem Cells—Definition, Concept, Study, and Identification, Ovarian Cancer
Stem Cells

3.1. Definition and Concept of Cancer Stem Cells

CSCs are a population of tumor cells defined by their functional properties of long-
term self-renewal, tumor propagation and recapitulation of the tumor heterogeneity, and
radio- and chemotherapy resistance [5,6] (Figure 2). Similar to other tumor cells, CSCs need
to carry critical mutations and epigenetic changes to acquire their aberrant phenotype.

The CSC concept started to emerge at the beginning of the 19th century by observing
that a certain subset of tumor cells in teratomas, teratocarcinomas, and embryonic stem
cells had the ability to produce several distinct differentiated cell populations as well as
retained tumorigenicity after multiple passages [36]. In the late 90s, Dick et al. refocused
the spotlight back to CSCs by isolating CD34+/CD38— from acute myeloid leukaemia
and confirming their major CSC characteristics [37,38]. The first confirmation of CSCs in a
human solid tumor was in the 2000s in breast cancer in which CD44* /CD24~/1°W /Lineage ™
cells isolated from breast mouse xenografts or cancer patients [39]. Up to date CSCs
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have been verified in multiple hematologic and solid tumors together with their role in
fundamental tumor processes, including tumor development and recurrence, invasion and
metastasis, and therapy resistance (Table 2).

Genetic mutations and
epigenetic modifications

Long-term self-renewal - o= Plasticity
@
AP G

/Cancer EMI

stem cel<—- Dormancy/quiescence

High tumorigenicity ——
Therapy resistance @~ —

Metastasis radh Senescence

Undifferentiation
(multipotency)

Figure 2. Hallmarks of cancer stem cells. Cancer stem cells share common characteristics with adult
stem cells and cancer cells. EMT, epithelial-to-mesenchymal transition.

The development of the cancer stemness hypothesis advanced the view of the hierar-
chical organization of tumors similar to normal adult stem cells and healthy tissue. Such a
hierarchy recognizes the tumor heterogeneity as well as the heterogenous functions within
the various tumor cell populations. According to this hierarchical model, only the CSCs,
which possess extensive self-renewal and multipotency, can give rise to transit-amplifying
cells with lower proliferative capacity and could further differentiate into non-proliferative
cancer cells [40]. Therefore, the tumor formation and growth are maintained by the CSCs.
As with normal stem cells, a CSC niche is required to provide a favorable environment
for the survival and maintenance of their functions. In comparison, the stochastic model,
also known as the clonal evolution model, of tumor growth proposes the equipotency of
all tumor cells to self-renew and generate differentiated tumor progeny. Importantly, the
plasticity model combines the previous two models by introducing the plasticity between
the transition of CSCs and non-CSCs as a result of spontaneous, intrinsic, and/or induced
transformation between these populations, therefore pointing out to the dynamic rather
than the stable and unidirectional CSC phenotype. Non-CSCs have been shown to de-
differentiate into CSCs in vitro and in vivo, highlighting the plasticity and bidirectionality
between these two populations [41]. There is a growing body of evidence in support of the
plasticity model which creates a biological and clinical challenge for deeper understanding
of the underlying mechanisms and to devise novel cancer therapies [40].

In addition to the plasticity, the dynamic phenotype of CSCs is also demonstrated by
acquiring other reversible states which include epithelial-to-mesenchymal transition (EMT),
dormancy (quiescence), and senescence (Figure 2). EMT is one of the key cellular programs
in which cells enter various discrete states along the epithelial-mesenchymal spectrum,
allowing the cells to migrate to distant sites [42]. While in health, EMT is important during
embryogenesis, wound healing for tissue regeneration and repair, and recruitment of
immune cells to sites of inflammation and infection, in cancer, the EMT program could
contribute to malignant progression by leading to tumor initiation, motility, ability to
disseminate and colonize distant sites, as well as therapy resistance, which are major CSC
properties, as discussed above [43]. The close association of EMT and CSCs has already
been documented in different cancers such as breast, lung, prostate, pancreatic, head and
neck, and colon cancer [43].

CSC dormancy (quiescence) as well as senescence are two other states related to the
dynamic CSC phenotype that have emerged in recent years (Figure 2). Dormancy refers to a
reversible entry into the Gy resting phase of the cell cycle where the cell remains viable but
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not proliferating, triggered by various microenvironmental cues such as hypoxia, nutrient
deprivation, oxidative stress, growth factors leading to maintaining stemness cells, and
surviving unfavorable conditions [44]. Currently, at least three settings are considered
in which dormancy-competent CSCs could undergo dormancy to survive and adapt:
primary tumor dormancy, metastatic dormancy, and therapy-induced dormancy [45]. In
breast cancer, the activity of Src family kinase and the mitogen-activated protein kinase
(MAPK) pathway is required for the proliferative outgrowth and metastasis formation
of dormant cancer cells [46]. A CSC population in glioblastoma entered into quiescence
upon temozolomide treatment while ablation of these cells resulted in susceptibility to the
combined chemotherapy with temozolomide and ganciclovir [47].

