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Abstract: We study the semi-local convergence of a three-step Newton-type method for solving
nonlinear equations under the classical Lipschitz conditions for first-order derivatives. To develop a
convergence analysis, we use the approach of restricted convergence regions in combination with
majorizing scalar sequences and our technique of recurrent functions. Finally, a numerical example
is given.
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1. Introduction

Let us consider an equation

G(x) = 0. (1)

Here, G : Ω ⊂ X → Y is a nonlinear Fréchet-differentiable operator, X and Y
are Banach spaces, Ω is an open convex subset of X. To find the approximate solution
x∗ ∈ Ω of (1), iterative methods are used very often. The most popular is the quadratically
convergent Newton method [1–3]. To increase the order of convergence, multi-step methods
have been developed [4–12]. Multipoint iterative methods for solving the nonlinear
equation have advantages over one-point methods because they have higher orders of
convergence and computational efficiency. Furthermore, some methods need to compute
only one derivative or divided difference per one iteration.

In this article, we consider the method with the fifth-order convergent

yk = xk − G′(xk)
−1G(xk),

zk = xk − 2T−1
k G(xk), (2)

xk+1 = zk − G′(yk)
−1G(zk), k = 0, 1, . . . ,

where Tk = G′(xk) + G′(yk). It was proposed in [9]. However, the local convergence was
shown using Taylor expansions and required the existence of six-order derivatives not used
on (2) in the proof of the main result. The semi-local convergence has not been studied. This
is the purpose of this paper. We also only use the first derivative, which only appears in (2).
To study the multi-step method, it is often required that the operator F be a sufficiently
differentiable function in a neighborhood of solutions. This restricts the applicability of
methods. Let us consider the function
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ϕ(t) =
{

t3 ln t2 + t5 − t4, t 6= 0,
0, t = 0.

where ϕ : Ω ⊂ R → R, Ω = [−0.5, 1.5]. This function has zero t∗ = 1, and
ϕ′′′(t) = 6 log t2 + 60t2 − 24t + 22. Obviously, ϕ′′′(t) is not bounded on Ω. Therefore,
the convergence of Method (2) is not guaranteed by the analysis in the previous paper.
That is why we develop a semi-local convergence analysis of Method (2) under classical
Lipschitz conditions for first-order derivatives only. Hence, we extend the applicability of
the method. There is a plethora of single, two-step, three-step, and multi-step methods
whose convergence has been shown using the second or higher-order derivatives or divided
differences [1–3,5–10,12].

The paper is organized as follows: Section 2 deals with the convergence of scalar
majorizing sequences. Section 3 gives the semi-local convergence analysis of Method (2)
and the uniqueness of solution. The numerical example is shown in Section 4.

2. Majorizing Sequence

Let L0, L and η be positive parameters. Define scalar sequences {δk}, {µk} and {σk}
by

δ0 = 0, µ0 = η,

σk = µk +
L(1 + L0δk)(µk − δk)

2

2(1− L0δk)(1− qk)

δk+1 = σk +
L(σk − δk)

2

2(1− L0µk)
, (3)

µk+1 = δk+1 +
L(σk − µk + 0.5(δk+1 − σk))(δk+1 − σk)

1− L0δk+1
, f or each k = 0, 1, 2, . . .

where

qk =
L0

2
(µk + δk).

Sequence (3) shall be shown to be majorizing for Method (2) in Section 3. However,
first, we present some convergence results for Method (2).

Lemma 1. Assume

δk ≤ µk <
1
L0

. (4)

Then, Sequence (3) is bounded from above by
1
L0

, nondecreasing and lim
k→∞

δk = δ∗, where δ∗

is the unique least upper bound of sequence {δk} satisfying δ∗ ∈
[

0,
1
L0

]
.

Proof. It follows by the definition of sequence {δk} and (4) that it is bounded from above

by
1
L0

and non-decreasing, so it converges to δ∗.

