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Abstract: We study the semi-local convergence of a three-step Newton-type method for solving
nonlinear equations under the classical Lipschitz conditions for first-order derivatives. To develop a
convergence analysis, we use the approach of restricted convergence regions in combination with
majorizing scalar sequences and our technique of recurrent functions. Finally, a numerical example
is given.
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1. Introduction

Let us consider an equation

G(x) =0. ¢y

Here, G : 3 C X — Y is a nonlinear Fréchet-differentiable operator, X and Y
are Banach spaces, () is an open convex subset of X. To find the approximate solution
xs € O of (1), iterative methods are used very often. The most popular is the quadratically
convergent Newton method [1-3]. To increase the order of convergence, multi-step methods
have been developed [4-12]. Multipoint iterative methods for solving the nonlinear
equation have advantages over one-point methods because they have higher orders of
convergence and computational efficiency. Furthermore, some methods need to compute
only one derivative or divided difference per one iteration.

In this article, we consider the method with the fifth-order convergent

vk = x%—G'(x0) 7 'G(x),
Xp — 2Tk_16(xk), ()
Zy — G/(yk)ilG(Zk), k=0,1,...,

Z =
Xk+1 =

where Ty = G'(xx) + G'(yx). It was proposed in [9]. However, the local convergence was
shown using Taylor expansions and required the existence of six-order derivatives not used
on (2) in the proof of the main result. The semi-local convergence has not been studied. This
is the purpose of this paper. We also only use the first derivative, which only appears in (2).
To study the multi-step method, it is often required that the operator F be a sufficiently
differentiable function in a neighborhood of solutions. This restricts the applicability of
methods. Let us consider the function
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(1) = BInt2+£ —t4, t £0,
L0 t=0
where ¢ : O C R — R, QO = [-0.5,15]. This function has zero t, = 1, and

¢"'(t) = 6logt? + 60t> — 24t + 22. Obviously, ¢"(t) is not bounded on Q. Therefore,
the convergence of Method (2) is not guaranteed by the analysis in the previous paper.
That is why we develop a semi-local convergence analysis of Method (2) under classical
Lipschitz conditions for first-order derivatives only. Hence, we extend the applicability of
the method. There is a plethora of single, two-step, three-step, and multi-step methods
whose convergence has been shown using the second or higher-order derivatives or divided
differences [1-3,5-10,12].

The paper is organized as follows: Section 2 deals with the convergence of scalar
majorizing sequences. Section 3 gives the semi-local convergence analysis of Method (2)
and the uniqueness of solution. The numerical example is shown in Section 4.

2. Majorizing Sequence

Let Ly, L and 7 be positive parameters. Define scalar sequences {d;}, {yy} and {0y}

by
50 = 0, Ho = 1,
S L(1 4 Lody) (p#x — &)
bR TR Lo (- )
_ L(oy — 6)?
k1 = Ot 21— Lopy)’ (3)
Wen = Sen L(ox — px +0.5(8k 1 — 0%) ) (01 — U'k), for cachk = 0,1,2, ..
where

L
Ik = jo(ﬂk + Ok).

Sequence (3) shall be shown to be majorizing for Method (2) in Section 3. However,
first, we present some convergence results for Method (2).

Lemma 1. Assume

1
O <y < e 4)
0

Then, Sequence (3) is bounded from above by Li' nondecreasing and klirn Ox = 0x, where 6y
— 00

is the unique least upper bound of sequence {0y} satisfying d, € [O, Ll] .
0

Proof. It follows by the definition of sequence {J;} and (4) that it is bounded from above

1
by I and non-decreasing, so it converges to J,. [

Next, we present stronger convergence criteria than (4) that are easier to verify. Define
polynomials on the interval [0,1) by

p1(t) = 3Lt — 3L + 4Lot?,
pa(t) = L(1 + )% — L(1 + )2 + 4Lgt?%,

and
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p3(t) =3Lt —-3L+ 4Loi’.

It follows that p1(0) = —3L, p1(1) = p2(1) = p3(1) = 4Ly, p2(0) = —L and
p3(0) = —3L. Consequently, these polynomials have zeros in (0,1). Denote minimal
such zeros by a1, ap and a3. Moreover, define

. Ly b Loy o — Lo = po +05(51 — 09)) (61 — 00)
2(1 — L0;7/2)’ 2(1 — Lo;blo)?]/ (1 — LQ(S])?] !
d = max{a,b,c}, waq4=min{ay,a, a3},
and
a = max{ay, ap, a3}
Lemma 2. Assume
d<ay <a<1-—4Lgy. ®)

Then, sequence {6;} is bounded from above by 6., = 1217“, nondecreasing and klim O = 0%,
- —» 00

where &y is the least upper bound satisfying 6« € [0, 6.x].

