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1. Introduction and Preliminaries

Simpson’s inequality is given by

‘;{g(a);rg(b)ﬂg(ﬂ;b)} _bia/abg(x)dx

where g : [a,b] — R is a four times continuously differentiable function on (a,b) and

(b—a)*, 4
< oo oo/
< “geg 187

l§W o = sup ‘ g(4)’ < oco. This inequality has been studied and generalized by many
x€(ab)
scholars see for instance [1-7] and references cited therein.

Definition 1. The function g : [0,00) — R is a convex function if

gAx+(1-A)y) <Ag(x) + (1 —-A)g(y)

holds for ever x,y € [0,00] and A € [0, 1]. If the inequality in Definition 1 is reversed, then g is a
concave function.

Definition 2. The function g : [0,00) — R is s-convex function (in the second sense) if
gAx+(1=A)y) <A°g(x) + (1 -A)°g(y)
for ever x,y € [0,00) and A € [0,1].

Remark 1. Definition 2 reduces to Definition 1 when s = 1. In the current paper I° denote the
interior of an interval I and Ly ([a, b]) represent all integrable functions.
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Theorem 1 ([8]). Suppose that g : [0,00) — [0,00) is an s-convex function in the second sense,
wheres € (0,1) and let a,b € [0,00), a < b. If g € L1([a, b]), then we have:

o1 (a+b 1 b g(a) +g(b)

Definition 3 ([9]). For an integrable function g on [a,b], a > 0and p > 0, the right- and left-sided
Riemann—Liouville fractional integral of order B are respectively given by

Th8) = gy [ =Pl x> a @
and ) N
TP g(x) = . / (t—x)F1g(t)dt, t<b, @3)

where I'(B) = / e *xP~1dx is the gamma function.
0

Definition 4 ([10]). Suppose that the function g is integrable on [a,b] and § € (0,1]. Then for all
BeC, Re(B) >0

(728) ) = gapy | 0= s, y>a @
and . )
(F8) ) = gapgy |, (=00 stwdu, y <o ©

The notations (jf;ég) (y) and (jbﬁ,"sg) (y) are called respectively left- and right-sided
generalized proportional fractional integral operators of order 8.

Remark 2. Definition 4 becomes the Riemann—Liouville fractional integrals given in Definition 3
foré =1

For Riemann-Liouville fractional integrals, Chen and Huang in [11] obtained the
following Simpson’s type inequality for s-convex functions.

Theorem 2. Let ¢ : I C [0,00) — R be a differentiable mapping on I° such that ¢’ € Ly([a,b]),

where a,b € 1° with a < b. If |¢'| is s-convex on [a, b], for some fixed s € (0,1], then the following
inequality holds:

li{g<>+4g(””)+g<b>} T (s ()]

2
<t mips)[lg' @) + 180,

where .
M (B,s) = /0

Theorem 3. Let ¢ : I C [0,00) — R be a differentiable mapping on I° such that ¢’ € Ly([a,b]),
where a,b € I° with a < b. If |¢'|1 is s-convex on [a, b], for some fixed s € (0,1] and g > 1, then
the following inequality holds:

f—;‘[(1+t)s+(l—t)s}dt.
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Ao (t5) 0] I ore(e52) o)
1 1 1 (7)
< boa ”2’3 ;pdt>pl(g’<b>]q+g’(”zb)]q>q+<g’<a>]q+g/(“zbﬂ")q],

?) ] S s (5) <ot ()]
8

1,1 _
wherep+q—1.

Theorem 4. Let g : I C [0,00) — R be a differentiable mapping on I° such that ¢’ € L1([a, b]),
where a,b € I° with a < b. If |¢|1 is s-convex on [a, b], for some fixed s € (0,1] and q > 1, then
the following inequality holds:

L 1 8
(25+1_1)|g/<b)|q+|g/(a)‘q 7 (25+1 1)| /( )|q+|g/(b)|q q
< 25(s + 1) > +( Z(s+1) > ]

1
p P
dt>

1,1 _
whereﬁ+ﬁ—1.

