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Yerevan 0051, Armenia; david.hayrapetyan@rau.am; Tel.: +374-93934311

Abstract: In the framework of the effective mass approximation, negative and positive trions, exciton,
and biexciton states are investigated in strongly prolate ellipsoidal quantum dots by the variational
method. Since the ellipsoidal quantum dot has a prolate character, all excitonic complexes are
considered quasi-one-dimensional. As in such a system, the analytical solution does not exist for the
many-particle problem, it is solved by the variational method. The trial variation functions based on
the one-particle wave functions are used to construct the wavefunctions for the excitonic complexes.
The energy spectrum, binding, and recombination energies dependent on the geometrical parameters
of the ellipsoidal quantum dots are calculated for the excitons, negative and positive trions, and
biexcitons. The radiative lifetime of exciton complexes in ellipsoid is estimated.
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1. Introduction

In quantum dots (QD), optically generated excitonic complexes can exist in different
states: neutral monoexciton X (one electron and one hole e− h), negatively charged exciton
X− (2e− h), positively charged exciton X+ (e− 2h), biexciton XX (2e− 2h), etc.

Investigation of the excitonic complexes of semiconductor QDs, where the parameters
can be tuned in a wide range, are of importance both from the point of view of fundamental
and applied physics. The investigation of excitonic complexes in bulk semiconductors is
difficult to achieve experimentally; the reason for this is the small value of the binding
energy [1–5]. However, this problem does not arise in the semiconductor nanostructures,
particularly in QDs because of the effects of size quantization [6–10]. Thus, biexciton
and trion states in quantum nanostructures with different shapes and geometries need
to be theoretically and experimentally investigated. The realization of these complexes
in QDs can be applied for the development of quantum information processes. Such
structures can act as quantum bits, which are the fundamental building blocks of quantum
computation [11,12]. As it is known, the progress of semiconductor nanotechnologies
made it possible to develop QDs with various shapes and dimensions [13–19]. Thus, the
theoretical and experimental investigation of these structures is an actual problem, due to
the application of these structures in many areas of novel technologies.

The exciton and biexciton are neutral compound quasiparticles, which are bosons.
This means they have integer spin, thus spin-orbit coupling can be neglected. Trions are
positively or negatively charged quasiparticles, which are fermions. The negative and
positive trions are also called negative and positive biexcitonic ions, respectively, whose
existence was suggested by Lampert [20]. Since biexcitons are also integer-spin bosons,
they are expected to obey the same Bose statistics as excitons, including Bose narrowing of
the energy distribution [21–24].

In this work, the exciton, trion, and biexciton states are investigated in a strong
prolate ellipsoidal quantum dot (SPEQD) with the help of the variational method. The
advantage of the ellipsoidal QD compared to the spherical QD is that it has two geometrical
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parameters. This mentioned peculiarity allows control of the energy spectra [25–29]. The
prolate character of the ellipsoidal QD means that the excitonic complexes inside the
SPEQD will be one-dimensional. The novelty of the current work is connected with the
consideration of the quasi-one-dimensional excitonic complexes in semiconductor QD with
prolate character. This specific character of the QD adds to the disposition of the particles
along the one direction. Thus, the physical properties of the system will have the same
behavior as the one-dimensional systems.

2. Materials and Methods

The quasi-one-dimensional excitonic complexes will be considered in SPEQD with
impenetrable walls. Then, the potential energy of the particles in cylindrical coordinates
have the following form:

Û(ρ, ϕ, z) =

{
0, ρ2

a2 + z2

c2 ≤ 1

∞, ρ2

a2 + z2

c2 > 1
, a� c (1)

where a and c, are the small and large semiaxes of the SPEQD, respectively. All dimension-
less lengths and energies in the problem are measured in the effective Bohr radius of the
electron ae = }2ε/m∗e e2, the effective Rydberg energy ER = }2/2m∗e a2

e of the electron, m∗e is
the effective mass of the electron, ε is the dielectric constant, and e is the elementary charge.