Cellular senescence acts as a failsafe program by entry into cell cycle arrest in the
G1-S phase as a result of increased DNA damage and persistent oxidative and oncogenic
stress [44]. In addition to its anti-tumorigenic effects to protect the organismal integrity
by preventing the further propagation and eradication of (pre-) malignant cells, it could
also have a pro-tumorigenic role supporting CSC generation. Uncleared senescent cancer
cells could accumulate more mutations, allowing them to escape the cell cycle arrest and
clearance while acquiring CSC properties, or could secrete various factors which could lead
to the reprogramming and activation of CSC TFs [48]. Senescence and cancer stemness
have been found to be co-regulated by overlapping signaling networks including p16™k42,
p21 or p53, demonstrating a link between them [49]. Therapy-induced senescent cancer
cells acquired phenotypic and functional stemness in hematologic cancers and after re-
entry into the cell cycle, these cells showed a higher tumor-initiating capacity than their
never-senescent counterparts [50]. Senescent human colon cancer cells induced by repeated
cycle with doxorubicin acquired a CSC phenotype by first entering a dormant state and
later triggering tumor regrowth [51]. Taken all together, this clearly indicates that it is
crucial to consider CSC plasticity, dormancy, and senescence for the effective eradication of
CSCs and bulk tumor population.

Table 2. Selected reported cancer stem cell populations in different malignancies and their associ-
ated properties.

CSC Population

Cancer Type Associated CSC Properties Ref.

L1CAM+/CD133+

In vitro—high clonogenicity, spherogenicity, invasiveness,
radioresistance. Upregulation of stem cell and EMT genes (Oct-4,
CXCR4, ABCG2, TGF-1pB, B-catenin, vimentin).

In vivo—high tumorigenicity, self-renewal.

Ovarian [11]

CD44+/CD117+

In vitro—anchorage-independent and self-renewing sphere
formation in CSC selective conditions, chemoresistance. Expression
Ovarian of stem cell genes (Oct-4, Nestin, Nanog, Notch-1, Bmi-1). [52]
In vivo—tumorigenicity and serial propagation, histological
recapitulation of the original tumor.

ALDH+/CD133+

In vitro—high and long-term spherogenicity in CSC selective
Ovarian conditions. Upregulation of stem cell genes (Sox2, Oct4, Nanog). [53]
In vivo—generate heterogenous tumors.

CD44+/CD133+

In vitro—high sphere formation in CSC selective conditions,
proliferation, chemoresistance, recapitulation of the other tumor
Pancreatic populations. Upregulation of inflammation and EMT genes (Sparc, [54]
Collal, Ccl2, Cxcll, Cxcl2); mRNAs * in CSC-related pathways.
In vivo—high tumorigenicity.

CXCR4+/CD133+

In vitro—high migratory capacity. Upregulation of EMT genes
(vimentin, N-cadherin, Snail).
In vivo—high tumorigenicity and metastasis formation blocked
with the CXCR4 antagonist AMD3100.
In vivo—high tumorigenicity, invasiveness, and metastasis
formation, inhibited by AMD3100.

Colorectal [55]

Pancreatic [56]
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Table 2. Cont.
CSC Population Cancer Type Associated CSC Properties Ref.
In vitro—enhanced sphere formation in CSC selective conditions.
. Upregulation of stemness genes (Shh, Ptchl).
CDAd+/CD24+ Gastric In vivo—high tumorigenicity; regeneration of the (571
tumor heterogeneity.
In vitro—higher proliferation, clonogenicity, sphere formation,
EpCAl\C/Igngl66+/ Non lslﬁllall cell migration, chemoresistance. Upregulated stem cell genes [58]
8 (Rex1, Ssea4).
In vitro—high spherogenicity in CSC selective conditions,
B increased invasion, radioresistance. Upregulation of the EMT and
CD/AL:{]/D%?? Head and neck stem cell genes (Snail, Oct-4, Nanog, Sox2). [59]
In vivo—high tumorigenicity. Knockdown of Snail reduced the
CSC properties.
In vivo—high tumorigenicity, self-renewal, differentiation into o
CD34+/CD38 AML other tumor cells populations. [37,38]
CD44+/CD24—/low Breast cancer In vivo—high tumorigenicity, regeneration of the [39] **

tumor heterogeneity.

ABCG2, ATP-binding cassette super-family G member 2; ALDH, aldehyde dehydrogenase; AML, acute myeloid
leukemia; CXCR4, CXC motif chemokine receptor 4; EMT, epithelial-to-mesenchymal transition; LICAM, L1 cell
adhesion molecule; TGF-1p, transforming growth factor beta 1; Oct-4, octamer binding transcription factor 4; Shh,
sonic hedgehog; Ptchl, patched 1. * The mRNA expression differences were determined by genome-wide analysis
of mRNA—Ilong non-coding RNA (IncRNA) co-expression networks. ** These were the first reports of CSCs in a
hematologic and solid malignancy.

3.2. Study and Identification of Cancer Stem Cells

The identification and characterization of CSCs rely on the biomarker combination
of cell surface or intracellular markers (Table 2). The need for such marker combinations
rather than a single marker is emphasized by the heterogeneity within the CSC populations
as well as the fact that most of the currently reported CSC markers are also expressed on
normal embryonic and adult stem cells [60]. This is clearly supported by multiple reports, a
selection of which is summarized in Table 3, in which only the double positive populations
demonstrated major CSC features when compared to any of the single positive or the
double negative cells.