Proof. Items

(A):
L(1+ Lod;)(pi — 6;)
OS2 -5) =°
(AP)y:
L(o; — 6;)* .
0= 1 Loy =)
(AP)y:

0; — #i +0.5(6; 11 — 07)) (0ip1 — 03)
1—Loditq

shall be shown using mathematical induction on i. These items are true for i = 0 by (5). It
follows from Definition (3) and (A\"), (A'?) and (A"?)) that

o< H < a(i — &)

00— po < a(pg — o), &1 —0p < a(po— o) and py — &1 < a(po — do)-

2

Assume items (Al(l)), (Ai( )) and (Al@) are true for all values of i smaller or equal to

k — 1. Then, we use

0< 0 —p <a(p—5) <a'y,
0<6i1—0; <a(ui—0d) <aly

and

0 < plipq — Oipq < a(p; — &) < o'y,
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It follows
pip1 < Gty <oty +atly
< pit ety ey oty <6+ aly 4 aly + oy + oty
< L <G+ ey F iy 4 atty £ aitly
_ yit2
_ o=y 2y s
1—« 1—un
since
Hit1 < di,
1— lxi+2
5i+1 < 2% < Bk
Then, evidently, (Afl)) certainly holds if
3La'y +4Loa(14+a+...+a')y —2a <0, (6)
or if
) <0att = a. @)
where recurrent polynomials are defined on the interval [0, 1)
FO() =3LE Yy ALg(1+t+ ... + )y —2. ®)
A connection between two consecutive polynomials is needed
W) = 3Lty +4Lo(1+1t ity — 2+ fV (¢t
firn(t) = BLEp+4ALo(1+t+... +#7 )y =2+ f;7(t)
—BLEy —ALg(1 4t ...+t +2
= O+ pof . ©)
In particular, one obtains
1 1
AR® = fFD ) att = . (10)
Define the function on the interval [0,1) by
1 . 1
() = tim £ (1) an
1—00
Then, by (8), one has
1) 4Lon _
Dy = 21 (12)
Hence, (7) holds if
o(ol)(t) <0att=un, (13)
which is true by (5).
Similarly, instead of (AZ(Z)), one can show
1 2(y. — 5.
(ASZ))': 0< (L4 &)"(pi — %) <a,since0<0;—6 <oy —pui+u;—6 < (1+a)(pu; — 6).

2(1 — Lop;)
Then, (A\?)) holds if



Foundations 2022, 2 144
L(1+a)%a’y +4Loa(1+a+...+a))y —22 <0, (14)
or if
2) _
f;7(t) <0att=ay, (15)
where
FPU) = LA+ )26y + 4Lo(1+ £+ ...+ F)y — 2. (16)
This time one obtains
AA® = £2(0) + pa(d)f . (17)
In particular, one has
£ = [P () at t = ay.
Define the function on the interval [0,1) by
£ = lim £ (). (18)
It follows from (16) and (18) that
2 = 30 (19)
1-—t
Therefore, (15) holds if
A <oatt=a (20)
o — - 27
which is true by (5).
Similarly, (A\”) holds if
2
@)y . g 30 (Hi—b) _
(A7) 0< 2(1 - Lodiy1) — v @
where we also used
1 1
0= 0 —pi+ 50 —0i) < <0¢+ 20‘) (ni =)
Then, (21) holds if
3La’a’y +4Loa(1+a+...+a )y —2a <0, (22)
or if
®3) _
f7(t) <0att=as, (23)
where
FO) = 3Ly 4L (14t 4. + £y —2. (24)
As in (8), one obtains
3 3 ;
FA® = £ () + pat) . 25)
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In particular, one obtains that
3 3
2L = () at t = as. (26)
Define the function on the interval [0, 1) by
3 . 3
() = tim £ ). @7)
1—00
In view of (24) and (27), we have
3 4L
=122 8)
Hence, (23) holds if
B <oatt=a (29)
9] >~ 3/
which is true by (5).
We also used
1
PR F
— 2 (i + )
which is true since
41
Lo(wi +6) < _OZ <1

and 1+ Lpd; < % by (5). The induction for items (Afl)) - (ASB)) is completed. It follows
that sequence {4;} is bounded from above by J.. and in non-decreasing, and as such, it
converges to 6y. [

3. Semi-Local Convergence

The hypotheses (H) are needed. Assume:

Hypothesis 1. There exist xo € Q and 5 > 0 such that G'(xg)~! € L(Y,X) and
IG" (x0) G (x0) | < 7.

Hypothesis 2. Center Lipschitz condition |G’ (xo) 1 (G’ (w) — G'(x0))|| < Lol|w — xo|| holds
forallw € Q) and some Ly > 0.

