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Abstract: In the first part of this paper, we considered several theoretical models, a static and four
dynamic models without rebounds, of the throw of a fair coin landing on its edge, to demonstrate
that the probability of heads or tails is less than 50%, depending on the initial toss conditions, the coin
geometry and conditions of the coin and landing surfaces. For the dynamic model with rebounds
that is the subject of this second part of the paper, it is found that the probability that a 50 Euro cent
coin thrown from a normal height with common initial velocity conditions and appropriate surface
conditions will end up on its edge is in the order of one against several thousand.
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1. Introduction

In the first part of this paper [1], several theoretical models, a static and four dynamic
models without rebounds, were investigated to demonstrate that the throw of a fair coin can
end with the coin on its edge, showing that the probability of heads or tails is less than 50%,
depending on the initial conditions of the throw, the coin geometry and surface conditions
of the coin and the landing area. The conclusion was that the probability of a coin landing
on its edge is far from being nil, and in the order of one over several thousand.

In this second part of the paper, we consider a dynamic model with rebounds. The
mechanical model equations are derived from a classic textbook [2].

It is found that the probability that a 50 Euro cent coin thrown from a normal height
with common initial velocity conditions and appropriate surface conditions will end up
on its edge is in the order of one against several thousand, but less than for the cases
without rebounds.

2. Dynamic Model with Rebounds
2.1. General Model and Equations

All of the mechanical development of models and equations are detailed in the first
part of the paper [1] and will not be repeated in this second paper. Only the main hypotheses
and equations are recalled here.

We consider the following hypotheses (with bold characters denoting vectors):

- the coin is fair, i.e., the coin is a homogeneous flat circular cylinder of mass m and with
thickness h and diameter d;

- the coin is thrown manually from an initial height H with a velocity v0 under an angle
β on the horizontal, and an initial angular velocity ω0; for a manual throw, the
minimum and maximum possible values are considered to be:

d < H < 2 m ; 0 < v0 < 5 m/s;−π

2
< β < π/2 ; 0 < ω0 < 10π rad/s (1)

where v0 and ω0 are the norms of the vectors v0 and ω0;

- the coin rotation axis is horizontal and passes through the coin center of mass at all
times during the fall, until impacting the landing surface;
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- the coin angular velocity after the impact is along an undefined instantaneous axis of
rotation that stays horizontal at all times;

- the atmosphere is windless, without any disturbance and the air friction is negligible;
- the landing surface is a perfectly horizontal plane, with a solid and immovable surface.

One considers further a referential frame with its origin at the impact point on the
landing surface, its Z-axis perpendicular to the landing surface and directed downward, its
X and Y axes in the horizontal plane of the landing surface with X pointing in the direction
of the throw (see Figure 1).
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Figure 1. Dynamic model of a coin throw with a clockwise initial rotation. 
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Figure 1. Dynamic model of a coin throw with a clockwise initial rotation.

Using the impact equations [2] and developing then along the three axes X, Y, Z,
one obtains:

along X : m ux = m v0 cos β − T (2)

along Y : Ia (±ωa) = Ib (±ω0) − N ρ sin (θ − α

2
), − T ρ cos (θ − α

2
) (3)

along Z : m uz = m
√

v2
0 sin2 β + 2gH + N (4)

with

- v0 the norm of the velocity vector before impact;
- ux and uz the components of the velocity vector after impact;
- β the angle of the initial velocity vector with the horizontal (see Figure 1);
- T and N are the components of the impulse vector, respectively, along and normal to

the surface at the point of contact;
- ρ =

√
h2+d2

2 is the distance from the impact point to the coin center of mass (see
Figure 2);

- Ib and Ia are the moments of inertia of m at the coin center of mass with respect to the
instantaneous axis of rotation before and immediately after impact;

- ±ω0 and ±ωa are the coin angular velocity before and after impact, + (respectively, -)
for a coin counterclockwise (respectively, clockwise) rotation;
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Figure 2. Angles and distances at the moment of impact. 
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2.2. The Case of Rebounds

The four cases analyzed in the first paper assumed that the coin is not rebounding
after impact. This is obviously the case by definition for the first two cases with inelastic
surfaces, the velocity component normal to the landing surface becomes nil, and the coin
does not rebound.