An array of key in vitro and in vivo methods has been established to study and identify
CSCs (Table 3). These methods rely on marker-dependent or -independent CSC enrichment
followed by confirming the key CSC features of the populations of interest [61]. To study
CSCs, it is pivotal to combine in vitro and in vivo methods while considering the limitations
of each method (Table 3). A potential workflow following the selection of clinically relevant
CSC biomarkers could start with cell enrichment based on the expression of cell surface
markers via fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting
(MACS). An alternative starting point could be CSC enrichment from bulk cells by seeding
in CSC selective conditions which include cell culture serum-free medium supplemented
with growth factors. Sorted cells could also be cultured under CSC selective conditions
in order to assess their cancer stemness properties. Subsequently, various key in vitro
(anchorage-independent cell growth (AICG), clonogenic survival, radioresistance) and
in vivo (limiting dilution, serial xenotransplantation, lineage tracing) assays are performed
to verify the CSC phenotype of the cell populations of interest.

Following the application of in vitro or in vivo methods, with or without treatment,
the cells can be further investigated on a molecular level via gPCR, RNA-Sequencing, and
omics technologies such as genomics, transcriptomics, proteomics, phosphoproteomics,
metabolomics, and interactomics. Such approaches are increasingly implemented in CSC
research and could provide invaluable knowledge.



Int. . Transl. Med. 2024, 4

470

Table 3. Key selected methods for identification and functional study of cancer stem cells and

their limitations.

Method

CSC Property

Method Limitations Ref.

In vitro

Anchorage
-independent cell
growth
(spherogenicity in
non-adherent
conditions)

Tumorigenicity

Anchorage-independent

survival
Long-term self-renewal
(sphere passaging)

Required factors for the growth of CSCs in an
organism might not be provided in vitro.

Might not fully replicate the 3D structure of a
tumor or its environment.

Spheres could be a result of aggregation and not of
single clone proliferation.

Dormant cells might not form spheres.
Non-CSCs could also have spherogenic capacity.
Cells within a population might respond
differently to mitogens.

The cell line might not form spheres or have low
sphere forming capacity.

[62-66]

Clonogenicity

Clonogenic survival
(Unlimited proliferation

capacity)

The CSC could be in a dormant state, and therefore
be proliferatively inactive.

Plating efficiency-based analysis assumes a linear
correlation between the number of seeded cells
and formed colonies while some cell lines could
demonstrate a non-linear correlation due to
cellular cooperation.

[67,68]

Radio- and
chemoresistance

Therapy
resistance/sensitivity

The therapy resistance might not be restricted only
to a single CSC population or to CSCs.
Often based on clonogenicity or spherogenicity.

In vivo

Limiting dilution

Tumorigenicity
CSC frequency

Serial transplantation

Long-term self-renewal

The tumor propagating ability might not be
restricted only to a single CSC population or

to CSCs.

Procedures such as cell sorting and dissociation
might change the cell metabolism, development,
and role in the tumor hierarchy.

Selection of suitable immunodeficient mouse
models—strains and injection sites.

Lack of immunocompetent environment as
immunodeficient mice lack intact immune systems
and natural immunosurveillance.

Lack of tumor-specific microenvironment and
cytokines for CSC stimulation.

Low CSC frequency might reflect the limited cell
survival in a xenoenvironment.

[5,6,40,69-71]

Lineage tracing

Cancer cell of origin
Tumorigenicity
Clonal expansion
Cellular heterogeneity
CSC frequency
Localization

The cell labeling efficiency is variable.

Can only be performed in mice while there are
significant differences between human and mouse
organs and cells.

In mouse models of human cancer, the oncogenic
promoter is immediately switched on, resulting in
all-at-once genetic defects which does not
recapitulate real cancer development.

3.3. Cancer Stem Cell Determinants of Radioresistance

DNA damage and the induced DNA damage response (DDR) play a critical role in
the biological effects of ionizing radiation (IR) and radioresistance of CSCs (Figure 3). IR
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could damage nucleotide bases, induce DNA singe-strand breaks or the most lethal DNA
lesions, DSBs. To preserve their genomic integrity, the cells initiate the DDR to repair the
radiation-induced damage or, if not repairable, to enter cell cycle arrest and programmed
cell death. The DDR induces upregulation of DDR genes (for example BRCA genes, PARP,
Rad51, or DNA dependent protein kinases (DNAPKSs)) and cell cycle checkpoint kinases
(such as ataxia telangiectasia mutated (ATM) checkpoint kinase 2 (Chk2) and ATM-Rad3-
related (ATR)-checkpoint kinase (Chk1)) which delay cell cycle progression to allow DNA
repair [72,73]. CSCs have been reported to have an increased DNA repair capacity following
IR-induced damage in multiple solid malignancies by activation of the ATR-Chk1 and
ATM-Chk? signaling pathways [74-77].

Enhanced DDR
capacity

4+ DDR genes
Cell cycle
checkpoints

Oxidation protection TME stimulation
+  ALDH activity t HIFs

+ ROS scavengers 4 Growth factors,
+ ROS production cytokines

Activation of pro-survival /
anti-apoptotic pathways

CSC dynamics

Plasticity
AKT/PI3SK/mTOR (CSCs<>non-CSCs)
WNT/B-catenin EMT
Notch, Hedgehog Dormancy/quiescence
NF-kB Senescence

Figure 3. Cancer stem cell mechanisms of radioresistance. ALDH, aldehyde dehydrogenase; DDR,
DNA damage response; EMT, epithelial-to-mesenchymal transition; HIF, hypoxia inducible factor;
NF-«B, nuclear factor kB; TME, tumor microenvironment; mTOR, mammalian target of rapamycin;
PI3K, phosphoinositide 3-kinase; ROS, reactive oxygen species; WNT, wingless and INT-1.

