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Abstract: We study semi-local convergence of two-step Jarratt-type method for solving nonlinear
equations under the classical Lipschitz conditions for first-order derivatives. To develop a conver-
gence analysis we use the approach of restricted convergence regions in combination to majorizing
scalar sequences and our technique of recurrent functions. Finally, the numerical example is given.
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1. Introduction

Let us consider an equation

F(x) = 0, (1)

where F : D ⊂ X → Y is a nonlinear Fréchet-differentiable operator, X and Y are Banach
spaces, D is an open convex subset of X. To find the approximate solution x∗ ∈ D of (1)
very often the Newton method is used [1,2]:

xk+1 = xk − F′(xk)
−1F(xk), k = 0, 1, . . . , (2)

The method (2) has quadratic order of convergence. To increase the convergence
order multi-step schemes had been developed [3–12]. Some of them are based on Newton
schemes. Such algorithms require more evaluations of function and its derivatives per
iteration. For example, Jarratt [11] examined a fourth order algorithm which required to
compute one function and two derivative per iteration. Sharma and Arora [11] studied
forth and six order Jarratt-like methods, which use one and two function, respectively,
two derivatives and one matrix inversion per iteration. Jarratt-, King-, Ostrowski-type
methods contain real parameters. The order of convergence depends on the values of these
parameters.

In this article, we consider Jarratt-type scheme

yk = xk − αF′(xk)
−1F(xk),

xk+1 = yk − γA−1
k Bk(yk − xk), k = 0, 1, . . . ,

(3)

where α, β, γ are nonzero scalar parameters, Bk = F′(xk)
−1(F′(yk) − F′(xk)) and

Ak = I + βBk. Similar scheme was proposed in [11] and local convergence was stud-
ied. In this article, we develop a semi-local convergence analysis of method (3) under
classical Lipschitz conditions only for first-order derivatives. The results can certainly
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be extended further along the same lines if instead of the Lipschitz condition we use the
Hölderian one.

2. Majorizing Sequence

Let L0, L and µ be positive parameters. We shall show in Section 3 that scalar sequence
{tk} defined for k = 0, 1, 2, . . . by

t0 = 0, s0 = µ,

tk+1 = sk +
|γ|L(sk − tk)

2

1− (L0tk + |β|L(sk − tk))
, (4)

sk+1 = tk+1 +
|α|
[

L(tk+1 − tk)
2 + 2(1 + L0tk)(tk+1 − sk) + 2

∣∣∣1− 1
α

∣∣∣(1 + L0tk)(sk − tk)
]

2(1− L0tk+1)

where is majorizing for scheme (3).
Next, we provide two results for the convergence of sequence (4).

Lemma 1. Assume that for each k = 0, 1, 2, . . .

L0tk + |β|L(sk − tk) < 1. (5)

Then, sequence {tk} generated by (4) is strictly increasing, bounded from above by
1
L0

and

converges to its unique least upper bound t∗.

Proof. By the definition of sequence {tk} and (4) the conclusions immediately follow.

The next result uses stronger convergence conditions but easier to verify. Let us first
define polynomials on the interval [0, 1) by

p1(t) = (L0 + |β|L)t2 + (|γ| − |β|)Lt− |γ|L

and
p2(t) = |α|L(1 + t)2t− |α|L(1 + t)2 + 2L0t3.

By these definitions p1(0) = −|γ|L, p1(1) = L0, p2(0) = −|α|L, p2(1) = 2L0. It
follows that p1 and p2 have roots in (0, 1) by the intermediate value theorem. Denote
smallest such roots by δ1 and δ2, respectively. Let

a =
|γ|Ls0

1− |β|Ls0
, b =

|α|
[

Lt2
1 + 2(t1 − s0) + 2

∣∣∣1− 1
α

∣∣∣s0

]
2(1− L0t1)

,

c = max{a, b}, δ3 = min{δ1, δ2},

and
δ = max{δ1, δ2}.

It is worth noticing that all these parameters depend on the minimal data L0, L and µ.
Then, we can show the second result on majorizing sequence for scheme (3).

Lemma 2. Assume

0 ≤ c ≤ δ3 ≤ δ ≤ 1− L0µ (6)

and

f (t) ≤ 0 at t = δ (7)
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or
g(t) ≤ 0 at t = δ, (8)

where f (t) = t|α|+ |α− 1|+ L0µt
1−t − t and g(t) = |α|Lµ(1+ t)2t+ 2t|α|+ 2|α− 1|+ 2L0µt(1+

t + t2)− 2t. Then, the sequence {tk} converges to t∗.