Next, we present stronger convergence criteria than (4) that are easier to verify. Define
polynomials on the interval [0, 1) by

p1(t) = 3Lt− 3L + 4L0t2,

p2(t) = L(1 + t)2t− L(1 + t)2 + 4L0t2,

and
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p3(t) = 3Lt− 3L + 4L0t.

It follows that p1(0) = −3L, p1(1) = p2(1) = p3(1) = 4L0, p2(0) = −L and
p3(0) = −3L. Consequently, these polynomials have zeros in (0, 1). Denote minimal
such zeros by α1, α2 and α3. Moreover, define

a =
Lη

2(1− L0η/2)
, b =

Lσ0

2(1− L0µ0)η
, c =

L(σ0 − µ0 + 0.5(δ1 − σ0))(δ1 − σ0)

(1− L0δ1)η
,

d = max{a, b, c}, α4 = min{α1, α2, α3},

and

α = max{α1, α2, α3}.

Lemma 2. Assume

d ≤ α4 ≤ α ≤ 1− 4L0η. (5)

Then, sequence {δk} is bounded from above by δ∗∗ =
2η

1− α
, nondecreasing and lim

k→∞
δk = δ∗,

where δ∗ is the least upper bound satisfying δ∗ ∈ [0, δ∗∗].

Proof. Items

(A(1)
i ):

0 ≤ L(1 + L0δi)(µi − δi)

2(1− L0δi)(1− δi)
≤ α

(A(2)
i ):

0 ≤ L(σi − δi)
2

2(1− L0µi)
≤ α(µi − δi)

(A(3)
i ):

0 ≤ L(σi − µi + 0.5(δi+1 − σi))(δi+1 − σi)

1− L0δi+1
≤ α(µi − δi)

shall be shown using mathematical induction on i. These items are true for i = 0 by (5). It
follows from Definition (3) and (A(1)

i ), (A(2)
i ) and (A(3)

i ) that

σ0 − µ0 ≤ α(µ0 − δ0), δ1 − σ0 ≤ α(µ0 − δ0) and µ1 − δ1 ≤ α(µ0 − δ0).

Assume items (A(1)
i ), (A(2)

i ) and (A(3)
i ) are true for all values of i smaller or equal to

k− 1. Then, we use

0 ≤ σi − µi ≤ α(µi − δi) ≤ αiη,

0 ≤ δi+1 − σi ≤ α(µi − δi) ≤ αi+1η

and

0 ≤ µi+1 − δi+1 ≤ α(µi − δi) ≤ αi+1η.
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It follows

µi+1 ≤ δi+1 + αi+1η ≤ σi + αi+1η + αi+1η

≤ µi + αiη + αi+1η + αi+1η ≤ δi + αiη + αiη + αi+1η + αi+1η

≤ . . . ≤ δ0 + α0η + . . . + αiη + αiη + αi+1η + αi+1η

= 2
(1− αi+2)η

1− α
≤ 2η

1− α
= δ∗∗,

since

µi+1 ≤ δi+1,

δi+1 ≤ 2
(1− αi+2)η

1− α
≤ δ∗∗.

Then, evidently, (A(1)
i ) certainly holds if

3Lαiη + 4L0α(1 + α + . . . + αi)η − 2α ≤ 0, (6)

or if

f (1)i (t) ≤ 0 at t = α1. (7)

where recurrent polynomials are defined on the interval [0, 1)

f (1)i (t) = 3Lti−1η + 4L0(1 + t + . . . + ti)η − 2. (8)

A connection between two consecutive polynomials is needed

f (1)i+1(t) = 3Ltiη + 4L0(1 + t + . . . + ti+1)η − 2 + f (1)i (t)

−3Lti−1η − 4L0(1 + t + . . . + ti)η + 2

= f (1)i (t) + p1(t)ti−1η. (9)

In particular, one obtains

f (1)i+1(t) = f (1)i (t) at t = α1. (10)

Define the function on the interval [0, 1) by

f (1)∞ (t) = lim
i→∞

f (1)i (t). (11)

Then, by (8), one has

f (1)∞ (t) =
4L0η

1− t
− 2. (12)

Hence, (7) holds if

f (1)∞ (t) ≤ 0 at t = α1, (13)

which is true by (5).
Similarly, instead of (A(2)

i ), one can show

(A(2)
i )’: 0 ≤ (1 + α)2(µi − δi)

2(1− L0µi)
≤ α, since 0 ≤ σi − δi ≤ σi − µi + µi − δi ≤ (1 + α)(µi − δi).