Because of the prolate geometry of the SPEQD, the radial direction size quantization
will be much more than in the axial direction. Therefore, the exciton, trions, and biexciton
can be considered as quasi-one-dimensional. A detailed description of the one-dimensional
character of exciton complexes in SPEQD can be found in [18]. Strong size quantization
in the radial direction is so strong that one can neglect the interparticle interaction in this
direction. In this approximation, the Hamiltonian of the exciton (X), negative trion (X−),
positive trion (X+), and biexciton (XX) has the form:

ĤX

(→
r 1,
→
r a

)
= ∑

j

P̂2
j

2m∗j
+ V̂int(z1, za) + ∑

j
Ûcon f

(→
r j

)
, j = {1, a}

ĤX−
(→

r 1,
→
r 2,
→
r a

)
= ∑

j

P̂2
j

2m∗j
+ V̂int(z1, z2, za) + ∑

j
Ûcon f

(→
r j

)
, j = {1, 2, a}

ĤX+

(→
r 1,
→
r a,
→
r b

)
= ∑

j

P̂2
j

2m∗j
+ V̂int(z1, za, zb) + ∑

j
Ûcon f

(→
r j

)
, j = {1, a, b}

ĤXX

(→
r 1,
→
r 2,
→
r a,
→
r b

)
= ∑

j

P̂2
j

2m∗j
+ V̂int(z1, z2, za, zb) + ∑

j
Ûcon f

(→
r j

)
, j = {1, 2, a, b}

(2)

where
→
r 1 and

→
r 2 are coordinates of electrons, and

→
r a and

→
r b are coordinates of holes.

The confinement potential has the form (1) for all types of particles. Here, V̂int is the
one-dimensional interparticle interaction energy and has the following form:

Vint(z1, za) = − e2

ε|z1−za | ,

Vint(z1, z2, za) =
e2

ε|z1−z2|
− e2

ε|z1−za | −
e2

ε|z2−za | ,

Vint(z1, za, zb) =
e2

ε|za−zb |
− e2

ε|z1−za | −
e2

ε|z2−zb |
,

Vint(z1, z2, za, zb) =
e2

ε|z1−z2|
+ e2

ε|za−zb |
− e2

ε|z1−za | −
e2

ε|z1−zb |
− e2

ε|z2−za | −
e2

ε|z2−zb |
.

(3)
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Each particle of the excitonic complexes moves in a two-dimensional infinitely deep
well in the radial direction. According to the adiabatic approximation, the wave function of
the system is sought in the form:

ΦX

(→
r 1,
→
r a

)
= ΨX(z1, za)χX

(→
ρ 1(z1),

→
ρ a(za)

)
,

ΦX−
(→

r 1,
→
r 2,
→
r a

)
= ΨX−(z1, z2, za)χX−

(→
ρ 1(z1),

→
ρ 2(z2),

→
ρ a(za)

)
ΦX+

(→
r 1,
→
r a,
→
r b

)
= ΨX+(z1, za, zb)χX+

(→
ρ 1(z1),

→
ρ a(za),

→
ρ b(zb)

)
ΦXX

(→
r 1,
→
r 2,
→
r a,
→
r b

)
= ΨXX(z1, z2, za, zb)χXX

(→
ρ 1(z1),

→
ρ 2(z2),

→
ρ a(za),

→
ρ b(zb)

)
,

(4)

where Ψ are wave functions of the slow subsystem in the axial direction, and χ are wave
functions of the fast subsystem in the radial direction. The variables of the slow subsystem
play the role of constant parameters in the wave function of the fast subsystem [25]. At a
fixed value of the coordinate z, the motion of each particle is localized in a two-dimensional
potential well with the effective width:

L(zj) = a

√
1−

zj
2

c2 (5)

One-particle wave functions and energies in a SPEQD from Ref. [30] are used for
the variational calculations of the one-dimensional exciton, trions, and biexciton states in
SPEQD. In the mentioned article, the adiabatic approximation is used for the strong size
quantization regime and the results are in good agreement with the results of numerical
methods. In this approximation, the eigenfunctions and eigenvalues for a particle in the
SPEQD are presented in the following form:

ψn,m,N(ρ, ϕ, z) =
eimϕ

√
2π

√
2Jm(αn,mρ/L(z))
L(z)Jm+1(αn,m)

4

√
αn,m

ac
1

2
N
2 4
√

π(N!)
1
2

e−
αn,m
2ac z2

HN

(√
αn,m

ac
z
)

, (6)

E =
α2

n,m

a2 +
2αn,m

ac

(
N +

1
2

)
. (7)

Here, m = 0,±1,±2, . . . is the magnetic quantum number, n = 1, 2, 3, . . . is the ra-
dial quantum number, N = 0, 1, 2, . . . is oscillator quantum number, HN(z) are Hermite
polynomials, Jm(ρ), and αn+1,m are Bessel functions of the first kind and their zeros, corre-
spondingly.