Proof. Induction shall be used to show

(H(1)
k ):

0 ≤ |γ|L(sk − tk)

1− (L0tk + |β|L(sk − tk))
≤ δ;

(H(2)
k ):

0 ≤
|α|
[

L(tk+1 − tk)
2 + 2(1 + L0tk)(tk+1 − sk) + 2

∣∣∣1− 1
α

∣∣∣(1 + L0tk)(sk − tk)
]

2(1− L0tk+1)
≤ δ(sk − tk);

(H(3)
k ):

tk ≤ sk ≤ tk+1.

These items are true for k = 0 by the definition of sequence {tk} and (6). Then, it also
follows

0 ≤ s0 − t0 ≤ δ0µ, 0 ≤ s1 − t1 ≤ δµ, t1 − s0 ≤ δµ and t1 ≤
(1− δ2)

1− δ
µ.

Assume

0 ≤ sk − tk ≤ δkµ, and tk ≤
(1− δk+1)

1− δ
µ.

Evidently, (H(1)
k ) holds provided

|γ|Lδkµ + L0δ
(1− δk+1)µ

1− δ
+ |β|Lδk+1µ− δ ≤ 0.

This estimate (7) holds if

h(1)k (t) ≤ 0 at t = δ1. (9)

where recurrent functions are defined on [0, 1) by

h(1)k (t) = |γ|Ltk−1µ + L0(1 + t + . . . + tk)µ + |β|Ltkµ− 1. (10)

By this definition the following relationship between two consecutive polynomials
can be found:

h(1)k+1(t) = h(1)k+1(t)− h(1)k (t) + h(1)k (t)

= |γ|Ltkµ + L0(1 + t + . . . + tk+1)µ + |β|Ltk+1µ− 1 + h(1)k (t)

−|γ|Ltk−1µ− L0(1 + t + . . . + tk)µ− |β|Ltkµ + 1

= h(1)k (t) + [|γ|Ltkµ− |γ|Ltk−1µ + L0tk+1µ + |β|Ltk+1µ− |β|Ltkµ]

= h(1)k (t) + p1(t)tk−1µ. (11)

In particular, (11) gives

h(1)k+1(δ1) = h(1)k (δ1). (12)
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Define function on the interval [0, 1) by

h(1)∞ (t) = lim
k→∞

h(1)k (t). (13)

It follows from (10) and (13) that

h(1)∞ (t) =
L0µ

1− t
− 1.

So, (9) holds if

L0µ

1− t
− 1 ≤ 0 at t = δ1, (14)

which is true by (6).
Similarly, (H(2)

k ) holds if we show instead

0 ≤ |α|L(1 + δ)2δkµ + 2δ|α|+ 2|α− 1|
2
(

1− L0

(
(1−δk+2)µ

1−δ

)) ≤ δ, (15)

where we also used

0 ≤ tk+1 − tk = (tk+1 − sk) + (sk − tk) ≤ (1 + δ)(sk − tk)

or if

h(2)k (t) ≤ 0 at t = δ2, (16)

where polynomials h(2)k are defined on the interval [0, 1) by

h(2)k (t) = |α|L(1 + t)2tkµ + 2t|α|+ 2|α− 1|+ 2L0t(1 + t + . . . + tk+1)µ− 2t. (17)

By this definition one obtains

h(2)k+1(t) = h(2)k+1(t) + h(2)k (t)− h(2)k (t)

= |α|L(1 + t)2tk+1µ + 2t|α|+ 2|α− 1|+ 2L0t(1 + t + . . . + tk+2)µ− 2t

+h(2)k (t)− |α|L(1 + t)2tkµ− 2t|α| − 2|α− 1| − 2L0t(1 + t + . . . + tk+1)µ + 2t

= h(2)k (t) + p2(t)tkµ, (18)

so,

h(2)k+1(δ2) = h(2)k (δ2). (19)

Define function

h(2)∞ (t) = lim
k→∞

h(2)k (t),

so by this definition and (17)

h(2)∞ (t) = 2t|α|+ 2|α− 1|+ 2L0tµ
1− t

− 2t,

so (19) holds if

h(2)∞ (δ) ≤ 0, (20)
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which is true by (7).
If (8) holds instead of (7) then (16) holds if

h(2)1 (t) = g(t) ≤ 0.