Then, (A(2)
i ) holds if
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L(1 + α)2αiη + 4L0α(1 + α + . . . + αi)η − 2α ≤ 0, (14)

or if

f (2)i (t) ≤ 0 at t = α2, (15)

where

f (2)i (t) = L(1 + α)2ti−1η + 4L0(1 + t + . . . + ti)η − 2. (16)

This time one obtains

f (2)i+1(t) = f (2)i (t) + p2(t)ti−1η. (17)

In particular, one has

f (2)i+1(t) = f (2)i (t) at t = α2.

Define the function on the interval [0, 1) by

f (2)∞ (t) = lim
i→∞

f (2)i (t). (18)

It follows from (16) and (18) that

f (2)∞ (t) =
4L0η

1− t
− 2. (19)

Therefore, (15) holds if

f (2)∞ (t) ≤ 0 at t = α2, (20)

which is true by (5).
Similarly, (A(3)

i ) holds if

(A(3)
i )′ : 0 ≤ 3α2(µi − δi)

2(1− L0δi+1)
≤ α, (21)

where we also used

0 ≤ σi − µi +
1
2
(δi+1 − σi) ≤

(
α +

1
2

α

)
(µi − δi) =

3
2

α(µi − δi).

Then, (21) holds if

3Lα2αiη + 4L0α(1 + α + . . . + αi+1)η − 2α ≤ 0, (22)

or if

f (3)i (t) ≤ 0 at t = α3, (23)

where

f (3)i (t) = 3Lti+1η + 4L0(1 + t + . . . + ti+1)η − 2. (24)

As in (8), one obtains

f (3)i+1(t) = f (3)i (t) + p3(t)ti+1η. (25)
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In particular, one obtains that

f (3)i+1(t) = f (3)i (t) at t = α3. (26)

Define the function on the interval [0, 1) by

f (3)∞ (t) = lim
i→∞

f (3)i (t). (27)

In view of (24) and (27), we have

f (3)∞ (t) =
4L0η

1− t
− 2. (28)

Hence, (23) holds if

f (3)∞ (t) ≤ 0 at t = α3, (29)

which is true by (5).
We also used

1

1− L0
2 (µi + δi)

≤ 2,

which is true since

L0(µi + δi) ≤
4L0η

1− α
< 1

and 1 + L0δi <
3
2 by (5). The induction for items (A(1)

i ) – (A(3)
i ) is completed. It follows

that sequence {δi} is bounded from above by δ∗∗ and in non-decreasing, and as such, it
converges to δ∗.

3. Semi-Local Convergence

The hypotheses (H) are needed. Assume:

Hypothesis 1. There exist x0 ∈ Ω and η > 0 such that G′(x0)
−1 ∈ L(Y, X) and

‖G′(x0)
−1G(x0)‖ ≤ η.

Hypothesis 2. Center Lipschitz condition ‖G′(x0)
−1(G′(w)− G′(x0))‖ ≤ L0‖w− x0‖ holds

for all w ∈ Ω and some L0 > 0.

Let Ω1 = Ω ∩U(x0, 1
L0
).

Hypothesis 3. Restricted Lipschitz condition ‖G′(x0)
−1(G′(w)− G′(v))‖ ≤ L‖w− v‖ holds

for all v, w ∈ Ω1 and some L > 0.

Hypothesis 4. Hypotheses of Lemma 1 or Lemma 2 hold.

