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Abstract: The local convergence of a generalized (p + 1)-step iterative method of order 2p + 1 is
established in order to estimate the locally unique solutions of nonlinear equations in the Banach
spaces. In earlier studies, convergence analysis for the given iterative method was carried out
while assuming the existence of certain higher-order derivatives. In contrast to this approach, the
convergence analysis is carried out in the present study by considering the hypothesis only on the
first-order Fréchet derivatives. This study further provides an estimate of convergence radius and
bounds of the error for the considered method. Such estimates were not provided in earlier studies.
In view of this, the applicability of the given method clearly seems to be extended over the wider
class of functions or problems. Moreover, the numerical applications are presented to verify the
theoretical deductions.
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1. Introduction

Problems in applied mathematics are frequently formulated as the systems of nonlinear
equations. Considering the Banach spaces, X and Y, the mathematical formulation of a
given problem can be expressed in the form

F(x) = 0, (1)

where F : D ⊂ X → Y is a Fréchet-differentiable [1] mapping, and D is an open convex set
of X. The analytical solutions of the formulated nonlinear models are rather complicated to
obtain, but on the contrary, the iterative methods (see [2,3]) provide the numerical solution
up to the desired accuracy. Numerous iterative methods have been presented (see, for
example, [2,4–6], and references therein) over the years for this purpose.

One of the crucial components for the development of iterative methods is the anal-
ysis of their convergence behavior. The most common approach to estimate the order
of convergence of an iterative method includes the Taylor’s series expansions, which in-
herently involve higher-order derivatives (F(i), i = 1, 2, . . .), and some assumptions on
F(i). However, such assumptions limit the applicability of techniques, since most require
the computation of the first-order derivative only. Consider a real valued function [7],
F : D ⊆ R→ R, D =

[
− 1

2 , 5
2

]
, which is defined as

F(x) =
{

x3 ln(x2) + x5 − x4, x 6= 0
0, x = 0.
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Consequently, we have

F′(x) = 3x2 ln(x2) + 5x4 − 4x3 + 2x2,

F′′(x) = 6x ln(x2) + 20x3 − 12x2 + 10x,
and

F′′′(x) = 6 ln(x2) + 60x2 − 24x + 22.

Apparently, F′′′(x) is unbounded in the given interval. Therefore, the Taylor’s series
expansion might not be a suitable approach to study the convergence behavior of an
iterative technique.

Additionally, the convergence behavior of an iterative technique is significantly af-
fected by the selection of initial approximation in the neighborhood of the solution. It is
worth noticing that the set assumptions on F(i) (i = 1, 2, . . .) further reduce the conver-
gence region to a significant extent. Therefore, it is essential to enlarge the convergence
domain by avoiding these additional hypotheses. In this sense, the convergence analysis
of iterative techniques should include a measure of closeness of the initial estimate to the
solution. In fact, many authors (see [6–16]) have adopted an appropriate methodology
to establish the local or semilocal convergence analysis by considering the hypothesis of
Lipschitz continuity on first-order derivatives only. Furthermore, the bounds of the error
estimates and the convergence radius can be computed by defining some real functions
and parameters.

In view of the above facts, we shall study the local convergence analysis of a general-
ized (p + 1)-step iterative method of order 2p + 1, developed in [4], and which is expressed
as follows:

y(0)n = xn − aF′(xn)
−1F(xn),

y(1)n =y(0)n − BnF′(xn)
−1F(xn),

y(2)n =y(1)n − g(xn, yn)F′(xn)
−1F(y(1)n ),

. . .

y(p−1)
n = y(p−2)

n − g(xn, yn)F′(xn)
−1F(y(p−2)

n ),

xn+1 = y(p)
n = y(p−1)

n − g(xn, yn)F′(xn)
−1F(y(p−1)

n ), (2)

where ‘a’ is parameter, y(0)n = yn, Bn = 1
12 (13I − 9An), g(xn, yn) =

1
2 (5I − 3An), and An =

F′(xn)−1F′(yn). Let us note that for any x ∈ D ⊆ Rm, F′(x) : D → Rm is the first Fréchet
derivative [1]. Clearly, the above-given technique requires the computation of derivatives
of an order not more than one, but the order of convergence was proved in [4] using the
assumptions of the derivatives up to order 2p + 1. Our prime objective here is to weaken
the conditions of [4], and further, to estimate the upper bounds of the convergence radius,
which will definitely expand the applicability of the considered technique.