The calculation of the exciton and biexciton ground state energies as dependent on the
geometric parameters of the SPEQD will be performed using the variational method. The
variational function for the excitonic complexes will be constructed using the single-particle
wave functions and can be presented in the following form [31–33]:

Ψtrial
X (z1, za) = CXψ100(z1)ψ100(za)e−λz1a ,

Ψtrial
X− (z1, z2, za) = CX−ψ100(z1)ψ100(z2)ψ100(za)

× ∑
i1i2i12

∑
j1 j2 j12

ci1i2i12 j1 j2 j12(1 + P12)e
−α1a

i1
ρ2

1a−α2a
i2

ρ2
2a−α12

i12
ρ2

12 × e−β1a
j1

z2
1a−β2a

j2
z2

2a−β12
j12

z2
12 ,

Ψtrial
X+ (z1, za, zb) = CX+ψ100(z1)ψ100(z2)ψ100(za)

× ∑
iaibiab

∑
ja jb jab

ciaibiab ja jb jab(1 + Pab)e−α1a
ia ρ2

1a−α1b
ib ρ2

1b−αab
iabρ2

ab × e−β1a
ja z2

1a−β1b
jb

z2
1b−βab

jabz2
ab ,

Ψtrial
XX (z1, z2, za, zb) = CXXψ100(z1)ψ100(z2)ψ100(za)ψ100(zb)

× e−γzab e−α(z1a+z2b)−β(z1b+z2a)e−α(z1b+z2a)−β(z1a+z2b)

(8)

where C are normalization constants, zjk =
∣∣zj − zk

∣∣, j, k = {1, 2, a, b}, P12(Pab) is the
permutation operator interchanging the electron (hole) indices 1↔ 2 ( a↔ b ), α, β, γ, λ,
ci1i2i12 j1 j2 j12 , α

jk
ijk

and β
jk
ijk

j, k = {1, 2, a, b} are variational parameters, which describe the
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relative position of the electron and hole in the radial plane and axial direction, respectively.
In Equation (7), summations start from 1 and run to Mjk over indices i1a and i2a, to Njk over
j1a and j2a, and to M12 and N12 over i12 and j12. For the calculations, Mjk = Njk = 2 and
M12 = N12 = 3 were used [33]. All variational parameters are determined after minimizing
the integrals:

EX =
〈

Ψtrial
X (

→
r 1,
→
r a)
∣∣ĤX

∣∣Ψtrial
X (

→
r 1,
→
r a)
〉

,

EX− =
〈

Ψtrial
X− (

→
r 1,
→
r 2,
→
r a)
∣∣ĤX−

∣∣Ψtrial
X− (

→
r 1,
→
r 2,
→
r a)
〉

,

EX+ =
〈

Ψtrial
X+ (

→
r 1,
→
r a,
→
r b)
∣∣ĤX+

∣∣Ψtrial
X+ (

→
r 1,
→
r a,
→
r b)
〉

,

EXX =
〈

Ψtrial
XX (

→
r 1,
→
r 2,
→
r a,
→
r b)
∣∣ĤXX

∣∣Ψtrial
XX (

→
r 1,
→
r 2,
→
r a,
→
r b)
〉

.

(9)

The ground state of the biexciton is a singlet state, thus the trial wave function of
biexciton is not symmetric concerning electrons and holes. The trial wave function in the
positronium limit m∗e = m∗h is asymmetric, thus the energy and binding energy will be
different when the electron and hole are interchanged in places.