Hypothesis 5. U[x0, δ∗] ⊂ Ω (or U[x0, δ∗∗] ⊂ Ω).

The main Semi-local result for Method (2) is shown next using the hypotheses (H).

Theorem 1. Assume hypotheses (H) hold. Then, sequence {xk} produced by Method (2) exists in
U(x0, δ∗) and stays in U(x0, δ∗), and lim

k→∞
xk = x∗ ∈ U[x0, δ∗] so that F(x∗) = 0 and

‖xk − x∗‖ ≤ δ∗ − δk. (30)

Proof. Items
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(B(1)
k ): ‖zk − yk‖ ≤ σk − µk

(B(2)
k ): ‖xk+1 − zk‖ ≤ δk+1 − σk

(B(3)
k ): ‖yk − xk‖ ≤ µk − δk

shall be shown using the induction of k.
By (H1), one obtains

‖y0 − x0‖ = ‖G′(x0)
−1G(x0)‖ ≤ µ0 − δ0 = η < δ∗,

so y0 ∈ U(x0, δ∗) and (B(3)
k ) holds. Let w ∈ U(x0, δ∗). Then, it follows from (H1) and (H2)

that

‖G′(x0)
−1(G′(w)− G′(x0))‖ ≤ L0‖w− x0‖ ≤ L0δ∗ < 1,

so G′(w)−1 ∈ L(Y, X) and

‖G′(w)−1G′(x0)‖ ≤
1

1− L0‖w− x0‖
(31)

follow by a Lemma on linear invertible operators due to Banach [3,13]. Notice also that x1
is well-defined by the third substep of Method (2) for k = 0 since y0 ∈ U(x0, δ∗).

Next, the linear operator (G′(xk) + G′(yk)) is shown to be invertible. Indeed, one
obtains by (H2):

‖(2G′(x0))
−1(G′(xk) + G′(yk)− 2G′(x0))‖ ≤

1
2
(‖G′(x0)

−1(G′(xk)− G′(x0))‖

+‖G′(x0)
−1(G′(yk)− G′(x0))‖)

≤ L0

2
(‖xk − x0‖+ ‖yk − x0‖)

≤ L0

2
(µk + δk) = qk ≤ L0δ∗ < 1,

so
‖(G′(xk) + G′(yk))

−1G′(x0)‖ ≤
1

2(1− L0
2 (µk + δk))

. (32)

In particular, z0 is well-defined by the second substep of Method (2) for k = 0.
Moreover, we can write

zk = xk − G′(xk)
−1G(xk) + G′(xk)

−1G(xk)− 2(G′(xk) + G′(yk))
−1G(xk)

= yk + [G′(xk)
−1 − 2(G′(xk) + G′(yk))

−1]G(xk)

= yk − G′(xk)
−1[G′(yk)− G′(xk)](G′(xk) + G′(yk))

−1G′(xk)(yk − xk). (33)

Hence, by (31) (for w = x0), (32), (33), (H2) and (3), one obtains

‖zk − yk‖ ≤
L(1 + L0‖xk − x0‖)(‖yk − xk‖)2

2(1− L0‖xk − x0‖)(1− qk)
≤ L(1 + L0δk)(µk − δk)

2

2(1− L0δk)(1− qk)
= σk − µk, (34)

where we also used

‖G′(x0)
−1G′(xk)‖ = ‖G′(x0)

−1[G′(x0) + G′(xk)− G′(x0)]‖ ≤ 1 + L0‖xk − x0‖
≤ 1 + L0(δk − δ0) = 1 + L0δk.

This shows (B(1)
k ) for k = 0.