The generation of reactive oxygen species (ROS) is another mechanism of radiation-
induced damage (Figure 3). ROS are chemical species that are highly reactive with
biomolecules such as proteins, lipids, and DNA. Physiologically, ROS homeostasis is
tightly regulated as they play a key role in signaling transduction, metabolism, cell growth,
differentiation, enzyme regulation, and mediation of inflammation [78]. Excessive ROS
production leads to oxidative stress and could eventually result in cell death, which is ben-
eficial for radiotherapy. Oxidation protection by increased ROS scavenging systems, such
as superoxide dismutases, glutathione peroxidase, peroxiredoxins, glutaredoxin, thiore-
doxin, and catalase, as well as generally lower ROS production, have been described as
CSC mechanisms of radioresistance [79-81]. Aldehyde dehydrogenase (ALDH), which
participates in free radical scavenging in oxidative stress, has also been implicated in CSC
radioresistance in various solid malignancies [53,59,82,83].

CSC radioresistance could also be attributed to the activation of pro-survival and
anti-apoptotic pathways which lead to cell growth, proliferation, and protection from cell
death (Figure 3). Aberrant upregulation of multiple signaling pathways, such as wing-
less and INT-1 (WNT)/ 3-catenin, AKT/phosphoinositide 3-kinase (PI3K)/mammalian
target of rapamycin (mTOR), Notch, Hedgehog, nuclear factor kB (NF-«kB), and Janus
kinase (JAK)/signal transducer and activator of transcription (STAT), could lead to the
development and maintenance of cancer stemness [84].

The TME also plays a critical role in providing extrinsic determinants of CSC ra-
dioresistance (Figure 3). The TME is a structural and functional niche rich in various



Int. . Transl. Med. 2024, 4

472

components such as blood vessels, extracellular matrix (ECM), and diverse cell types such
as fibroblasts, cancer associated fibroblasts, stromal cells, immune cells, and endothelial
cells [85]. The plethora of secreted factors and the complexity of interactions between the
TME components could modulate a pro-tumorigenic effect including CSC radioresistance.
As a result of the TME responding to radiotherapy, multiple factors could be secreted which
activate ROS-scavenging, pro-survival, and anti-apoptotic pathways in CSCs [85]. The
diverse immune cell subsets present could also promote cancer stemness either by direct
interaction with the CSCs or secretion of growth factors and cytokines [86]. Upregulation of
the transcriptional factors hypoxia inducible factor (HIF) 1 and HIF2 activates pro-survival
pathways resulting in protection and radioresistance of CSCs located in hypoxic niches [87].

The capacity of CSCs to acquire multiple reversible states due to their dynamic pheno-
type is essential for radioresistance which could be either primary or acquired following
stimulation from microenvironmental cues [44] (Figure 3). Radiotherapy induces dedif-
ferentiation of non-CSC tumor cells into CSCs in breast cancer and squamous cell carci-
noma [88,89]. Conventional therapies have been shown to induce quiescence or senescence
leading to the pro-tumorigenic role, development, maintenance, and radioresistance of
CSCs [48,50,51,90]. A clear link between CSCs and the EMT has also been established in
multiple cancer types where the activation of the EMT program in CSCs led to development
of multiple CSC properties including radioresistance [43].

The nature of the IR used in targeted radionuclide therapy (TRT) (o, 3, Auger electrons
(AE), and conversion electrons (CE)) in contrast to external radiotherapy (X-rays, v, protons)
requires one to specifically study the radioresistance of cancer cells in a TRT setting since it
could elicit different responses. However, the currently published studies focus mainly on
CSC radioresistance in the context of radiotherapy. There is a lack of research investigating
CSC mechanisms of radioresistance in TRT.

3.4. Ovarian Cancer Stem Cells—Origin and Biomarkers

The identification and characterization of ovarian CSCs is intricately connected to the
challenges related to OC biology represented by heterogenous OC histotypes with diverse
clinical evolutions and molecular features [2,16]. This emphasizes the need for careful valida-
tion of ovarian CSCs in clinically relevant settings. The occurrence and development of OC
support the notion that it is driven and maintained by CSCs. A major hallmark of HGSOC is
the accumulation of peritoneal ascitic fluid with a high tumor cell burden [4] where the tumor
cells survive anoikis and proliferate, forming spheroids in an anchorage-independent manner
(Table 3), which is recognized as a key CSC property [63]. Moreover, the high OC relapse rate
of more aggressive and therapy-resistant disease [2] could be accounted for by the presence
of chemo- and radiotherapy-resistant ovarian CSCs which could also acquire different states
such as quiescence or senescence to survive therapeutic pressure.

The origin of ovarian CSCs remains a debated question. Recognizing the molecular and
functional similarities between normal adult stem cells and ovarian CSCs, one trajectory
of ovarian CSC generation is upon the malignant transformation of normal stem cells.
The CSC plasticity model points to CSC generation via the dedifferentiation of tumor
cells [40,41]. Evidence suggests that, similar to HGSOC originating not only from the OSE
but also from non-ovary tissue such as the FTE, ovarian CSCs could also originate from the
OSE and FTE niches [22,91]. It is important to recognize that these models are not mutually
exclusive, and it is likely that they could occur simultaneously even within the same tumor,
probably generating distinct ovarian CSCs.