Theorem 5. Let ¢ : I C [0,00) — R be a differentiable mapping on I° such that g’ € Ly ([a,b]),
where a,b € I° with a < b. If |¢'|1 is s-convex on [a, b], for some fixed s € (0,1] and g > 1, then
the following inequality holds:

’é{g(a)—l—‘lg(a;b)—i_g(b)} W[J (a;b)Jerﬁg(”;b)H )

< O M (B) [Ms(,5) + Ma(6,9)],

1,1 _
wherep—i—q = 1and

Mz(ﬁ)I(/O tj—l‘dt);,
ms(ps) = |5 3| [(50) worr+ (150) g a
15 =3[ war+ (5 tge]ar

In this paper, we introduce new Simpson’s inequalities for s-convex function in the
second sense via a generalized proportional fractional integral which is the generalization
of the result obtained by Chen and Huang [11]. These types of inequalities can be used
to estimate the bounds of both regular and fractional integrals. The paper is organize
as follows: In Section 2, we state our main results on inequalities of Simpson’s type for
s-convex functions via generalized proportional fractional integral. Finally, Section 3 is
devoted to the conclusion of our work.

My(p,5) = [

2. Main Results

The following Lemma is required to prove our main results.
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Lemma 1. Let ¢ : I — R be an absolutely continuous mapping on I° such that ¢’ € L ([a,b]),
where a,b € I° with a < b. Then we have the following equality:

é[g(a)+4g(u;b>+g(b)] —zﬁl((;ﬁ_r(f)ljl { g (Hb) +7%8 (Hb)]
2L [(G3)e (5t )+ (G- ) (e 150
Proof. Let
w= (G -)s (e )+ (G- 2)e (F e 12)]
_/< tﬁ) <1+t +b)dt+/ (tﬁ )g % )dt

= Ms + Mg.

(10)

We compute Ms and Mg by using integration by parts and by change of variable. For this,
we get

Lr1 P 1+t 1

wifﬁfﬁﬂﬁ“”%D

bia';g<u>+;g(a;b)—§(bia>ﬁ [((55) ) stom
g(u—;b) 2p- ziﬁraﬁJrl 5ﬁ/“*b<(a+b) x)ﬁ_lg(x)dX]

1
3
[+ () -2 }Zﬂ”fﬁ”f «(27)]

Using similar argument as outlined above, we obtain:

L/ 1 1+t

=b3a[2g<b>+ég(”§b) = iiﬁfiﬁ“)f (7))

By adding M5 and Mg, we get the desired identity. [

- 6g()

Theorem 6. Let 6,3 > 0and let ¢ : I C [0,00) — R be a differentiable mapping on 19 such that
¢ € Li([a,b]), where a,b € I° with a < b. If |¢’| is s-convex on [a,b], for s € (0,1], then the
following inequalities hold:

sl s (5) o] TR [ () vt ()|
< U Mo(p)[lg' @) + 15/ 0] 1

< el @i+l

o)

A

A
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N

1
6

2

1

- 4

<

b;a(/ol

1

b

b—a

[g(a) +4g<”42'b> +g(b)} _2PPr(p+1) {Jffg<a+b) +jﬁ"5g<

where
My(B,s) = /01 g - ;‘ [(1 F1)S 4+ (1— t)s]dt.

Proof. Using Lemma 1 and s-convexity of |g’|, we have:

a+b) g()} ﬁléﬁf(ﬁJrl)[j (anrb)_l_jlg,&g(aer)H

(b—a)P 2

s 3|l (e )|+ G- [ (e ) o
)Hg(l?tb )l (e )
>H(12+t)5|g’<b)l (- e (B g+ (-5 g e |

- 3’ (@i a-07)[lg @l +1g'®)1].

This complete the proof of the first inequality of (11). The second inequality of (11) follows
since ‘% - %‘ < iforevert € [0,1] and

25+1

My (B,s) < %/01 [+ == oy, (12)

which proves the second inequality. O
Corollary 1. Let 6,3 > Oand let g : I C [0,00) — R be a differentiable mapping on I° such

that g’ € Lq([a,b]), where a,b € I° with a < b. If |§'| is convex on [a,b], then the following
inequalities hold:

s vae(*5) o] SRR () - ()

(8,118 (a)] + 1'(0)]] (13)

—=[Ig' ()| + g ®)]]-

Proof. Taking s = 1in Theorem 6 we have the result. [

Remark 3. In Theorem 6 if we put

a. = 1, then the first inequality (11) coincide with Theorem 2 and the second inequality
coincide with Corollary 8 in [12].
b. 0 =B =1, then the first inequality (11) coincide with Theorem 7 in [13].