Moreover, one has
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‖zk − x0‖ ≤ ‖zk − yk‖+ ‖yk − x0‖ ≤ σk − µk + µk − δ0 = σk < δ∗,

so z0 ∈ U(x0, δ∗).
One can write by the second substep of Method (2):

G(zk) = G(zk)− G(xk)−
1
2
(G′(xk) + G′(yk))(zk − xk)

=
1
2

∫ 1

0
[2G′(xk + θ(zk − xk))− (G′(xk) + G′(yk))]dθ(zk − xk)

so by (H3):

‖G′(x0)
−1G(zk)‖ ≤

[
L
∫ 1

0 (‖xk − yk‖+ θ‖zk − xk‖)dθ + L
2 ‖zk − xk‖

]
‖zk − xk‖

2

≤ L[‖xk − yk‖+ ‖zk − xk‖+ ‖zk − xk‖]‖zk − xk‖
4

≤ L[µk − δk + σk − µk + σk − δk](σk − δk)

4

=
L(σk − δk)

2

4
(35)

Hence, by (3), (31) (for w = yk), and (35),

‖xk+1 − zk‖ ≤
L(σk − δk)

2

4(1− L0µk)
= δk+1 − σk, (36)

which shows (B(2)
k ). Using the third subset of Method (2), one has

G(xk+1) = G(xk+1)− G(zk)− G′(yk)(xk+1 − zk)

=

[∫ 1

0
G′(zk + θ(xk+1 − zk))dθ − G′(yk)

]
(xk+1 − zk), (37)

so by (H3), (31) (for w = xk+1), and the induction hypotheses

‖yk+1 − xk+1‖ ≤
L
[
‖zk − yk‖+ 1

2‖xk+1 − zk‖
]
‖xk+1 − zk‖

1− L0‖xk+1 − x0‖

≤
L
[
σk − µk +

1
2 (δk+1 − σk)

]
(δk+1 − σk)

1− L0δk+1
= µk+1 − δk+1. (38)

The following have also been used

‖xk+1 − x0‖ ≤ ‖xk+1 − zk‖+ ‖zk − x0‖ ≤ δk+1 − σk + σk − δ0 = δk+1 < δ0

and

‖yk+1 − x0‖ ≤ ‖yk+1 − xk+1‖+ ‖xk+1 − x0‖ ≤ µk+1 − σk+1 + σk+1 − δ0 = µk+1 < δ0,

so xk+1, yk+1 ∈ U(x0, δ∗).
Hence, the induction for items (B(1)

k ) – (B(3)
k ) is completed. Moreover, because of

xk, yk, zk ∈ U(x0, δ∗), sequence {δk} is fundamental since X is a Banach space. Therefore,
there exists x∗ ∈ U[x0, δ∗] such that lim

k→∞
xk = x∗. By (37), one obtains
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‖G′(x0)
−1G(xk+1)‖ ≤ L

[
σk − µk +

1
2
(δk+1 − σk)

]
(δk+1 − σk)→ 0 as k→ ∞. (39)

It follows that G(xk) = 0, where the continuity of G is also used.
Let j ≥ 0. Then, from the estimate

‖xk+j − xk‖ ≤ ‖xk+j − xk+j−1‖+ ‖xk+j−1 − xk+j−2‖+ . . . + ‖xk+1 − xk‖ ≤ δk+j − δk (40)

one obtains (30) by letting j→ ∞.

A uniqueness of the solution result follows next.

Theorem 2. Assume:

(i) The point x∗ is a simple solution of equation F(x) = 0 in U(x0, δ∗).
(ii) There exists δ̄∗ ≥ δ∗ such that

L0(δ̄∗ + δ∗) < 2. (41)

Let Ω2 = Ω ∩U[x0, δ̄∗]. Then, the only solution of Equation (1) in the region Ω2 is x∗.

Proof. Let λ ∈ Ω2 with G(λ) = 0. Set M =
∫ 1

0 G′(λ + θ(x∗ − λ))dθ. Then, in view of (H2)
and (41), one obtains

‖G′(x0)
−1(M− G′(x0))‖ ≤

L0

2
[‖x∗ − x0‖+ ‖λ− x0‖] ≤

L0

2
(δ∗ + δ̄∗) < 1,

so λ = x∗ is obtained from the invertibility of M and 0 = G(λ)− G(x∗) = M(λ− x∗).

