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Abstract: In this paper, we consider the existence of multiple positive solutions to boundary value
problems of nonlinear fractional differential equation with integral boundary conditions and parame-
ter dependence. To obtain our results, we used a functional-type cone expansion-compression fixed
point theorem and the Leggett–Williams fixed point theorem. Examples are included to illustrate the
main results.
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1. Introduction

Over the last few years, fractional differential equations have attracted a great deal
of attention for their numerous science and engineering applications: physics, electrical
networks, polymer rheology, chemical technology, biology, control theory, and finance.
For details, we refer the reader to the books [1–4]. Recently, some papers have dealt with
the existence of positive solutions to different types of fractional differential equations by
using nonlinear analysis (See [5–10] and the references therein).

We also noted that boundary value problems with integral boundary conditions for
differential equations appear in applied mathematics and physics, chemical engineering,
underground water flow, and thermo-elasticity. For details, the reader is referred to [11–18].

Motivated by these works, the aim of this paper is to study the existence of mul-
tiple solutions of the following nonlinear fractional differential equations with integral
boundary conditions

Dδ
0+u(t) + f (t, u(t)) = 0 0 < t < 1, (1)

u(0) = 0 u(1) = λ
∫ 1

0
h(r)u(r)dr, (2)

where 1 < δ ≤ 2 and λ > 0, Dδ
0+ is the Riemann–Liouville fractional derivative, and f is

a continuous function. We proved the existence of at least two positive solutions for the
fractional boundary value problem (1) and (2) under suitable conditions on f . The main
tools used were two well-known fixed point theorems on cones.

The text by Guo and Lakshmikantham [19] is an excellent resource for using fixed
point theory in the study of solutions to boundary value problems.

First, we determined the corresponding Green’s function and some of its properties;
then the boundary value problem (1) and (2) was converted to an equivalent Fredholm
integral equation of the second kind by using Green’s function. In Section 3, by means
of the properties of the function, the functional-type cone expansion–compression fixed-
point theorem and the Leggett–Williams fixed-point theorem, we showed the existence
of multiple positive solutions. Finally in Section 4, we give some illustrative examples to
support the main results.
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2. Preliminaries

In this section, for the convenience of the reader, we give some definitions and lemmas
concerning the fractional calculus theory used in our proofs. For details, see [1,3,4].

Definition 1. [3] The Riemann–Liouville fractional integral operator of the order δ > 0 for a
function f : (0,+∞) −→ R is defined as

Iδ
0+ f (t) =

1
Γ(δ)

∫ t

0
(t− s)δ−1 f (s) ds,

provided that the right side is pointwise defined on (0,+∞).

Definition 2. [3] The Riemann–Liouville fractional derivative operator of the order δ > 0 of a
continuous function f : (0,+∞) −→ R is given by

Dδ
0+ f (t) =

1
Γ(n− δ)

( d
dt

)n ∫ t

0
(t− s)n−δ−1 f (s) ds,

where n = [δ] + 1, and [δ] denotes the integral part of the number δ, provided the right-hand side is
pointwisely defined on (0,+∞).

Lemma 1. [3] Assume that f ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of the order δ > 0
that belongs to C(0, 1) ∩ L(0, 1). Then

Iδ
0+Dδ

0+ f (t) = f (t) + c1tδ−1 + c2tδ−2 + · · ·+ cntδ−n,

where ci ∈ R, and i = 1, 2, ...., n with n− 1 < δ ≤ n.

In [11], the authors derived Green’s function in relation to problem (1) and (2). More
precisely, the authors demonstrated the following lemma:

Lemma 2. [11] We have
Dδ

0+u(t) + y(t) = 0 0 < t < 1, (3)

u(0) = 0 u(1) = λ
∫ 1

0
h(r)u(r)dr, (4)

where 1 < δ ≤ 2. Assume that 1− λ
∫ 1

0
h(r)rδ−1dr 6= 0 and y ∈ C[0, 1] then the boundary value

problem (3) and (4) has the unique solution u ∈ C[0, 1] as defined by the expression

u(t) =
∫ 1

0
G(t, s)y(s) ds,

where G(t, s) is Green’s function given by

G(t, s) = G1(t, s) + G2(t, s)

with

G1(t, s) =


tδ−1(1−s)δ−1−(t−s)δ−1

Γ(δ) , 0 ≤ s ≤ t ≤ 1,
tδ−1(1−s)δ−1

Γ(δ) , 0 ≤ t ≤ s ≤ 1,
(5)

and

G2(t, s) =
λtδ−1

1− λ
∫ 1

0 h(r)rδ−1dr

∫ 1

0
h(r)G1(r, s) dr. (6)
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Lemma 3. [6] The function G1(t, s) given in Lemma 2 has the following properties:

(i) G1(t, s) is a continuous function for all t, s ∈ [0, 1].
(ii) G1(t, s) > 0 for all t, s ∈ (0, 1).