In what follows, the local convergence analysis is developed in Section 2, which
includes the computation of the upper bounds of the convergence domain. Some numerical
applications are given in Section 3. Section 4 contains the concluding remarks.

2. Convergence Analysis

To establish the local convergence analysis of the iterative technique (2), we de-
fine some real parameters and functions, and moreover, let the following suppositions
(i–iii) hold.

(i) There exists a function φ0 : [0, ∞)→ [0, ∞), continuous and non-decreasing, such that
the equation:

φ0(t)− 1 = 0,

has the smallest solution ρ ∈ (0, ∞).
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(ii) There exist functions φ : [0, ρ)→ [0, ∞) and φ1 : [0, ρ)→ [0, ∞), both continuous and
non-decreasing, such that the equations:

ψ0(t)− 1 = 0,

ψ1(t)− 1 = 0,

have the smallest solutions r0, r1 ∈ (0, ρ), respectively, where ψ0 and ψ1 are the
functions defined on the interval [0, ρ), and are expressed as

ψ0(t) =

∫ 1
0 φ((1− θ)t)dθ + |1− a|

∫ 1
0 φ1(θt)dθ

1− φ0(t)
,

ψ1(t) =

∫ 1
0 φ((1− θ)t)dθ + p(t)

∫ 1
0 φ1(θt)dθ

1− φ0(t)
.

Here, p : [0, ρ)→ [0, ∞) is defined as

p(t) =
3(φ0(t) + φ0(ψ0(t)t))

4(1− φ0(t))
+
|3a− 2|

3
.

(iii) Suppose that the equations:

ψk(t)− 1 = 0, (k = 2, 3, . . . , p),

have the smallest solutions rk ∈ (0, ρ), respectively, where ψk for each k is defined as

ψk(t) = q(t)ψk−1(t).

Here, q : [0, ρ)→ [0, ∞), and further, s : [0, ρ)→ [0, ∞) are defined as

q(t) =1 +
s(t)

∫ 1
0 φ1(θψ1(t)t)dθ

1− φ0(t)
,

s(t) =1 +
3(φ0(t) + φ0(ψ0(t)t))

2(1− φ0(t))
.

Let us define
r = min{ri}, i = 0, 1, 2, . . . , p. (3)

We shall show that r is the radius of convergence for the iterative method (2).
Notice that, by definition of r, it follows that for all t ∈ [0, r),

0 ≤ φ0(t) < 1, (4)

0 ≤ ψi(t) < 1, (5)

where i = 0, 1, 2, . . . , p. Assume that x∗ ∈ D. By taking x∗ as center, we denote U(x∗, r) as
the open ball, and U[x∗, r] as the closed ball, having a radius equal to ‘r’. Before proceeding
to the main result, it is required that the following conditions (A1–A4) hold:

(A1) : The point x∗ is the simple solution of Equation (1).

(A2) : For each x ∈ D,

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ φ0(‖x− x∗‖).

Let D0 = D ∩U(x∗, ρ).

(A3) : For each z, w ∈ D0,

‖F′(x∗)−1(F′(z)− F′(w))‖ ≤ φ(‖z− w‖),
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and
‖F′(x∗)−1F′(z)‖ ≤ φ1(‖z− x∗‖).

(A4) : U[x∗, r] ⊂ D.

Next, we present the convergence of method (2) using the conditions (A1–A4).

Theorem 1. Under the conditions (A1–A4), and further choosing x0 ∈ U(x∗, r)− {x∗}, the se-
quence {xn}, generated by method (2), remains in U(x∗, r) and converges to x∗.