A panel of ovarian CSC-associated biomarkers has been reported—selected surface
markers include the L1 cell adhesion molecule (L1CAM), CD44, CD133, and CD117, while
intracellular markers comprise ALDH and the upregulation of stemness genes such as Sox2,
Nanog, and Oct4 (Table 2) [92]. Systematic studies through in vitro and in vivo methodology
verified LICAM+/CD133+ [11], CD44+/CD117+ [52], and ALDH+/CD133+ [53] cells as
ovarian CSC populations (Table 2). A lack of unified ovarian CSC biomarker panels most
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probably reflects the high heterogeneity of OC as well as the presence of various subsets of
ovarian CSCs.

3.5. Current Therapeutic Strategies against Ovarian Cancer Stem Cells

A variety of drugs against ovarian CSCs has been under investigation. Metformin, a
first-line diabetic drug, demonstrated promising results targeting ovarian CSCs. Neoadju-
vant application of metformin in a non-randomized phase II clinical trial (NCT01579812)
with thirty eight patients in stage II/IIL/IV relapse OC, twenty nine of whom had HGSOC,
resulted in a 2.4-fold decrease of ALDH+/CD133+ ovarian CSCs and increased cisplatin
sensitivity ex vivo [93]. Low metformin doses selectively decreased CD44+/CD117+ ovar-
ian CSCs in vitro and in vivo including in patient-derived mouse xenografts by inhibiting
the CSC EMT and self-renewal while enhancing the efficacy of cisplatin chemotherapy [94].

Drugs against CSC signaling pathways including the Notch pathway (y-secretase in-
hibitors, withaferin A (WFA), eugenol); WNT/ B-catenin (calcitriol, theaflavin-3,3'-digallate
(TF3), ginsenoside-Rb1, ipafricept (OMP-54F28)); the Hedgehog pathway (sonidegib, vis-
modegib); PI3K/phosphatase and the tensin homolog (PTEN)/AKT/mechanistic target
of rapamycin (mTOR) (N-t-boc-Daidzein, genistein derivative DFOG, LY294002); NF-xB
(PFK158, eriocalyxin B (EriB), 3PO); the Hippo pathway (Verteporfin (VP) YAP inhibitor);
and JAK2/STAT3 (Jak2 inhibitors TG101209, CYT387) demonstrated inhibitory effects
against ovarian CSCs in vitro and in vivo [95,96]. Only a few of these drugs have advanced
to clinical trials. The y-secretase inhibitor RO4929097 was tested in a phase II clinical trial
(NCT01175343) in patients with platinum-resistant recurrent EOC but showed insufficient
activity as a single agent [97]. Calcitriol, an active metabolite of vitamin D, depleted ALDH+
and CD44+/CD117+ ovarian CSCs by targeting the WNT/ 3-catenin pathway [98] and partic-
ipated in a phase I dose escalation study in a combination with taxane-based chemotherapy
(NCT01588522). A phase I clinical trial of ipafricept in combination with paclitaxel and car-
boplatin against recurrent platinum-sensitive EOC (NCT02092363) showed that the drug
combination is tolerated but limited by bone toxicity at efficacy doses, which prevented
further development in EOC [99]. The Hedgehog pathway inhibitor sonidegib demonstrated
antitumoral activity combined with paclitaxel in a phase I clinical trial in combination with
PTX (NCT01954355) [100]. Vismodegib, another Hedgehog inhibitor, was used in a phase
II clinical trial as maintenance therapy for patients diagnosed with OC in a second or third
complete remission (NCT00739661), but no significant effect was achieved [101]. PFK158,
a 6-phosphofructo-2-kinase/fructose-2,3-biphosphatase 3 (PFKFB3) inhibitor, impaired the
stemness of ALDH+/CD44+ ovarian CSCs by inhibiting inhibitors of apoptosis (IAP) proteins
and NF-«B [102]. PFK158 was tested in a phase I clinical trial against solid malignancies
(NCT02044861). None of the drugs have been approved for patient treatment to date.

All-trans retinoic acid (ATRA) inhibited the CSC properties of ALDH-high ovarian
CSCs in vitro and in vivo [103]. Interestingly, DNA damage-binding protein 2 (DDB2) was
shown in vitro and in vivo to suppress to the dedifferentiation of non-CSCs to CSCs by
ALDHI1AT1 transcription repression [104]. The same study reported that the ALDH1A1
inhibitor NCT-501 reduced the ovarian CSC population possessing low DDB2 levels. Epi-
genetic targeting of ovarian CSCs including DNA methyltransferase (DNMT) 1 inhibitors
such as guadecitabine [105,106], histone deacetylase (HDAC) inhibitors [107], or bromod-
omain and extraterminal (BET) inhibitors which suppress ALDH activity [108] alone or in
combination with chemotherapy showed efficacy against ovarian CSCs.

Third generation anti-CD24 and anti-mesothelin dual-CAR-natural killer (NK) cells
were developed and functionally validated in vitro against OC cell lines and patient-derived
primary OC samples [109]. Since CD24 is a recognized ovarian CSC-associated marker with
limited expression in healthy tissue [110] and mesothelin is overexpressed in OC where
it regulates invasion and peritoneal dissemination [111], this dual-CAR-NK therapeutic
modality could present an attractive approach targeting both the bulk tumor and the CSCs.
Anti-mesothelin CAR-T cell immunotherapy has been recently validated in a cohort of
three OC patients, providing a basis for clinical trials [112]. Although these CAR-cell-based
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therapies showed increased cytotoxicity and specificity against the marker-expressing cells,
they are yet to be validated specifically against ovarian CSCs. A nanoscale-based drug
delivery system with siRNA against CD44 mRNA, another CSC-associated biomarker [113],
successfully knocked down CD44 and sensitized OC towards paclitaxel in vitro and in vivo
including in an ascites-derived patient xenograft model [114].