4. Numerical Example

Let us consider following system of nonlinear equations. Let X = Y = Rn,
Ω = (0, 1.5)n and

Gi(x) = 2x3
i + 2xi+1 − 4, i = 1,

Gi(x) = 2x3
i + xi−1 + 2xi+1 − 5, 1 < i < n,

Gi(x) = 2x3
i + xi−1 − 3, i = n.

The solution of system F(x) = 0 is x∗ = (1, . . . , 1)T . Since, for each x, w

G′(x)− G′(w) = diag{6(x2
1 − w2

1), . . . , 6(x2
n − w2

n)}

we have

L0 = 6 max
1≤i≤n

{|mii|max
x∈Ω
|xi + ξi|}, L = 6 max

1≤i≤n
{|mii| max

x,w∈Ω1
|xi + wi|}.

Here, x0 = (ξi)
n
i=1, and mii denotes the diagonal element of matrix G′(x0). Let us

choose
x0 = (1.18, . . . , 1.18)T and n = 20. Then, we obtain η = 0.1620, L0 = 2.0455,
ρ = 1

L0
= 0.4889, Ω1 = (0.6911, 1.5)n and L = 2.2898. The majorizing sequences

{δk} = {0, 0.2651, 0.2956, 0.2957, . . .}, {µk} = {0.1620, 0.2885, 0.2957, . . .},

{σk} = {0.1980, 0.2934, 0.2957, . . .}

converge to δ∗ = 0.2957 < ρ. Therefore, the conditions of Lemma 1 are satisfied.
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Table 1 gives error estimates (30), and (B(1)
k )–(B(3)

k ). The solution x∗ is obtained at
three iterations for ε = 10−6. Therefore, the conditions of Theorem 1 are satisfied, and {xk}
converges to x∗ ∈ U[x0, δ∗].

Table 1. Error estimates.

k ‖zk− yk‖ σk− µk ‖xk+1− zk‖ δk+1− σk ‖yk− xk‖ µk− δk ‖xk− x∗‖ δ∗− δk

0 1.98 × 10−2 3.60 × 10−2 3.92 × 10−3 6.71 × 10−2 2.37 × 10−2 1.62 × 10−1 1.80 × 10−1 2.96 × 10−1

1 3.23 × 10−8 4.86 × 10−3 6.93 × 10−12 2.22 × 10−3 3.23 × 10−8 2.34 × 10−2 1.74 × 10−4 3.05 × 10−2

2 0 6.95 × 10−8 1.11 × 10−16 1.72 × 10−8 1.11 × 10−16 7.69 × 10−5 1.11 × 10−16 7.70 × 10−5

3 0 0 0 7.77 × 10−15 1.11 × 10−16 7.77 × 10−15

Let us estimate the order of convergence using the computational order of convergence
(COC) and the approximate computational order of convergence (ACOC) [1,9], which can
be used given, respectively, by

p∗ =
ln ‖xk+1−x∗‖
‖xk−x∗‖

ln ‖xk−x∗‖
‖xk−1−x∗‖

, for each k = 1, 2, . . . and p =
ln ‖xk+1−xk‖
‖xk−xk−1‖

ln ‖xk−xk−1‖
‖xk−1−xk−2‖

, for each k = 2, 3, . . . . We

use the stopping criterion ‖xk+1 − xk‖ < 10−100. If x0 = (2.3, . . . , 2.3)T then p∗ = 4.9080,
p = 4.9084. If x0 = (1.7, . . . , 1.7)T then p∗ ≈ p = 4.9818. The method converges to a
solution at seven iterations. Therefore, the computational order of convergence coincides
with the theoretical one.

5. Conclusions

A semi-local convergence analysis of the Newton-type method that is fifth-order
convergent is provided under the classical Lipschitz conditions for first-order derivatives.
The regions of convergence and uniqueness of the solution are established. The results of a
numerical experiment are given.
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