For the last two cases, where elastic surfaces are involved, one has to be more cautious.
A simple condition of no-rebound can be found by writing that the normal impulse of the
landing surface at impact must be smaller than the integral over time of the coin weight
considered as an impulsive force during the short period of impact, i.e.,

|N| =
∣∣∣∣∫ t f

t0

mg dt
∣∣∣∣ = mg ∆t (5)

For this condition to be respected in the two cases of elastic surfaces, the duration of
impact ∆t must be such as:

∆t >
∣∣∣∣(1 + e

g

)(
(±ωa)ρ sin(θ − α

2
)−

√
v2

0 sin2 β + 2gH
)∣∣∣∣ (6)

where e is the coefficient of restitution. Relation (6) yields, respectively, for the cases of
elastic and perfectly smooth bodies and of elastic and partially rough bodies (with µ as the
coefficient of friction)

∆t >

∣∣∣∣∣∣
κ(±ω0) sin(θ − α

2 )−
κa
ρ

√
v2

0 sin2 β + 2gH

g
(

κa
(1+e)ρ + sin2(θ − α

2 )
)

∣∣∣∣∣∣ (7)

∆t >

∣∣∣∣∣∣
κ(±ω0) sin(θ − α

2 )−
κa
ρ

√
v2

0 sin2 β + 2gH

g
(

κa
(1+e)ρ + sin2(θ − α

2 ) +
µ
2 sin(2θ − α)

)
∣∣∣∣∣∣ (8)

where:

κ = κb =
Ib

ρm
=

(
h2

3 + d2

4

)
2
√

h2 + d2
and κa =

Ia

ρm

For the numerical values given in (1) and assuming, for a 50 Euro cent coin, coefficients
of restitution e = 0.5 and of friction µ = 0.05, (7) and (8) yield impact duration ∆t longer
than several seconds, which is practically impossible for usual surfaces. This shows that
the condition (5) cannot be practically fulfilled, and the coin will rebound.

In this case, one can still calculate the probability that the coin will stay on its edge
at the second impact by considering that the first impact will be such as to deliver the
favorable initial conditions (Event 1) for the second impact to result in the coin staying on
its edge (Event 2). The probability of the first event E1 is obviously independent of the
probability of the second event E2. The opposite is, of course, not true and the probability
of the second event E2 depends on the first event E1 having occurred. Therefore, the
probability that the coin will stay on its edge at the second impact, knowing that the first
impact has delivered the favorable conditions for the second event to occur, is:

Pedge 2 = P(E1) P(E2 E1) = PFav.impact 1 Pedge 2 1 (9)

where indexes 1 and 2 refer, respectively, to the first and second impacts.
With the following hypotheses:

- between the first and second impacts, the coin attains a maximum height:

H12 = e2H (10)
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- the rotation velocities and moments of inertia of the coin, respectively, before the
second impact and after the first impact are the same, yielding:

±ωb2 = ±ωa1 (11)

Ib2 = Ia1 (12)

and:
κ1 = κb1 =

Ib1
ρm

, κ2 = κb2 = κa1 =
Ia1

ρm
=

Ib2
ρm

(13)

- the vertical components of the coin velocity before and after the second impact
are, respectively:

vz2 = e
√

2gH (14)

uz2 = (±ωa2) ρx = (±ωa2)ρ sin(θ2 −
α

2
) (15)

- the coin and landing surface are elastic and partially rough bodies, such as the normal
and tangential impulses read:

N2 = m (1 + e)
(
(±ωa2) ρ sin(θ2 −

α

2

)
− e
√

2gH) (16)

T2 = m µ (1 + e)
(
(±ωa2) ρ sin(θ2 −

α

2

)
− e
√

2gH) (17)

and the impact equation reduces to:

Ia2 (±ωa2) = Ia1 (±ωa1)− N2 ρx − T2 ρz (18)

yielding:

(±ωa2) =
κ2(±ωa1) + e(1 + e)

√
2gH

(
µ cos(θ2 − α

2 ) + sin(θ2 − α
2 )
)

κa2 + (1 + e)ρ sin(θ2 − α
2 )
(
µ cos(θ2 − α

2 ) + sin(θ2 − α
2 )
) (19)

where:
κa2 =

Ia2

ρm
(20)

The coin will stay on its edge if the angular velocity after the second impact ωa2 is nil
while |θ2| < α

2 . Solving the Equation (19) ωa2 = 0 for θ2 yields:

θ2 =
α

2
− 2arctan


1±

√
1 + µ2 −

(
κ2(±ωa1)

e(1+e)
√

2gH

)2

κ2(±ωa1)

e(1+e)
√

2gH
− µ

 (21)

under the condition that the denominator of (19) is different from zero, i.e., for:

θ2 6=
α

2
− arctan

µ(1 + e)±
√

µ2(1 + e)2 − 4 κa2
ρ

(
κa2
ρ + 1

)
2
(
(1 + e) + κa2

ρ

)
 (22)