Most reported studies focus on targeting cells selected based on one CSC-associated
biomarker. Due to the heterogeneity of the CSC populations and the expression of many
CSC-associated biomarkers on normal tissue [60], together with empirical data confirming
that cell populations selected based on a combination of markers demonstrate stronger
CSC properties on a functional and molecular level (Tables 2 and 3), it is crucial to select
CSCs and study therapies against them based on a combination of biomarkers. However,
such studies are still scarce, while even fewer have reached validation in clinical trials.
More efforts are required to develop novel CSC-targeted therapies for clinical application.
RIT with suitable medically relevant radionuclides could fill in this gap by overcoming
radioresistance and eradicating CSCs [35].

4. L1CAM as a Promising Target for Radioimmunotherapy against Ovarian Cancer
Stem Cells

4.1. The Ovarian Cancer Stemness-Associated Biomarker LICAM
4.1.1. L1CAM in Health and Disease

The L1CAM, also known as CD171, is the founding member of the L1 subfamily which
consists of closely related cell adhesion molecules (CAMs) belonging to the immunoglobulin
(Ig) superfamily of CAMs. In vertebrates, it includes close homolog of L1 (CHL1), neuronal
cell adhesion molecule (NrCAM), neurofascin, and LICAM [115]. LICAM is a type I trans-
membrane glycoprotein with a molecular weight of 200220 kDa. Its extracellular domains
consist of N-terminal six Ig-like domains and five fibronectin (FN) IlI-like domains followed
by a single transmembrane domain which connects to the highly conserved cytoplasmic
domain (Figure 4). Multiple antibodies against various regions along the LICAM polypeptide
chain have been developed and applied for imaging and/or therapy [116-120].
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Figure 4. L1ICAM protein domain structure and known mediators of proteolytic cleavage. The
arrows indicate the reported enzyme cleavage sites. ADAM10/17, a disintegrin and metallopro-
teinase domain-containing protein 10 or 17; BACE1, 3-secretase 1; ECD, extracellular domain; FN,
fibronectin; ICD, intracellular domain; Ig, immunoglobulin; MMP16, matrix metalloproteinase 16;
PC5A, proprotein convertase type 5; TMD, transmembrane domain.
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The L1CAM was first described in the central nervous system [121,122], where it
plays a pivotal role in its development and plasticity by participating in processes such as
neuronal migration and differentiation, neurite outgrowth, fasciculation of axons and den-
drites, axon guidance, myelination, synaptogenesis cell adhesion, and survival [123-127].
Mutations in the human L1CAM gene localized on the X chromosome Xq28 lead to the
development of L1 syndrome—a complex X-linked neurological disorder characterized
by hydrocephalus, intellectual disability, adducted thumbs, and leg spasticity [128]. The
L1CAM also has a crucial role in the formation and maintenance of the epithelium of
the gastrointestinal and urogenital tract by supporting cell-to-cell adhesion as well as cell
migration [129-131]. Postembryonically, the LICAM is expressed in the kidney tubules,
the central nervous system and peripheral nerves while low LICAM levels have also
been reported on B lymphocytes, T lymphocytes, dendritic cells, and monocytes [132,133].
Furthermore, the LICAM was found to be expressed and required for the intestinal ep-
ithelial regeneration following loss of epithelial integrity while it was not expressed in
homeostatic intestinal epithelium [134]. Although not essential for vascular homeostasis,
the LICAM could also be upregulated in pericytes in the context of vascular stress and
neovascularization [135].

The L1CAM lacks enzymatic activity for downstream signal transduction. To me-
diate signaling, it interacts with a wide interactome [7,136]. There are currently three
distinguished modes of LICAM-mediated signaling which are activated by the differ-
ent LICAM forms upon proteolytic cleavage (Figure 4) [136], all of which have been
reported in cancer. LICAM-assisted signaling leads to the activation of LICAM interactions
with the extracellular signal-regulated kinase (ERK)/MAPK signaling pathway via full
length or soluble extracellular LICAM interactions with other LICAM molecules, integrins,
and Receptor Tyrosine Kinases such as epithelial growth factor receptors (EGFRs) and
fibroblast growth factor receptors (FGFRs) [137,138]. LICAM forward signaling, cleavage-
dependent, is based on the proteolytic cleavage-generating LICAM soluble extracellular
domain and intracellular domain [139-141]. The extracellular domain functions as an inte-
grin ligand contributing to LICAM-assisted signaling or reverse signaling [142,143]. The
intracellular domain translocates into the nucleus where it regulates LICAM-dependent
genes including PI3K/AKT, ERK/MAPK, and interleukin 1f3 (IL-1f3), an activator of the
NF-«B pathway), which could promote cancer cell survival, migration, and apoptosis resis-
tance [140,144]. L1ICAM reverse signaling, cleavage-independent, involves a full-length
membrane-bound L1ICAM which interacts with integrins and cytoskeleton crosslinking
proteins such as ezrin leading to activation of the NF-«kB pathway either directly or by
production of IL-13 [145-148]. As a result, this signaling mode contributes to cancer cell
survival, proliferation, invasion and metastasis, and therapy resistance [136].