(iii) max
0≤t≤1

G1(t, s) = G1(s, s) =
sδ−1(1− s)δ−1

Γ(δ)
for s ∈ (0, 1).

(iv) There exists a positive function γ ∈ C(0, 1) such that

γ(s)G1(s, s) ≤ min
1/4≤t≤3/4

G1(t, s) for s ∈ (0, 1)

with

γ(s) =


[ 3

4 (1−s)]δ−1−( 3
4−s)δ−1

sδ−1(1−s)δ−1 , 0 < s ≤ r,
1

(4s)δ−1 , r ≤ s < 1,

where 1/4 < r < 3/4 is the unique solution of the equation[3
4
(1− s)

]δ−1
−
(3

4
− s
)δ−1

=
1

4δ−1 (1− s)δ−1.

In the following lemma, we present two inequalities that will be used in the next
section to prove the existence of solutions to the problem (1) and (2).

Lemma 4. Assume that h ≥ 0 on [0, 1], and h was introduced at the boundary conditions (2) as
denoted by A =

∫ 1
0 h(r)rδ−1dr, B =

∫ 1
0 h(r)dr and C =

∫ 3/4
1/4 h(r)dr. Suppose that 1− λA > 0

with λ > 0. Then the Green’s function G(t, s) defined in Lemma 2 satisfies the following inequalities:

max
0≤t≤1

G(t, s) ≤
(

1 +
λB

1− λA

)
G1(s, s) for all s ∈ (0, 1) (7)

k(s)G1(s, s) ≤ min
1/4≤t≤3/4

G(t, s) for all s ∈ (0, 1) (8)

with k(s) =
[

1 +
λC

4(1− λA)

]
γ(s) for s ∈ (0, 1).

Proof. First, from the expression of G and using Lemma 3 part (iii), we have

max0≤t≤1 G(t, s) ≤ G1(s, s) + λ
1−λA

∫ 1
0 h(r)G1(s, s) dr

=

(
1 + λB

1−λA

)
G1(s, s), ∀s ∈ (0, 1).

Second, inequality (8) follows from Lemma 3 part (iv); in fact,

min
1/4≤t≤3/4

G(t, s) ≥ min
1/4≤t≤3/4

G1(t, s) + min
1/4≤t≤3/4

λtδ−1

1− λA

∫ 1

0
h(r)G1(r, s) dr

≥ γ(s)G1(s, s) +
λ

4δ−1(1− λA)

∫ 1

0
h(r)G1(r, s) dr

≥ γ(s)G1(s, s) +
λ

4(1− λA)

∫ 3/4

1/4
h(r)γ(s)G1(s, s) dr

= γ(s)G1(s, s) +
λC

4(1− λA)
γ(s)G1(s, s)

= k(s)G1(s, s), ∀s ∈ (0, 1).
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The proof is complete.

Remark 1. From the continuity and the non-negativeness of the function γ on (0, 1) (see [6]), then
k ∈ C

(
(0, 1), (0,+∞)

)
.

Now, we use the following fixed-point theorems to prove the main results. First, we
give the definition of a cone.

Definition 3. [19]. Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called a
cone if it satisfies the following two conditions:

1. u ∈ P, λ ≥ 0 implies λu ∈ P;
2. u ∈ P, −u ∈ P implies u = 0.

Every cone P ⊂ E induced an ordering in E given by u ≤ v if and only if v− u ∈ P.

Lemma 5. [19]. Let E be an ordered Banach space such that P ⊂ E is a cone. Furthermore, suppose
that Ω1, Ω2, Ω3 are bounded open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, Ω2 ⊂ Ω3. Finally, let
T : P ∩ (Ω3\Ω1) −→ P be a completely continuous operator such that

(A1) ‖Tu‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂Ω1;
(A2) ‖Tu‖ ≤ ‖u‖, Tu 6= u, ∀u ∈ P ∩ ∂Ω2;
(A3) ‖Tu‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂Ω3.