It follows that sequence {tk} is increasing an bounded from above by
µ

1− δ
and such

it converge to t∗.

3. Semi-Local Convergence

The conditions (A) shall be used. Assume:

(A1) There exist x0 ∈ D and µ0 > 0 such that F′(x0)
−1 ∈ L(Y, X) and

‖F′(x0)
−1F(x0)‖ ≤ µ0, µ = µ0|α|.

(A2) ‖F′(x0)
−1(F′(z)− F′(x0))‖ ≤ L0‖z− x0‖ for each z ∈ D and some L0 > 0.

Let D0 = U(x0, 1
L0
) ∩ D.

(A3) ‖F′(x0)
−1(F′(u)− F′(v))‖ ≤ L‖u− v‖ for each u, v ∈ D0 and some L > 0.

(A4) Conditions of Lemma 1 or Lemma 2 hold.
(A5) U[x0, t∗] ⊂ D.

The semi-local convergence analysis is based on conditions (A).

Theorem 1. Assume conditions (A) hold. Then, sequence {xk} generated by scheme (3) exists in
U(x0, t∗), stays in U(x0, t∗) for each k = 0, 1, . . . and converges to a solution x∗ ∈ U[x0, t∗] of
equation F(x) = 0.

Proof. Items
‖ym − xm‖ ≤ sm − tm (21)

and

‖xm+1 − ym‖ ≤ tm+1 − sm (22)

shall be proved using induction.
By (A1) one has

‖y0 − x0‖ = |α|‖F′(x0)
−1F(x0)‖ ≤ |α|µ0 = µ = s0 − t0 = s0 < t∗,

so (21) holds for m = 0, and y0 ∈ U(x0, t∗). Suppose it holds for all values of m smaller or
equal to k− 1 Let v ∈ U(x0, t∗). Then, in view of (A1) and (A2) one obtains

‖F′(x0)
−1(F′(v)− F′(x0))‖ ≤ L0‖v− x0‖ ≤ L0t∗ < 1,

leading to F′(v)−1 ∈ L(Y, X) and

‖F′(v)−1F′(x0)‖ ≤
1

1− L0‖v− x0‖
(23)

by the Lemma on invertible linear operators due to Banach [2,13]. Then, one has

‖Bm‖ ≤ ‖F′(xm)
−1F′(x0)‖‖F′(x0)

−1(F′(ym)− F′(xm))‖ ≤
L‖ym − xm‖

1− L0‖xm − x0‖
. (24)

and

‖βBm‖ ≤
|β|L‖ym − xm‖

1− L0‖xm − x0‖
≤ |β|L(sm − tm)

1− L0tm
< 1,

so
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‖Am‖ ≤
1

1− |β|L(sm−tm)
1−L0tm

,

so

‖xm+1 − ym‖ ≤ |γ|‖A−1
m ‖‖Bm‖‖ym − xm‖

≤ |γ| 1− L0tm

1− L0tm − |β|L(sm − tm)

L(sm − tm)2

1− L0tm
= tm+1 − sm. (25)

By scheme (3), one can write

F(xm+1) = F(xm+1)− F(xm) + F(xm)

= F(xm+1)− F(xm)− F′(xm)(xm+1 − xm) + F′(xm)(xm+1 − xm)

− 1
α

F′(xm)(ym − xm) + F′(xm)(ym − xm)− F′(xm)(ym − xm)

=
∫ 1

0

[
F′(xm + θ(xm+1 − xm))− F′(xm)

]
dθ(xm+1 − xm)

+F′(xm)(xm+1 − ym)− F′(x0)(xm+1 − ym) + F′(x0)(xm+1 − ym)

+

(
1− 1

α

)
(F′(xm)− F′(x0) + F′(x0))(ym − xm),

so

|α|‖F′(x0)
−1F(xm+1)‖ = |α|

[
L
2
‖xm+1 − xm‖+ (1 + L0‖xm − x0‖)‖xm+1 − ym‖

+

∣∣∣∣1− 1
α

∣∣∣∣(1 + L0‖xm − x0‖)‖ym − xm‖
]

≤ |α|
[

L
2
(tm+1 − tm)

2 + (1 + L0tm)(tm+1 − sm)