Let O = QN U(x, Lio)

Hypothesis 3. Restricted Lipschitz condition |G'(xo) 1 (G’ (w) — G'(v))|| < L||w — v|| holds
forallv,w € Qg and some L > 0.

Hypothesis 4. Hypotheses of Lemma 1 or Lemma 2 hold.
Hypothesis 5. U[x, d.] C Q (or U[xg, 0+« C Q).
The main Semi-local result for Method (2) is shown next using the hypotheses (H).

Theorem 1. Assume hypotheses (H) hold. Then, sequence {xy} produced by Method (2) exists in
U(xg, +) and stays in U(xg, 6 ), and klim Xp = X« € U[xg, 6] so that F(x,) = 0 and
— 00

||xk — x*|| <0y — (Sk. (30)

Proof. Items
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(BM): ||z — yill < o — e
(BE): [Ixsr — zell < Sesr — o

3
BY): Ny — el < o —
shall be shown using the induction of k.
By (H1), one obtains

lyo — xoll = [|G'(x0) "' G(x0) || < po —do =11 < &,
so yo € U(xp,d+) and (B,(Cs)) holds. Let w € U(xp, ds). Then, it follows from (H1) and (H2)
that
IG"(x0) "1 (G'(w) — G'(x0))|| < Lolw — xol| < Lodx < 1,
so G'(w)~t € L(Y, X) and

1

/ -1, <
HG(ZU) G(X())H = 1—L0||W—X0H

(31)

follow by a Lemma on linear invertible operators due to Banach [3,13]. Notice also that x;
is well-defined by the third substep of Method (2) for k = 0 since yo € U(xp, dx).

Next, the linear operator (G’ (x;) + G'(yx)) is shown to be invertible. Indeed, one
obtains by (H2):

112G’ (x0)) (G’ (xx) + G' (k) — 2G/ (x0))|| < %(HG/(XO)_l(G,(xk) — G'(x0))ll
+(IG' (x0) (G (yx) — G’ (x0))1I)

Lo

< 7(||xk—x0||+||yk—xo||)
Lo

< 7(#k+5k):qk§L05*<1,

SO
1

(1— 2 (i +60)

In particular, zp is well-defined by the second substep of Method (2) for k = 0.
Moreover, we can write

(G (x) + G (yx)) "G/ (x0) || < 5 (32)

ze = x— G (x) 'G(xx) + G (x) T Glak) — 2(G (xx) + G (yx)) ' G(xp)
= yr+[G'(x) " —2(G (x) + G (wk)) "G (xk)
=y — G (x0) G (vx) — G (x)] (G (xx) + G (k) "G’ (xk) (yx — xx).  (33)

Hence, by (31) (for w = xp), (32), (33), (H2) and (3), one obtains

L(1+ Lol|xx — xol]) (|lyx — xkl|)? < L+ Lode) (e — 5¢)?

Zx — < =0 — M, (34

Iz =yl < oD —q) = 20— Lob) (1 —ge) ~ F M B9
where we also used

G (x0) 'G'(x)| = [IG(x0) 1[G/ (x0) + G (xx) — G’ (x0)]]| <1+ Lo|lxx — xo]|

< 14 Lo(6 — ) =1+ Loby-

This shows (B,El)) fork = 0.
Moreover, one has
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llzk — xoll < [lz&x — yll + llyx — xoll < 0% — px + px — S0 = 0k < Js,

S0 Zp € U(XQ, 5*)
One can write by the second substep of Method (2):

G(zx) = Glz)—Glx) — %(G’(xk) + G () 2k — x0)
= 5 [ 126/ + 0z — ) — (G'(3) + G ()b ek~ )
so by (H3):

1
[ Jo Ul = wiell + 011z — el )6 + §llzic = xil] 1z —

IG"(x0) G (=)l <

2
< Ll = yill + Nz — xill + [z — xll]ll 2 — x|
- 4
< Ll = 6 + 0k — i + 0k — &) (% — &)
- 4
52
_ Lok —%) (35)
4
Hence, by (3), (31) (for w = yx), and (35),
L(ox — &)?
X, —zll < = =9 — 0y, 36
21—z < K1 — Lo ~ 1 % (36)
which shows (B,Ez) )- Using the third subset of Method (2), one has
G(xky1) = G(xrp1) — G(z) — G (yi) (X1 — 2)
1
= | [ Gt o~ = G| -z, @7
so by (H3), (31) (for w = xj1), and the induction hypotheses
| | L{llzi = il + Ellxicen = 2l 1 vesn — 2l
—x
Vet Tt 1 — Lol|xk+1 — xol|
L [Uk — ik + 5 (Ops1 — Uk)} (Ok+1 — %)
< = Mkr1— Oks1- (38)
1— Lodk+1

The following have also been used

k41 — %ol < Nk — zkll + [z — xo0l| < dpq1 — 0% + 0% — o = dx1 < do

and

Vi1 — xoll < ka1 — X ] + 121 — xoll < per — kg1 + kg1 — S0 = prg1 < do,

SO Xk, Yk+1 € U(x0, 0x).