Diverse LICAM membrane-bound and soluble intra- or extracellular forms have been
identified, reflecting its multiple roles in health and disease, including cancer. These forms
could be generated through proteolytic cleavage by a variety of proteases [139-141,149,150],
summarized with their cleavage sites in Figure 4. LICAM alternative splicing has also been
reported for exon 2 and exon 27, which affects LICAM interactions and endocytosis [151],
as well as those of exon 25, which results in a soluble variant without a transmembrane
domain [116,152].

L1CAMa-aberrant expression in cancer, including that of its diverse forms, has been
linked to key tumor processes such as cell survival, cell migration and invasion, tumor and
metastasis formation, therapy resistance, cancer stemness, cell adhesion, and angiogenesis
in multiple solid malignancies, including glioblastoma, colorectal cancer, pancreatic can-
cer, prostate cancer, gynecologic cancers, retinoblastoma, oral squamous cell carcinoma,
endometrial cancer, and breast cancer [7,8,116,134,135,153-158].

These studies also point to the clinical relevance of the LICAM as a diagnostic and
prognostic marker. LICAM-targeted therapeutic approaches, including monoclonal anti-
bodies, radioimmunotherapy, and CAR T-cells alone or in combination with other treat-
ments, have already been documented [7,10,159-161].
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4.1.2. L1ICAM as a Cancer Stem Cell-Associated Biomarker in Epithelial Ovarian Cancer

L1CAM overexpression and a correlation with poor outcome and decreased patient
survival in EOC has already been reported [10,132,162]. Accumulated research from the
past 30 years has confirmed the role of LICAM in major tumor processes in such as cell
migration, resistance to apoptosis, chemoresistance, and increased tumorigenicity, all
representing important steps in OC development and progression [142,144,163].

Importantly, the role of the LICAM as a CSC-associated biomarker in EOC has also
been validated. The L1ICAM was found to promote ovarian cancer stemness in patient-
derived ovarian CSCs and OC cell lines in which it mediated tumor initiation, AICG
growth, and chemoresistance via the FGFR/SRC/STAT3 signaling pathway [10]. Another
recent study conducted on LICAM+/CD133+ cells derived from OC cell lines verified the
CSC phenotype of this population on a molecular (upregulation of stemness genes) and
functional level in vivo (limiting dilution and serial transplantation) and in vitro (clono-
genicity, spherogenicity in CSC-selective conditions, radioresistance) (Tables 2 and 3) [11].
In addition, the same study identified the LICAM as a marker of radioresistance, since
CRISPR-Cas9-mediated L1CAM knockout led to increase in radiosensitivity, which was
significantly restored after LICAM rescue. These findings created a basis for investigation
of the underlining molecular mechanisms of radioresistance which remain to be elucidated.
Despite the confirmed importance of the LICAM as a clinically relevant and targetable CSC-
associated biomarker in EOC, to date LICAM-targeted therapies have not been transferred
into the clinics.

4.2. Anti-L1CAM Radioimmunotherapy against Ovarian Cancer Stem Cells
4.2.1. Clinical Radioimmunotherapy against Solid Tumors

Clinical RIT is a type of TRT which utilizes a monoclonal antibody (mAb) as a targeting
vector to deliver coupled therapeutic radiation to cancer-relevant antigens. It allows the
target-specific delivery of particle radiation—c«, 3, CE/ AE—while minimizing toxicity and
off-target effects, making it a promising therapeutic modality due to its advantages over
conventional radiotherapy [14]. Optimally, the mAb should possess high specificity and
binding affinity to a cell surface antigen abundantly expressed on the cancer cells with limited
to no expression on healthy tissue [164]. The selection of an appropriate radionuclide is also
essential since its physical and biological properties significantly determine the therapeutic
efficacy. The radiolabeled mAb should be produced with high radiochemical purity, retain
high immunoreactivity, and demonstrate biodistribution with high tumor uptake and low
uptake into the radiosensitive organs such as the bone marrow, spleen, liver, and kidneys.

Several major factors are to be considered for the effective delivery of RIT to solid
tumors. The mAb high molecular weight of 150 kDa restricts its penetration into the
tumor and the mAb could also elicit unwanted immune responses [165]. The dense ECM
and the tight cell-to-cell junctions could form a physical barrier influencing mAb pene-
tration [166]. Low tumor vascularization, compressed or leaky blood vessels, and high
interstitial pressure which creates gradients opposing macromolecular diffusion also limit
the drug delivery [167]. Various strategies have been explored to address these obstacles,
including the generation of smaller antibody fragments, pretargeting, combination treat-
ments with modulators of the ECM, tight cell-to-cell junctions, immune responses, and
blood vessels to increase delivery to the tumors [165,166,168,169].