The calculation of the quasiparticles’ energies (8) allows us to obtain the binding
energy for each one. The binding energies are defined below:

Ebind
X = (Ee + Eh)− EX ,

Ebind
X− = (2Ee + Eh)− EX− ,

Ebind
X+ = (Ee + 2Eh)− EX+ ,

Ebind
XX = 2EX − EXX ,

(10)

where Ee and Eh are the energies of the electron and hole in the SPEQD, respectively. As can
be seen, the binging energy of an exciton is determined from a relative ratio of independent
electron-hole pairs; correspondingly, the binding energy of a biexciton is comparable to
two independent monoexcitons.

As the next step, the dependencies of the recombination energies of the discussed
quasiparticles on the geometrical parameters of SPEQD have been performed. For each
quasiparticle, expressions for the recombination energy are given below:

ωi0
X = Ei

X ,
ω

i f
X− = Ei

X− − E f
e ,

ω
i f
X+ = Ei

X+ − E f
h ,

ω
i f
XX = Ei

XX − E f
X .

(11)

where i and f indices are the initial and final states, respectively.
The recombination energy can be defined as the difference between the initial and

final states’ full energies after recombination. For the case of the exciton, which consists
of an electron and a hole, the recombination energy in the final state will be equal to the
energy of the exciton itself in the initial state. After recombination of the electron-hole pair,
the exciton remains for the biexciton, electron, and hole for the positive and negative trions,
respectively.

3. Results

Let us proceed to the discussion of the results. In Figure 1, the schematic plot of the
energy diagram has been shown for all excitonic complexes in comparison with the sum of
energies of constituent particles, without taking into account Coulomb interactions between
them, for the fixed values of the small and large semiaxes. This means that the energies are
calculated as the simple amount of one particle energies with the help of Equation (6). For
the exciton, it is one electron and hole; for biexciton two electrons and two holes; and one
electron and two holes or two electrons and one hole, correspondingly, for positive and
negative trions. Note that for all quasiparticles, the energies with the account of Coulomb
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interaction lay lower than the energies without Coulomb interaction. Interestingly, the
energy of the positive trion is close to the exciton energy, and the energy of the negative
trion is close to the biexciton energy. The regularity, that the negative trion energy is higher
than the energy of the positive trion, is because X− consists of two electrons and one hole
and X+ consists of two holes and one electron. As the effective mass of the heavy hole is
much more than the electron effective mass, the kinetic energy of the heavy hole will be
much less than the electron kinetic energy.
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Figure 1. The schematic plot of the energy diagram for exciton (X), negative trion (X−), positive trion
(X+), and biexciton (XX) with (blue line) and without (red dashed line) Coulomb interactions.

The comparative dependencies of the energies for all above mentioned excitonic
complexes on the small semiaxis of SPEQD are shown in Figure 2. The energies for all
excitonic complexes decrease with the increase of the small semiaxis. As we can see from
Figure 2 for the small values of the a parameter, the energy of the biexciton is larger than
the energy of the negative trion. The energy curves for these quasiparticles changed their
positions with each other after a certain value of the small semiaxis. The same regularity is
observed for the energy curves of the exciton and positive trion.
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Figure 2. The comparative dependencies of the energy of the exciton (X), negative trion (X−), positive
trion (X+), and biexciton (XX) on the small semiaxis.

In Figure 3, the dependencies of the binding energies for excitonic complexes have
been presented. The binding energy for the biexciton has the biggest value; consequently,
the stability of the system in SPEQD obtains a high value. The exciton and negative trion
binding energies are close to each other. Therefore, the binding energy of the positive
trion lays between curves for exciton and biexciton. Binding energies of the biexciton and
positive trion are the maximum, while the binding energies of exciton and negative trion
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monotonically increase with the increase of the small semiaxis. Although small values of
the parameter, a, correspond to the large values of size quantized energy for constituent
particles, nevertheless, the Coulomb interaction also increases due to the proximity of
particles. That is why the curves of binding energies for all quasiparticles begin to descend
with the decrease of a small semiaxis.
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Figure 3. The comparative dependencies of the binding energy of the exciton (X), negative trion
(X−), positive trion (X+), and biexciton (XX) on the small semiaxis.