Hence, the induction for items (B,gl)) - (B,EB)) is completed. Moreover, because of
Xk, Yk, 2k € U(x0,04), sequence {d; } is fundamental since X is a Banach space. Therefore,
there exists x, € Ulxg, d;| such that kILm Xy = X4. By (37), one obtains
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_ 1
IG' (x0) " 'G(xj41) |l < L|ow — e + 5(5k+1 —0%) | (Ok41 — 0%) = 0ask — co. (39)

It follows that G(x;) = 0, where the continuity of G is also used.
Let j > 0. Then, from the estimate
kg = 2kll < Nxgj = Xejorll + kg1 — Xejoall + o+ (31 — 2%l < Gpyj — Gk (40)
one obtains (30) by letting j — co. O

A uniqueness of the solution result follows next.

Theorem 2. Assume:

(i) The point x, is a simple solution of equation F(x) = 0 in U(xg, dx).
(ii) There exists 5, > 6, such that
Lo(3. +6,) < 2. (41)

Let Qp = QN U[xo, 6] Then, the only solution of Equation (1) in the region Q) is x..

Proof. Let A € () with G(A) = 0. Set M = fol G'(A+ 6(x« — A))d6. Then, in view of (H2)
and (41), one obtains

L

_ L _
IG" (x0) ™1 (M — G (x0)) | < 70[||x* —xoll + A = xoll] £ 57 (6 4+ 64) <1,

N[ 5

s0 A = x, is obtained from the invertibility of M and 0 = G(A) — G(xx) = M(A — x,). O

4. Numerical Example

Let us consider following system of nonlinear equations. Let X = Y = R”,
Q= (0, 1.5)" and

Gi(x) = 2x2+2x;1—4, i=1,
Gi(x) = 2x+x1+2x,,-5 1<i<n,
Gi(x) = 2x2+x.1-3, i=n.

The solution of system F(x) = 0is x. = (1,...,1)T. Since, for each x, w

G'(x) — G'(w) = diag{6(x3 —w?),...,6(x3 —w?)}

we have

Lo =6 max {|m;;| max|x; + G|}, L =6 max {|m;| hax. |x; +w;il}.

Here, xo = (§;)_;, and m;; denotes the diagonal element of matrix G'(xg). Let us
choose
Xg = (1.18,...,1.18)T and n = 20. Then, we obtain # = 0.1620, Ly = 2.0455,
p= L%) = 0.4889, ()1 = (0.6911, 1.5)" and L = 2.2898. The majorizing sequences

{8} = {0, 0.2651, 0.2956, 0.2957, ...}, {ux} = {0.1620, 0.2885, 0.2957, ...},

{0} = {0.1980, 0.2934, 0.2957,...}

converge to J, = 0.2957 < p. Therefore, the conditions of Lemma 1 are satisfied.
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Table 1 gives error estimates (30), and (Blgl))—(B,E?’)). The solution x, is obtained at
three iterations for ¢ = 10~°. Therefore, the conditions of Theorem 1 are satisfied, and {x;}
converges to x, € U[xg, d«].
Table 1. Error estimates.
kollze =yl oc—me lxepr—zill Gkpn—on llye—xdl pe—0 llxe— x|l 6 —
0 1.98x1072 360x1072 392x10° 671 x1072 237 x1072 1.62x 107" 1.80 x 107! 296 x 107!
1 323x107% 486x107° 693 x107!12 222x107° 323 x107% 234x1072 174x10°* 3.05x 1072
2 0 695x 1078 1.11x1071 172 x1078% 1.11x107® 769 x10> 1.11x1071 770 x 1075
3 0 0 0 7.77 x 1071 1.11 x 10710 7.77 x 10715
Let us estimate the order of convergence using the computational order of convergence
(COC) and the approximate computational order of convergence (ACOC) [1,9], which can
be used given, respectively, by
PRET TS| ll%-+1 =l
Py = M,foreachk =1,2,...andp = M,foreachk =23,....We
] 1 Il
[T flxx—1—x¢ 2l
use the stopping criterion ||x;1 — x¢|| < 1071%. If xy = (2.3,...,2.3)T then p. = 4.9080,
p = 49084. If xg = (1.7,...,1.7)T then p,. ~ p = 4.9818. The method converges to a
solution at seven iterations. Therefore, the computational order of convergence coincides
with the theoretical one.
5. Conclusions
A semi-local convergence analysis of the Newton-type method that is fifth-order
convergent is provided under the classical Lipschitz conditions for first-order derivatives.
The regions of convergence and uniqueness of the solution are established. The results of a
numerical experiment are given.
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