+

∣∣∣∣1− 1
α

∣∣∣∣(1 + L0tm)(sm − tm)

]
. (26)

It them follows from (3), (4), (23) for v = xm+1, and (26) that

‖ym+1 − xm+1‖ ≤ ‖F′(xm+1)
−1F′(x0)‖|α|‖F′(x0)

−1F(xm+1)‖ ≤ sm+1 − tm+1, (27)

where we also used. The following have also be used

‖xm+1 − x0‖ ≤ ‖xm+1 − ym‖+ ‖ym − x0‖ ≤ tm+1 − sm + sm − t0 = tm+1 < t∗

so xm+1 ∈ U(x0, t∗). Notice also that

‖ym+1 − x0‖ ≤ ‖ym+1 − xm+1‖+ ‖xm+1 − x0‖ ≤ sm+1 − tm+1 + tm+1 − t0 = sm+1 < t∗,

so ym+1 ∈ U(x0, t∗).
The induction for (21) and (22) is completed. It follows that sequence {xk} is Cauchy

in a Banach space X and, as such, it converges to some x∗ ∈ U[x0, t∗] (since U[x0, t∗] is a
closed set).

By letting m→ ∞ in (26) and using the continuity of F we conclude F(x∗) = 0.

The parameters
1
L0

or
µ

1− δ
given in closed form can replace t∗ in Theorem 1.

A uniqueness of the solution result follows next.

Proposition 1. Assume:
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(i) The point x∗ is a solution of equation F(x) = 0 in D;
(ii) Condition (A2) holds.

Then, the only solution of Equation (1) in the region D0 is x∗.

Proof. Let y ∈ D with F(y) = 0. Set M =
∫ 1

0 F′(y + θ(x∗ − y))dθ. Then, in view of (A2)
one obtains

‖F′(x0)
−1(M− F′(x0))‖ ≤

L0

2
[‖x∗ − x0‖+ ‖y− x0‖] <

L0

2
2
L0

= 1,

so y = x∗ is obtained from the invertibility of M and 0 = F(y)− F(x∗) = M(y− x∗).

4. Numerical Example

Let us consider the nonlinear equation

F(x) = x3 − q = 0,

where a function F is defined on D = U(x0, 1− q) and q ∈ (0, 1). Let x0 = 1. Then, we
obtain

µ0 =
1− q

3
, L0 = 3− q, L = 2 min

{
2− q, 1 +

1
L0

}
.

If we choose q = 0.85 then

x∗ = 3
√

q ≈ 0.947268237185910, D = D0 = (0.85, 1.15), µ0 = 0.05, L0 = 2.15, L = 2.3.

Now, verify conditions of Lemma 1 and Theorem 1 for α = 1, β = γ = 0.5. Majorizing
sequences

tk = {0, 0.05305039787798409, 0.06021265690968219, 0.06036488186993019,

0.06036495221495131, 0.06036495221496634},
sk = {0.05, 0.06014668276179737, 0.06036485126494786, 0.06036495221494478,

0.06036495221496634, 0.06036495221496634}

converge to t∗ <
1
L0

. Moreover, condition (5) holds for each k.

Table 1 gives error estimates (21) and (22). The solution x∗ is obtained at three iterations
for ε = 10−10. Therefore, conditions of Theorem 1 are satisfied and {xk} converge to
x∗ ∈ U[x0, t∗].

Table 1. Error estimates.

k xk+1 |yk− xk| sk− tk |xk+1− yk| tk+1− sk

0 0.947437582128778 5.0000 × 10−2 5.0000 × 10−2 2.5624 × 10−3 3.0504 × 10−3

1 0.947268237192221 1.6931 × 10−4 7.0963 × 10−3 3.0261 × 10−8 6.5974 × 10−5

2 0.947268237185910 6.3117 × 10−12 1.5219 × 10−4 0 3.0605 × 10−8

5. Conclusions

Method (3) has been used extensively for solving equations. The local convergence
analysis of method (3) has been given under various conditions. However, the semi-local
which is more interesting has not been given. That is why we presented it in this study
using majorizing sequences, Lipschitz conditions, and recurrent functions. The results can
certainly be extended further along the same lines if instead of the Lipschitz condition we
use the Hölderian one. Our technique is very general, so it can be used to provide results
on the semi-local convergence of other higher-order convergent methods along the same
lines. The theoretical results are also justified by examples.
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