The transitions between the ground levels for initial and final states are presented
in Figure 4. The recombination energy has not been plotted for the exciton since the
recombination energy of the exciton in the final state as it was described above will be equal
to the energy of the exciton itself in the initial state (see Equation (10)). As can be seen from
the figure, the recombination energies for the discussed quasiparticles decreases with the
increase of a parameter and they are very close to each other. This proximity of curves is
explained by the fact that, during the recombination process in all three complexes, one
electron and one hole recombine, so the energy of the emitted photon will be approximately
the same.
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where PE  is the Kane energy, and for GaAs it is 22.71P eVE = . The effective masses for 
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ent values of the geometric parameters of the SPEQD are presented in Table 1. The ob-
tained results clearly highlight that the lifetime of all exciton complexes is directly pro-
portional to the increase of SPEQD semiaxes. As it could have been foreseen, the proba-
bility of recombination decreases for larger localization regions. 

  

Figure 4. The comparative dependencies of the recombination energy of the negative trion (X−),
positive trion (X+), and biexciton (XX) on the small semiaxis.

As the last step, the estimation of the exciton and biexciton lifetime in the SPEQD
have been performed. The radiative lifetimes of exciton and biexciton are connected by the
equation [34]:

τ(XX) ' 1
4

τ(X) (12)
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In its turn, the radiative lifetime of exciton and trions is determined by the equation
obtained in [35,36]:

τ
(
X, X−, X+

)
=

2πε0mc3}2
√

εe2E2
(X,X− ,X+)

f
(13)

where ε0 is dielectric constant, m is the mass of the electron, ε is the dielectric constant of
the material, E(X,X− ,X+) is the energy of excitonic complex, and f is the oscillator strength,
which is defined by the formula:

f =
EP
EX

∣∣∣∣∣∣
∫
V

ΨX

(→
r e,
→
r h

)
d
→
r

∣∣∣∣∣∣
2

(14)

where EP is the Kane energy, and for GaAs it is EP = 22.71eV. The effective masses for the
electron and hole are m∗e = 0.067m and m∗e = 0.12m∗h. Note that the effects of the interaction
of exciton with phonons are not taken into account in Equation (13) for the exciton lifetime.

The values for the exciton, biexciton, negative, and positive trions lifetimes for different
values of the geometric parameters of the SPEQD are presented in Table 1. The obtained
results clearly highlight that the lifetime of all exciton complexes is directly proportional
to the increase of SPEQD semiaxes. As it could have been foreseen, the probability of
recombination decreases for larger localization regions.

Table 1. The lifetime of exciton complexes in strong prolate ellipsoidal quantum dot (SPEQD) for
different values of semiaxes.

Large
Semiaxis

Small
Semiaxis

Lifetime, ps

Exciton Positive
TRION

Negative
TRION Biexciton

c = 5aB

a = 0.5aB 29.32 25.96 15.67 7.33

a = 0.7aB 56.57 50.08 30.24 14.14

a = 1aB 112.78 99.84 60.31 28.19

c = 7aB

a = 0.5aB 29.66 26.26 15.85 7.41

a = 0.7aB 57.48 50.88 30.72 14.37

a = 1aB 115.32 102.09 61.65 28.83

c = 10aB

a = 0.5aB 29.92 26.49 15.97 7.48

a = 0.7aB 58.17 51.54 31.16 14.54

a = 1aB 117.29 103.84 62.71 29.32

4. Conclusions

In summary, the exciton, negative and positive trions, and biexciton states in the
SPEQD were calculated using the variational method. The review of the results shows that
there is an inverse relationship between the binding and recombination energies for all
one-dimensional quasiparticles and the a parameter. The binding energies of the biexciton
and positive trion have the maximum, while the energies of the negative trion and exciton
monotonically increase with the increase of the small semiaxis. It has been shown that the
recombination energies of trions and biexciton are close to each other. The radiative lifetime
of the one-dimensional exciton and biexciton in SPEQD made from GaAs is about 30 ps
and 7 ps for the average values a = 0.5aB and c = 5aB, respectively. Thus, manipulation of
the geometrical parameters of the prolate QD brings control of the radiative lifetime of the
excitonic complexes. This feature is important for the possible application of the excitonic
and biexcitonic complexes as one and two-photon sources.
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