Theorem 7. Let 6,3 > Oand let g : I C [0,00) — R be a differentiable mapping on 19 such that
¢’ € Li([a,b]), where a,b € I° with a < b. If || is s-convex on [a,b] for s € (0,1] and q > 1,
then the following inequality holds:

(b—a)b

”dt>f’[<|g< |qs++|gl<§>|q>q+<| Ol IS

2

14
$1 (14)

2 3

.
—_ 1
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where%—i—%:l.

Proof. Using Hilder’s inequality and Lemma 1, we have
sorva(2) 0] -2t 15 (117
G-Ce 2G-S
(tfé)Hg(lz“b“zf el (e 5

1
T3 (Ll (o ) (e (e ) ) |

Since |¢’|7 is s-convex, by using change of variable and Equation (1), we have

N =
—

U, (14t 1—t ]| 2 b, 18/ (8)17 + [g(542)17]
- Idx < 2
/Og< b > dt = — /§| ¢ (x)|7dx " (15)
and
W t+t 1=t | 2 [ 18/ (a)7 + [g' (442)17]
. — Idx < 2 :
/()g( it — b) dt b—a/u 1g'(x)]7dx < P (16)

Hence by using inequalities (15) and (16) we obtain

‘2 {g(a) +4g(a;b) —i—g(b)} B 2ﬁ715ﬁr(ﬁ+1) {%@(Sg(a—i_b) +Jhﬁ’§g<a+b>

(b—a)p
b—af /1
< (/0

PN 1g@1r+ 121\ T (1@ + g/ (1)) 1

Thus, the proof is complete. [

Corollary 2. Let 6, > Oand let ¢ : I C [0,00) — R be a differentiable mapping on 1° such
that ¢’ € L1([a,b]), where a,b € I° with a < b. If |¢|1 is convex on [a,b] and q > 1, then the
following inequality holds:

’2 [g(a) +4g(a+2—b) +g(b)} 267 15fT(B+ 1) [jﬂ(sg<a+b> +]b/3’53<a+b>

(b—a)P
b—a 1
<1

”dt>3’[<g< >|q+|g<z>q)3+<| @1+ 1g <£>|q>5],
2 2
where%—l—%:l.

Proof. We have the result by taking s = 1 in Theorem 7. O

1

2 3

Remark 4. In Theorem 7 if we put

a. 6 =1, then the inequality (14) coincide with Theorem 3.
b. 0 =B =1, then the inequality (14) coincide with Theorem 8 in [13].
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Theorem 8. Let 6, > 0and let g : I C [0,00) — R be a differentiable mapping on I° such that
¢' € Li([a, b)), where a,b € I° with a < b. If |¢'|1 is s—convex on [a,b], for s € (0,1] and g > 1,
then the following inequalities hold:
+b
)+

a B—15p .
‘é[g(a)+4g<;b) +g(b)} _ Z(ifiﬁ);l)[ﬁw i

—a 1 P % (2S+1—1)|g’(b)|q+|g(i)|q % (2s+1—1)|g’(a)|‘7+|g’(w)‘q %
E </0 dt) [( 25(s +1) : ) +< ) )} W)

b—aK(zs“ Dlg <>|q+|g<;>|q>3+<<zs+l g <>|q+|g<;>|q>5]
28 25 ’

1
2 3

6 (s+1) (s+1)
1,1 _
whereﬁ+ﬁ—1.

Proof. By Hélder’s inequality, s-convexity of |¢’|7 and Lemma 1, we get
a+b 2671PT(B+1) [ .ps (a+D ps (a+b
o (57 o] - SR () e ()

B AN, 1+, 1t 1 P 1+t 1—t
(2—3)\g(b+2a)!+\(3—2) ¢ty Ja

2
g’(lztb+1;ta)’+ g (Pzrt +b)Hd

N =

b—a( 1P 1P \7? U /14t 1=t \|7.\1 U /14t 1 7\

< o _Z - - - -

_2</023dt </Og<2b+2>dt)+</0g(2+2b>dt>
B G :

b—a( (HtF 1 4 Lr14+¢\° , 1+t [

< o g q - ! q

< (/O ([ (52) 1wen+ (1- 1) g @par) '+

<=

|

{
() o (-3 o)’
|

*’dt>1 ((zm >|2<>|q+|g<;>|‘f>5+(<zs+l DIg (@)1 + lg ;wﬂ/

(s+1) 25(s +1)

which is the desired first inequality. We get the second inequality from the first inequality
s+1 _
duetothefactthat‘——f‘ < 1forallt‘ € [0,1] and/ 1+ t)%dt = 2 1and
(s+1)
1