T has at least two fixed points u∗ and u∗∗ in P ∩ (Ω3\Ω1); moreover, u∗ ∈ P ∩ (Ω2\Ω1)
and u∗∗ ∈ P ∩ (Ω3\Ω2).

Definition 4. We say that the map ψ is a non-negative continuous concave functional on a cone P
of a real Banach space E provided that ψ : P −→ [0,+∞) is continuous and

ψ
(
tu + (1− t)v

)
≥ tψ(u) + (1− t)ψ(v),

for all u, v ∈ P and 0 ≤ t ≤ 1.
Let

P(ψ, b, d) = {u ∈ P/ b ≤ ψ(u), ‖u‖ ≤ d}.

Theorem 1. (Leggett–Williams) [20]. Let P be a cone in a real Banach space E, Pc = {u ∈
P/ ‖u‖ ≤ c}, ψ be a non-negative continuous concave positive function on cone P such that
ψ(u) ≤ ‖u‖ for all u ∈ Pc. Suppose T : Pc −→ Pc is completely continuous and there exist
constants 0 < a < b < d ≤ c such that

(B1) {u ∈ P(ψ, b, d)/ ψ(u) > b} 6= ∅ and ψ(Tu) > b for u ∈ P(ψ, b, d),
(B2) ‖Tu‖ < a for u ∈ Pa,
(B3) ψ(Tu) > b for u ∈ P(ψ, b, c) with ‖Tu‖ > d.

Then T has at least three fixed points u1, u2 and u3 such that ‖u1‖ < a, b < ψ(u2), ‖u3‖ > a
with ψ(u3) < b.

3. Existence of Multiple Positive Solutions

This section is devoted to proving the existence of multiple positive solutions for
problem (1) and (2). For this end, we introduce the following notations:

K =
1

Γ(δ + 1)
+

Γ(δ)
Γ(2δ)

· λh∗

1− λA
, (9)

M =

[(
1 +

λB
1− λA

) ∫ 1

0
G1(s, s) ds

]−1

, (10)
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N =

( ∫ 3/4

1/4
k(s)G1(s, s) ds

)−1

. (11)

Let E be the Banach space
(
C[0, 1], ‖ · ‖

)
where ‖u‖ = max

0≤t≤1
|u(t)|. Define the cone

P ⊂ E by
P = {u ∈ E/ u(t) ≥ 0, t ∈ [0, 1]}

and the operator T : E −→ E by

Tu(t) =
∫ 1

0
G(t, s) f (s, u(s)) ds (12)

with G defined in Lemma 2.
It is clear that the fixed points of the operator T are the solutions to the problem (1)

and (2).

Lemma 6. Assume that f ∈ C
(
[0, 1]× [0,+∞), [0,+∞)

)
. The operator T : P −→ P defined

by (12) is completely continuous.

Proof. By Lemma 4 G(t, s) ≥ 0,so Tu(t) ≥ 0 for all u ∈ P. The operator T : P −→ P is
continuous in view of continuity of the function G(t, s) and f (s, u(s)). LetM⊂ P be bounded,
which is to say there exists a positive R > 0 such thatM = {u ∈ P/ ‖u‖ ≤ R}. Let

L = max
0≤t≤1,0≤u≤R

| f (t, u(t))|+ 1.

From inequality (7) and for all u ∈ M, we have

|Tu(t)| =

∣∣∣∣ ∫ 1

0
G(t, s) f (s, u(s)) ds

∣∣∣∣
≤ L

Γ(δ)

(
1 +

λB
1− λA

) ∫ 1

0
sδ−1(1− s)δ−1 ds

= L
(

1 +
λB

1− λA

)
Γ(δ)
Γ(2δ)

.

Hence, T(M) is bounded. On the other hand given ε > 0, set

η =
1
2

(
ε

LK

)1/(δ−1)

.

Now, we show that whenever t1, t2 ∈ [0, 1] and 0 < t2 − t1 < η, then
∣∣Tu(t2) −

Tu(t1)
∣∣ < ε. In fact,

∣∣Tu(t2)− Tu(t1)
∣∣ =

∣∣∣∣ ∫ 1

0

[
G(t2, s)− G(t1, s)

]
f (s, u(s)) ds

∣∣∣∣
≤

∫ 1

0

∣∣∣G(t2, s)− G(t1, s)
∣∣∣ f (s, u(s)) ds

< L
∫ 1

0

∣∣∣G(t2, s)− G(t1, s)
∣∣∣ ds.