Note that this condition can be extended to the other configurations of the position of
the instantaneous axis of rotation after impacts, as was discussed for (66) in [1]. This would
introduce additional numerical coefficients in the expressions of the moments of inertia,
but would not fundamentally alter the value of the angle θ2.
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For θ2 to be real, the condition on the root in the numerator of (21) reads:

κ2(±ωa1)√
2gH

≤ e(1 + e)
√

1 + µ2 (23)

For the condition |θ2| < α
2 to hold, i.e.,

− α

2
< θ <

α

2
(24)

the argument of the arctan function in (21) must be positive and smaller than h/d, i.e.,

0 <


1±

√
1 + µ2 −

(
κ2(±ωa1)

e(1+e)
√

2gH

)2

κ2(±ωa1)

e(1+e)
√

2gH
− µ

 < tan
(α

2

)
=

h
d

(25)

For the positive condition, the numerator and the denominator must be of the same
sign. Considering the negative sign in front of the numerator root in (25):

- both denominator and numerator are positive if

κ2(±ωa1)√
2gH

> e(1 + e)µ (26)

that combined with (23) yields:

e(1 + e)µ <
κ2(±ωa1)√

2gH
≤ e(1 + e)

√
1 + µ2 (27)

which is true only for a positive sign in front of ωa1, i.e., a coin counterclockwise rotation;

- both denominator and numerator are negative if:

κ2(±ωa1)√
2gH

< e(1 + e)µ (28)

which includes condition (23), and is true either for a positive sign in front of ωa1, i.e., a coin
counterclockwise rotation after the first impact, as long as values of ωa1 fulfil the condi-
tion (28), or for all of the negative values of ωa1, i.e., a coin clockwise rotation.

For the positive sign in front of the numerator root of (21), the denominator must be
positive, which is true if condition (28) holds, meaning that the positive sign in front of ωa1
must be chosen, i.e., a coin counterclockwise rotation. However, the solution, in this case,
yields a too large value of θ2.

The other part of the condition, i.e., the argument of the arctan in (21) smaller than
h/d yields, as in relations (72) to (74) in [1]:

if µ <
h
d

: e(1 + e)µ <
κ2ωa1√

2gH
< e(1 + e)

(
2hd− µ

(
d2 − h2)

h2 + d2

)
(29)

if µ =
h
d

:
κ2ωa1√

2gH
= e(1 + e)

h
d

(30)

if µ >
h
d

: e(1 + e)

(
2hd− µ

(
d2 − h2)

h2 + d2

)
<

κ2ωa1√
2gH

< e(1 + e)µ (31)

These three conditions include condition (23), as the right part of (23) is always greater
than the right parts of (29) to (31).

Summarizing the conditions for this case:
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- if µ < h
d , then (29) includes (27) and ωa1 must be positive, i.e., a coin counterclockwise

rotation after first impact;
- if µ = h

d , then (30) is the limiting case of (26) and (27) and ωa1 is positive, i.e., a coin
counterclockwise rotation after first impact;

- if h
d < µ < 2hd

d2−h2 , then (31) includes (27) and ωa1 is positive, i.e., a coin counterclock-
wise rotation after first impact;

- if µ > 2hd
d2−h2 , then (31) includes (28) and ωa1 can be either positive or negative,

i.e., a coin counterclockwise rotation or clockwise rotation after first impact.

The three conditions (29) to (31) constrain the favorable values of ωa1, which can be
translated into conditions on θ1 through (63) of [1] (where the index 1 has been added to θ,
ωa and κ).

Assuming that µ < h
d , the left and right parts of (29) yield, respectively:

sin2(θ1 −
α

2
)− sin(θ1 −

α

2
)
(

B− µ cos(θ1 −
α

2
)
)
−
(

A + Bµ cos(θ1 −
α

2
)
)
< 0 (32)

sin2(θ1 −
α

2
)− sin(θ1 −

α

2
)
(

D− µ cos(θ1 −
α

2
)
)
−
(

C + Dµ cos(θ1 −
α

2
)
)
> 0 (33)

with

A = κ2

(
κ1(±ω0)− e(1 + e)µ

√
2gH

e(1 + e)2µρ
√

2gH

)
(34)

B =
κ2

√
v2

0 sin2 β + 2gH

e(1 + e)µρ
√

2gH
(35)

and:

C = κ2

κ1(±ω0)− e(1 + e)
(

2hd−µ(d2−h2)
h2+d2

)√
2gH

e(1 + e)2ρ
(

2hd−µ(d2−h2)
h2+d2

)√
2gH

 (36)