Proof. Let v ∈ U(x∗, r). In view of the condition (A2) and Equation (3), in turn we obtain

‖F′(x∗)−1(F′(v)− F′(x∗))‖ ≤ φ0(‖v− x∗‖) < φ0(r) < 1. (6)

The existence of invertible operators in Banach spaces (see [1]), together with (6),
implies that F′(v)−1 ∈ L(Y, X), so that

||F′(v)−1F′(x∗)|| ≤ 1
1− φ0(||v− x∗||) . (7)

It follows from expression (7), for v = x0, that y(1)0 , y(2)0 , . . . , y(p)
0 exist. Then, using the

first sub-step of method (2) for n = 0,

y(0)0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0) + (1− a)F′(x0)

−1F(x0). (8)

Using (3), (A2), (A3), (7) (for v = x0), and (8), in turn one finds that

‖y(0)0 − x∗‖ ≤
∫ 1

0 φ((1− θ)‖x0 − x∗‖)dθ + |1− a|
∫ 1

0 φ1(θ(‖x0 − x∗‖))dθ

1− φ0(‖x0 − x∗‖) ‖x0 − x∗‖

≤ ψ0(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (9)

which proves y(0)0 ∈ U(x∗, r). Furthermore, re-writing the second sub-step of (2) for n = 0,
we have

y(1)0 − x∗ = y(0)0 − x∗ − B0F′(x0)
−1F(x0)

= x0 − x∗ − F′(x0)
−1F(x0) + ((1− a)I − B0)F′(x0)

−1F(x0). (10)

Then, by (3), (A2), (A3), and (10), we obtain

‖y(1)0 − x∗‖ ≤ ‖x0 − x∗ − F′(x0)
−1F(x0)‖+ ‖(1− a)I − B0‖‖F′(x0)

−1F(x0)‖

≤
( ∫ 1

0 φ((1− θ)‖x0 − x∗‖)dθ + p(‖x0 − x∗‖)
∫ 1

0 φ1(θ‖x0 − x∗‖)dθ

1− φ0(‖x0 − x∗‖)

)
‖x0 − x∗‖

≤ ψ1(‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖ < r, (11)

which proves y(1)0 ∈ U(x∗, r), where we have used the approximation

‖(1− a)I − B0‖ =
∥∥∥∥ 9

12
F′(x0)

−1(F′(y0)− F′(x0))−
3a− 2

3
I
∥∥∥∥

≤ 3(φ0(‖x0 − x∗‖) + φ0(‖y0 − x∗‖))
4(1− φ0(‖x0 − x∗‖)) +

|3a− 2|
3

≤ p(‖x0 − x∗‖).
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Similarly, by the third sub-step of method (2),

‖y(2)0 − x∗‖ ≤ ‖y(1)0 − x∗‖+ ‖g(x0, y(0)0 )‖‖F′(x0)
−1F(y(1)0 )‖

≤
(

1 +
s(‖x0 − x∗‖)

∫ 1
0 φ1(θ‖y

(1)
0 − x∗‖)dθ

1− φ0(‖x0 − x∗‖)

)
‖y(1)0 − x∗‖

≤ q(‖x0 − x∗‖)ψ1(‖x0 − x∗‖)‖x0 − x∗‖
≤ ψ2(‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖ < r, (12)

where we have used the approximation

‖g(x0, y(0)0 )‖ =
∥∥∥∥1

2
(5I − 3F′(x0)

−1F′(y(0)0 ))

∥∥∥∥
=

∥∥∥∥I +
3
2

F′(x0)
−1(F′(x0)− F′(y(0)0 ))

∥∥∥∥
≤ 1 +

3
2

φ0(‖x0 − x∗‖) + φ0(‖y
(0)
0 − x∗‖)

1− φ0(‖x0 − x∗‖)
≤ s(‖x0 − x∗‖).

Equation (12) proves that y(2)0 ∈ U(x∗, r). Using similar approximations as in (12),
for each j = 3, 4, . . ., we have

‖y(j)
0 − x∗‖ ≤ q(‖x0 − x∗‖)ψj−1(‖x0 − x∗‖)‖x0 − x∗‖

≤ ψj(‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖. (13)

Therefore, at the (p + 1)-th step of method (2),

‖x1 − x∗‖ = ‖y(p)
0 − x∗‖

≤ ψp(‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖.

which shows that x1 ∈ U(x∗, r). Now, simply replace y(0)0 , y(1)0 , . . . , y(p)
0 by y(0)k , y(1)k , . . . , y(p)

k
in the preceding estimations to obtain

‖xk+1 − x∗‖ ≤ ‖y(p)
k − x∗‖

≤ ψp(‖xk − x∗‖)‖xk − x∗‖
≤ ‖xk − x∗‖.