/0 (1 -1yt = gy

That concludes the proof. O

Corollary 3. Let 6,3 > Oand let g : I C [0,00) — R be a differentiable mapping on 1° such
that ¢’ € Ly([a,b]), where a,b € I° with a < b. If |¢'|1 is convex on [a,b] and q > 1, then the
following inequalities hold:
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1

} 2b— 15/5T ,B—i—l [ <a—£—b> jﬂf (a—l—b)”
[( 3 <>|ﬁ+|g ) ( O+l ;wﬂ
4 (18)
i

<b—a[<<3>|g'<b>|q+g’(“éb>|q>3+<3|g< I+ >|q> ]

1,1 _
whereﬁ+ﬁ—1.

|
o))

Proof. Taking s = 1in Theorem 8 we get the result. O

Remark 5. In Theorem 8 if we put

a. 0 =1, then the first inequality (17) coincide with Theorem 4.
b. 6 =B =1, then the first inequality (17) coincide with Theorem 9 in [13].

Theorem 9. Let 6, > 0and let g: I C [0,00) — R be a differentiable mapping on I° such that
¢’ € L1([a,b]), where a,b € I° with a < b. If || is s-convex on [a,b] for s € (0,1] and q > 1,
then the following inequalities hold:

s eas(t52) o] EE s () (1) |

(b—a)P 2 2

Ms(B) [(Mgus,sng’(bw + Muo(B,9)g(a)|7)" + (Ma(B,s)[g'(a)]" +Mlo<ﬁ,s>|g’<b>q)‘7] (19)

)

Q=

H(3) (Gl O+ 5 @) + Gy @+ 5y 1)

where L —|— L —1and

e 1P \7
M8<ﬁ>=</o 53 dt> ,
1) 46
Mo ,s):/O tz;’(lth)sdt,

B
1\/11009,5):/01 1—2'(1—t d

Proof. Using Lemma 1, s-convexity of |¢|7, the power mean inequality and Hélder’s
inequality, we get
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N =

IN

R CORTES = i CORCY]
TGl ooz G2l (e ) o
R U 1)
s (st
(v -22 e
(f5-5/[(5) e >|q+(1—1§t)sg'<b>|th]);}

1
P 1 q
- ‘1 e’ (a)]d
( > J[1+t g B)+(1- >|gwnd4) +
1
P

(/; =5l ([ |

which completes the first inequality. We get the second inequality from the first inequality
due to the facts that:

= =

(5

(L)

ENT

p
35| [+ lg @i+ (- t)slg’(b)I"dtD

#o1)_1
2 3 3
forallt € [0,1],
1| 4P 1 s+1 _q
— — —|(1+1t)%dt <
/0 2 3‘( +1) 3(s+1)
and -
t 1 1
— —-|(1=t)%dt <
/0 2 3‘( ) ~3(s+1)

This concludes the proof. O

Corollary 4. Let 6,3 > Oand let g : I C [0,00) — R be a differentiable mapping on I° such
that ¢’ € L1([a,b]), where a,b € I° with a < b. If |¢'|1 is convex on [a,b] and q > 1, then the
following inequalities hold:

s va(552) o] B o 15 st (52)]
g;;;Msus)[(Mg(ﬁ,ng( )7+ Mio(B,1)[g' (a >|q)% (M9<ﬁ,1>|g’<a>|q+Mm<ﬁ,1>|g'<b>|q)ﬂ 20)

(s) [(ig%b)w FLg@m) + (Gl @i+ g w)ﬂ

q

IN

where L —|— -1

Proof. By taking s = 1 in Theorem 9 we have the desired result. [



Foundations 2022, 2 616

Remark 6. In Theorem 9 if we put

a. 0 =1, then the first inequality (19) coincide with Theorem 5.
b. 6 =B =1, then the first inequality (19) coincide with Theorem 10 in [13].

3. Conclusions

Our results have introduced a new integral inequality of Simpson’s type integral
inequalities using s-convexity via generalized proportional fractional integrals. The in-
equalities obtained are generalizations of Simpson’s type inequality that are given for
the Riemann-Liouville fractional integrals in [13]. Similar inequalities could possibly be
established for more generalized fractional integrals such as Riemann-Liouville fractional
integrals of a function with respect to another generalized function and to a proportional
fractional integral of a function with respect to another function.
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