D =
κ2

√
v2

0 sin2 β + 2gH

e(1 + e)ρ
(

2hd−µ(d2−h2)
h2+d2

)√
2gH

(37)

The analytical solutions of (32) and (33) for
(
θ1 − α

2
)

require solving analytically
fourth-degree equations in sin

(
θ1 − α

2
)
, which is not an easy task. However, the numerical

solutions can be found to define the range [θ1min, θ1max] of the allowed values of θ1 at first
impact to deliver favorable conditions. Relations (32) and (33) yield numerical values of,
respectively, θ1min and θ1max, involving functions Φmin and Φmax of ω0, H, v0, β, e, µ, h
and d, respectively, through A and B and through C and D:

θ1min =
α

2
+ Φmin(A, B, µ); θ1max =

α

2
+ Φmax(C, D, µ) (38)

The probability that the first impact delivers favorable conditions for the second
impact to bring the coin on its edge reads, then:

PFav. impact 1 =

(
θ1 max − θ1 min

π

)
=

(
Φmax(C, D, µ)−Φmin(A, B, µ)

π

)
(39)

For this case µ < h
d , the condition (29) constrains the favorable coin rotation velocity

ωa1 after the first impact between the minimum and maximum values ωa1min and ωa1max
corresponding to θ1min and θ1max through (63) of [1]:

ωa1 min =
κ1(±ω0) + (1 + e)

√
v2

0 sin2 β + 2gH(µ cos Φmin + sin Φmin)

κ2 + (1 + e)ρ sin Φmin(µ cos Φmin + sin Φmin)
(40)
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ωa1 max =
κ1(±ω0) + (1 + e)

√
v2

0 sin2 β + 2gH(µ cos Φmax + sin Φmax)

κ2 + (1 + e)ρ sin Φmax(µ cos Φmax + sin Φmax)
(41)

Replacing these two values ωa1min and ωa1max in (21) yield the two limiting values
θ2min and θ2max:

θ2min =
α

2
− arctan

1−
√

1 + µ2 − ν2
min

νmin − µ

; θ2max =
α

2
− arctan

(
1−

√
1 + µ2 − ν2

max
νmax − µ

)
(42)

with:

vmin =
κ2ωa1 min

e(1 + e)
√

2gH
=

κ1(±ω0)√
2gH

+ (1 + e)

√
1 +

(
v0 sin β√

2gH

)2

(µ cos Φmin + sin Φmin)

e(1 + e)
(

1 + (1 + e) ρ
κ2

sin Φmin(µ cos Φmin + sin Φmin)
) (43)

and a similar expression for vmax with Φmax replacing Φmin.
The probability that the coin stays on its edge at the second impact, knowing that the

first impact has delivered the appropriate favorable conditions is then:

Pedge 2|1 =
(

θ2 max −θ2 min
π

)
= 2

π

(
arctan

(
1−
√

1+µ2−v2
min

vmin−µ

)
− arctan

(
1−
√

1+µ2−v2
max

vmax−µ

))
= 2

π arctan

(
(vmax−µ)

(
1−
√

1+µ2−v2
min

)
−(vmin−µ)

(
1−
√

1+µ2−v2
max

)
(vmin−µ)(vmax−µ)+

(
1−
√

1+µ2−v2
min

)(
1−
√

1+µ2−v2
max

)
) (44)

where the formula arctan(X) − arctan(Y) = arctan
(

X−Y
1−XY

)
was used.

The total probability that the coin stays on its edge at the second impact, after the first
rebound has delivered the appropriate conditions, is given by (9).

Assuming coefficients of restitution e = 0.5 and of friction µ = 0.05 for a 50 Euro cent
coin yields that µ < h

d . One considers further the two extreme cases of the position of the
instantaneous rotation axis after the first impact, i.e., respectively, along the horizontal
axis passing first through the coin center of mass, and second, through the coin contact
point with the landing surface (see discussion leading to (66) in [1]), yielding values of
κ2 varying between 2.955 × 10−3 and 1.475 × 10−2, while κ1 = 2.955 × 10−3 under the
initial hypothesis.

The condition (29) imposes a quite stringent range of values for the ratio κ2ωa1√
2gH

, namely:

12.689 <
κ2ωa1√

2gH
< 30.381 and 2.543 <

κ2ωa1√
2gH

< 6.088 (45)

respectively, for κ2min = 2.955 × 10−3 m and κ2max = 1.475 × 10−2 m, yielding, respectively,
for H = d and for H = 2 m:

8.616 < ωa1 < 20.629 and 1.726 < ωa1 < 4.134 (rad/s) (46)

79.490 < ωa1 < 190.311 and 15.928 < ωa1 < 38.135 (rad/s) (47)

The allowed range for the coin angular velocities after the first impact thus increases
for the increasing initial height H.