Hence, xk+1 ∈ U(x∗, r) for each k = 1, 2, . . ., and moreover limk→∞ xk = x∗.

Proposition 1. Assume that

(i) The point x∗ ∈ U[x∗, r] is the simple solution of (1), and satisfies the conditions (A1) and (A2).
(ii) There exists b ≥ r, such that

∫ 1

0
φ0((1− θ)b)dθ < 1. (14)

Set D1 = D ∩U[x∗, b]. Then, x∗ is the only solution of Equation (1) in the domain D1.
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Proof. Consider that x ∈ D1 with F(x) = 0. Define M =
∫ 1

0 F(x + θ(x∗ − x))dθ. Now,
using the conditions (A1), (A2), and Equation (14), we have

‖F′(x∗)−1(M− F′(x∗))‖ ≤
∫ 1

0
φ0((1− θ)‖x− x∗‖)dθ

≤
∫ 1

0
φ0((1− θ)b)dθ < 1.

So, x = x∗ by the invertibility of M, since M(x− x∗) = F(x)− F(x∗) = 0− 0 = 0.

Remark 1. The convergence order of method (2) was proved in [4] using the Taylor’s series
expansions. Instead of using these stronger conditions, the term computational order of convergence
(COC) [11] is defined as

COC = ln
∥∥∥∥ xr+2 − x∗

xr+1 − x∗

∥∥∥∥/ ln
∥∥∥∥ xr+1 − x∗

xr − x∗

∥∥∥∥, for each r = 0, 1, 2, . . . .

Note that, to compute COC, the knowledge of the exact solution (x∗) is required, but that
may not be known explicitly. In that case, the order of convergence can be determined using the
approximated computational order of convergence (ACOC) [11], which is expressed below

ACOC = ln
∥∥∥∥ xr+2 − xr+1

xr+1 − xr

∥∥∥∥/ ln
∥∥∥∥ xr+1 − xr

xr − xr−1

∥∥∥∥, for each r = 1, 2, . . . .

Apparently, no computation of derivative(s) is involved to determine the order of convergence
of an iterative technique, either by using COC or ACOC.

Remark 2. In view of the condition (A1), and the following estimate,

||F′(x∗)−1F′(x)|| =||F′(x∗)−1(F′(x)− F′(x∗)) + I||
≤1 + ||F′(x∗)−1(F′(x)− F′(x∗))‖
≤1 + φ0(‖x− x∗‖),

the condition ‖F′(x∗)−1F′(x)‖ ≤ φ1(‖x− x∗‖) can be dropped and replaced by

‖F′(x∗)−1F′(x)‖ ≤ 1 + φ0(‖x− x∗‖).

3. Numerical Results

To verify the theoretical deductions, we provide here the real parameters or functions,
as well as the estimated radius of convergence, for each of the following numerical exam-
ples, in particular by taking a = 2

3 and p = 3 in method (2).

Example 1. Consider the following Hammerstein Equation [8]:

x(s) =
∫ 1

0
G(s, t)

(
x(t)3/2 +

x(t)2

2

)
dt, (15)

where

G(s, t) =

{
(1− s)t, t ≤ s
s(1− t), s ≤ t,

is termed as the Green’s function, and defined as the kernel of Equation (15), in the domain
[0, 1]× [0, 1]. In particular, we observe that∥∥∥∥∫ 1

0
G(s, t)dt

∥∥∥∥ ≤ 1
8

.
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By defining a mapping F : D ⊆ C[0, 1]→ C[0, 1] as

F(x)(s) = x(s)−
∫ 1

0
G(s, t)

(
x(t)3/2 +

x(t)2

2

)
dt,

we simply have

F′(x)y(s) = y(s)−
∫ 1

0
G(s, t)

(
3
2

x(t)1/2 + x(t)
)

dt.

In fact, x∗(s) = 0 is the solution of Equation (15), and moreover using F′(x∗(s)) = 1, we in
turn find that

‖F′(x∗)−1(F′(x)− F′(y))‖ ≤ 1
8

(
3
2
‖x− y‖1/2 + ‖x− y‖

)
,

and consequently we can choose

φ0(t) = φ(t) =
1
8

(
3
2

t1/2 + t
)

, and φ1(t) = 1 + φ0(t).