Although many RIT approaches have been in clinical trials for non-solid and solid
cancers in the last decade, only a few have been approved for clinical application up to date,
only against hematologic malignancies [169]. The clinical trials of RIT in OC are scarce. A
phase I clinical trial (NCT04461457, completed 2005-2012) investigated the vector MX35
F(ab”)2 radiolabeled with the x-emitter Astatine-211 targeting the cell surface glycoprotein
NaPi2b in relapsed OC [170]. The study showed no radiation-induced toxicity while it also
pointed to the requirement for optimization of the dosimetry calculations. Another phase
I trial (NCT03507452, completed 2018-2022) studied the mAb BAY2287411 radiolabeled
with the x-emitter Thorium-227 against mesothelin-expressing OC [169]. Results are yet
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to be reported. Other potential targets for RIT against EOC include MUC16 (also known
as CA125), folate receptor alpha, HER2, and EGFR [171,172]. Only a few studies have
investigated RIT for OC against the targets discussed above, while no studies to date have
validated RIT against ovarian CSCs. A main reason is the limited research verifying ovarian
CSC biomarkers and populations. The thorough work on the LICAM, as reviewed above,
has pointed out to its promising potential for CSC-targeted RIT.

4.2.2. Anti-L1CAM Radioimmunotherapy as a Novel Therapeutic Modality against
Ovarian Cancer Stem Cells

The validation of the LICAM in OC as a CSC-associated biomarker [7,9,10,142] and
the identification of LICAM+/CD133+ cells as ovarian CSCs together with confirmation of
L1CAM as a marker of radioresistance [11] provided a solid base for the development of
anti-L1CAM RIT.

Previous work has already verified key characteristics of the components (Figure 5) and
the therapeutic efficacy of anti-L1CAM RIT with the chimeric monoclonal antibody (mAb)
chCE? against bulk LICAM-expressing tumors. The anti-L1CAM chCE7 is a full-length
mAb (150 kDa) which can be produced in high yields [118]. The first and only todate clin-
ical application of chCE7 was to test its imaging potential in neuroblastoma patients [173].
The study showed that chCE7 radiolabeled with the 3~/ emitter Iodine-131 (*3!1) had a
superior sensitivity in detecting primary tumors and metastasis [173]. Because there was not
enough clinically approved chCE? for therapeutic application, no further clinical studies were
conducted. Hence, substantial effort has focused on chCE7 radiolabeled with the clinically
relevant 77Lu and ' Tb. Both [*Lu]Lu-DOTA-chCE7 and [**' Tb]Tb-DOTA-chCE7 were
reproducibly obtained with high radiochemical purity and immunoreactivity, and showed
high cell and tumor uptake with minimal accumulation in healthy tissue [12,161,174,175]. A
combination of paclitaxel or protein kinase inhibitors with [/ Lu]Lu-DOTA-chCE7 RIT im-
proved the therapeutic efficacy against OC [174,175]. ['¢1Tb]Tb-DOTA-chCE7 demonstrated
stronger therapeutic potency in vitro and in vivo against bulk LICAM-expressing ovarian
tumors which is due to the substantial emission of highly cytotoxic CE/AE by 1 Tb [12].
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Figure 5. Components of anti-L1CAM radioimmunotherapy with the monoclonal antibody chCE7
and the radiolanthanides ' Tb and '77Lu. IgG1, immunoglobulin subclass G1; mAb, monoclonal

antibody; chelator p-SCN-Bn-DOTA, S-2 (4-Isothiocyanatobenzyl)- 1,4,7,10-tetraazacyclo-dodecane
tetraacetic acid.
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Because of '®1Tb co-emission of long-ranged f~ radiation and short-ranged CE/AE,
it has emerged as a highly attractive radionuclide for TRT. 16! Tb-based radiopharmaceu-
ticals are currently being validated in several clinical trials—REALITY (NCT04833517)
and VIOLET (NCT05521412) against metastatic castration-resistant prostate cancer, and
Beta plus study (NCT05359146) against neuroendocrine tumours. ¢! Tb-based RIT could
leverage the high cytotoxicity of CE/AE to eradicate radioresistant CSCs while the 3~
radiation could kill bulk tumor cells (Figure 6). This could prevent the dynamic transition
between bulk tumor cells and CSCs and thus lead to complete tumor eradication. In our
most recent work, we successfully validated the efficacy of 161Th-based anti-L1CAM RIT
against LICAM+/CD133+ ovarian CSCs in a CSC xenograft model in nude mice (MS ID#:
JNUMED /2024 /267864, under revision). Our research provides an important link between
targeting and eradicating the bulk tumor as well as the CSCs which to date continues to
pose a clinical challenge. Furthermore, it highlights the promising potential of anti-L1CAM
RIT with p~/CE/AE-emitters such as '®!Tb establishing a novel therapeutic modality
against ovarian CSCs.
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Figure 6. Anti-L1CAM '®1Tb-based radioimmunotherapy against ovarian cancer and ovarian cancer
stem cells. Following targeting L1CAM-expressing tumor cells with chCE7 radiolabeled with 101 Tb,
the long-ranged 3~ radiation could kill the bulk tumor cells while the highly cytotoxic short-ranged
conversion (CE)/Auger electrons (AE) could kill the LICAM-expressing cancer stem cells (CSCs), thus
preventing CSC dynamics and eradicating the whole tumor. DOTA, S-2-(4-Isothiocyanatobenzyl)-
1,4,7,10-tetraazacyclododecane tetraacetic acid.

5. Conclusions

There is a critical demand for novel CSC-targeted therapies in clinics. Research
to identify clinically relevant CSC biomarkers as well as deepen our understanding of
CSC biology and therapy-resistant mechanisms is key to the development of successful
CSC-targeted therapies. Radioimmunotherapy with suitable radionuclides such as ' Tb-
emitting highly cytotoxic CE/AE could potentially overcome the radioresistance of LICAM-
expressing ovarian CSCs, providing a promising novel approach which could ultimately
improve patient care.
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