Within the value ranges (1) of initial parameters, the largest value of the probability
Pedge2 max is obviously attained for the largest values of PFav.Impact1 max and Pedge21max. The
largest value of PFav.Impact1 is obtained for the largest value of Φmax and the smallest value
of Φmin. Φmax is the largest for Cmin and Dmin, i.e., for ω0 = 0 and v0 = 0, while Φmin is the
smallest for Amax and Bmax, i.e., for ω0 = 10π rad/s, v0 = 5 m/s, β = ±π/2 and H = d.
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For the first case of κ1 = κ2min = 2.955 × 10−3 m, a series of coin tosses having initial
conditions in the ranges (1), one finds, successively:

Φmax = 0.0101, Φmin = −0.0588 (rad)
θ1max = 0.0950, θ1min = 0.0261 (rad)
ωa1max = 190.311, ωa1min = 8.616 (rad/s)
θ2max = −0.0849, θ2min = −0.0150 (rad)
PFav.Impact1max = 2.193 × 10−2, Pedge21max= 2.225 × 10−2, Pedge2 max= 4.880 × 10−4

or approximately a throw every 2050 throws.
For the second case of κ2max = 1.475 × 10−2 m, one has similarly:
Φmax = 0.0099, Φmin = −0.0588 (rad)
θ1max = 0.0948, θ1min = 0.0261 (rad)
ωa1max = 38.135, ωa1min = 1.727 (rad/s)
θ2max = −0.0849, θ2min = −0.0150 (rad)
PFav.Impact1max = 2.188 × 10−2, Pedge2 1 max = 2.225 × 10−2, Pedge2 max= 4.868 × 10−4

or approximately a throw every 2054 throws.
For more common values, a series of throws from an initial height H = 1.5 m with

a velocity v0 = 1 m/s under an angle of β = π/4 and an initial rotation velocity ω0 varying
between 0.5 and 5 turns/s yields, successively, first for κ2min = 2.955 × 10−3 m:

θ1max = 0.0829, θ1min = 0.0585 (rad)
ωa1max = 164.814, ωa1min = 68.840 (rad/s)
θ2max = −0.0849, θ2min = −0.0150 (rad)
PFav.Impact1 = 7.774 × 10−3, Pedge21 = 2.224 × 10−2 and Pedge2 = 1.729 × 10−4

or approximately a throw every 5783 throws, and second for κ2max = 1.475 × 10−2 m:
θ1max = 0.0829, θ1min = 0.0586 (rad)
ωa1max = 33.026, ωa1min = 13.794 (rad/s),
θ2max = −0.0849, θ2min = −0.0150 (rad),
PFav.Impact1 = 7.759 × 10−3, Pedge21 = 2.224 × 10−2 and Pedge2 = 1.726 × 10−4

or approximately a throw every 5794 throws.
For the sake of completeness, for all of the above values, the term under the root sign

in condition (22) is negative, yielding imaginary values for the argument of the arctan
function, which shows that condition (22) is fulfilled for all of the practical values of θ2.

The cases of successive rebounds can be treated similarly, albeit with more and more
complexity in the various relations.

3. Conclusions

To recall the man conclusions of the first paper:

- there is a non-nil probability that a falling coin will not end up on one of its sides but
on its edge, with decreasing probabilities for the models describing reality from closer;

- probabilities calculated are independent of the coin mass but strongly depend on the
coin’s vertical velocity before impact, on the initial height H and on the initial angle β
of the throw;

- increasing the initial height decreases the probability that the coin will end on its edge,
while increasing the initial rotation will increase this probability;

- depending on surface characteristics, tossing the coin vertically decreases the proba-
bility of the coin ending on its edge;

- friction is of paramount importance: if the friction coefficient µ is increased above
a certain value depending on surface conditions, the coin can no longer stop on its
edge and will inevitably fall on one side.

The rebound case model shows that very limited initial conditions and surface condi-
tions of the coin and landing would deliver the proper conditions for the coin to stop on its
edge at the second impact. For a series of throws from an average height with common
velocity values and appropriate surface conditions, the probability that a 50 Euro cent coin
ends up on its edge is calculated to be in the order of one against several thousand, slightly
larger than in the cases without rebounds.
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