Finally, we obtain

r0 = 1.2781, r1 = 0.7917, r2 = 0.3063, r3 = 0.1249, and r = 0.1249.

Example 2. Next, consider an equation due to Kepler [17]:

F(x) = x− β sin(x)− K = 0,

where 0 ≤ β < 1, 0 ≤ K ≤ π. Different choices of values of β and K are given in [17]. In particular,
we set K = 0.1 and β = 0.27. Then, we have the solution x∗ ≈ 0.13682853547099 . . .. Notice that

F′(x) = 1− β cos(x).

So,

|F′(x∗)−1(F′(x)− F′(y))| = |β(cos(x)− cos(y))|
|1− β cos(x∗)|

=
2β| sin( x+y

2 ) sin( x−y
2 )|

|1− β cos(x∗)|

≤ β

|1− β cos(x∗)| |x− y|,

and

|F′(x∗)−1F′(x)| = |1− β cos(x)|
|1− β cos(x∗)| ≤

1 + β

|1− β cos(x∗)| .

Then, we can choose

φ0(t) = 0.36859 t, φ(t) = 0.36859 t, and φ1(t) = 1.73373.

The computed values of parameters are given by

r0 = 0.7634, r1 = 0.5879, r2 = 0.2489, r3 = 0.1081, and r = 0.1081.

Example 3. The Van der Waals Equation [3,9] of state for vapor is expressed as:(
P +

a
V2

)
(V − b) = RT, (16)
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where all constants, appearing in the above equation, have a physical meaning whose values can be
found in [3]. Then, we must solve the equation

PV3 − (Pb + RT)V2 + aV − ab = 0,

in V. In particular, for P = 10, 000 units and T = 800 units, the solution of the resulting equation
is V = 36.9167 . . .. So, we have

φ0(t) = 0.386121 t, φ(t) = 0.386121 t, and φ1(t) = 1 + φ0(t).

and consequently, we obtain the estimates

r0 = 1.0359, r1 = 0.7288, r2 = 0.4069, r3 = 0.2419, and r = 0.2419.

Example 4. Now, consider the system [11], which governs the motion of an object in three dimen-
sions, and which is expressed by the following set of ordinary differential equations:

f ′1(x)− f1(x)− 1 = 0,

f ′2(y)− (e− 1)y− 1 = 0,

f ′3(z)− 1 = 0, (17)

where (x, y, z) ∈ D = B(0, 1), and f1(0) = f2(0) = f3(0) = 0. For any t = (x, y, z) ∈ D,
the solution of the given system (17) is defined by the function F : D → R3, where F := ( f1, f2, f3), and

F(t) = (ex − 1,
e− 1

2
y2 + y, z)T ,

and therefore

F′(t) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

.

So, we choose

φ0(t) = (e− 1)t, φ(t) = e
1

e−1 t, and φ1(t) = e
1

e−1 .

and consequently, we obtain the estimates as

r0 = 0.1544, r1 = 0.1227, r2 = 0.05096, r3 = 0.02167, and r = 0.02167.

Example 5. Lastly, we look at the example given in the introduction section. Observe that x∗ =
1/π is the zero of this function. In this particular problem, we can choose

φ0(t) = 146.66290 t, φ(t) = 146.66290 t, and φ1(t) = 1 + φ0(t).

Then, we obtain

r0 = 2.727× 10−3, r1 = 1.919× 10−3, r2 = 1.071× 10−3,

r3 = 6.369× 10−4, and r = 6.369× 10−4.

4. Conclusions

A generalized (p + 1)-step iterative technique with a convergence order of 2p + 1
is comprehensively analyzed for its local convergence in the Banach spaces. Assuming
the conditions of the first-order derivatives only, contrary to the usual approach of using
Taylor’s series expansions, we establish the generalized results in order to determine the
convergence region of the given technique. Consequently, the applicability of the technique
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is extended to a wider section of problems. Moreover, the numerical estimation of the
upper bounds of the convergence radius satisfactorily favors our analysis.
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