Then, we have∫ 1

0

∣∣∣G(t2, s)− G(t1, s)
∣∣∣ ds ≤

∫ 1

0

∣∣∣G1(t2, s)− G1(t1, s)
∣∣∣ ds

+
∫ 1

0

∣∣∣G2(t2, s)− G2(t1, s)
∣∣∣ ds.
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From the definition of G1(t, s), we obtained∫ 1

0

∣∣∣G1(t2, s)− G1(t1, s)
∣∣∣ ds =

∫ t1

0

∣∣∣G1(t2, s)− G1(t1, s)
∣∣∣ ds

+
∫ t2

t1

∣∣∣G1(t2, s)− G1(t1, s)
∣∣∣ ds +

∫ 1

t2

∣∣∣G1(t2, s)− G1(t1, s)
∣∣∣ ds

=
1

Γ(δ)

∫ t1

0

∣∣∣tδ−1
2 (1− s)δ−1 − (t2 − s)δ−1 − tδ−1

1 (1− s)δ−1 + (t1 − s)δ−1
∣∣∣ ds

+
1

Γ(δ)

∫ t2

t1

∣∣∣tδ−1
2 (1− s)δ−1 − (t2 − s)δ−1 − tδ−1

1 (1− s)δ−1
∣∣∣ ds

+
1

Γ(δ)

∫ 1

t2

∣∣∣tδ−1
2 (1− s)δ−1 − tδ−1

1 (1− s)δ−1
∣∣∣ ds

<
1

Γ(δ)

[ ∫ t1

0
(tδ−1

2 − tδ−1
1 )(1− s)δ−1 ds +

∫ t2

t1

(tδ−1
2 − tδ−1

1 )(1− s)δ−1 ds

+
∫ 1

t2

(tδ−1
2 − tδ−1

1 )(1− s)δ−1 ds

]

≤ 1
Γ(δ + 1)

(tδ−1
2 − tδ−1

1 ).

Now, denote by H(s) =
∫ 1

0
h(r)G1(r, s) dr and h∗ = max

0≤t≤1
h(t), then from the expres-

sion G2(t, s) represented by (6), bearing in mind that∫ 1

0
H(s) ds ≤ h∗

∫ 1

0

∫ 1

0
G1(r, s) dr ds

≤ h∗

Γ(δ)

∫ 1

0
sδ−1(1− s)δ−1 ds = h∗

Γ(δ)
Γ(2δ)

,

we obtained ∫ 1

0

∣∣∣G2(t2, s)− G2(t1, s)
∣∣∣ ds =

λ(tδ−1
2 − tδ−1

1 )

1− λA

∫ 1

0
H(s) ds

≤ Γ(δ)
Γ(2δ)

· λh∗

1− λA
(tδ−1

2 − tδ−1
1 ).

Then, we deduced that

∣∣Tu(t2)− Tu(t1)
∣∣ < L

(
1

Γ(δ + 1)
+

Γ(δ)
Γ(2δ)

· λh∗

1− λA

)
(tδ−1

2 − tδ−1
1 )

= LK(tδ−1
2 − tδ−1

1 ).

To estimate tδ−1
2 − tδ−1

1 , we used a method applied in [6].
Case 01. η ≤ t1 < t2 < 1

∣∣Tu(t2)− Tu(t1)
∣∣ < LK(tδ−1

2 − tδ−1
1 ) ≤ LK

δ− 1
η2−δ

(t2 − t1)

≤ LKηδ−1 < ε.

Case 02. 0 ≤ t1 < η, t2 < 2η

∣∣Tu(t2)− Tu(t1)
∣∣ < LK(tδ−1

2 − tδ−1
1 ) ≤ LKtδ−1

2 ≤ LK(2η)δ−1 ≤ ε.
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Thus, the set T(M) is equicontinuous in E. As a consequence of the Arzelà–Ascoli
theorem, we concluded that T : P −→ P is completely continuous.

In our first result, we proved the existence of at least two positives solutions for the
problem (1) and (2).

Theorem 2. Assume that f ∈ C
(
[0, 1]× [0,+∞), [0,+∞)

)
. There exist three positive constants

0 < σ1 < σ2 < σ3 such that

(C1) f (t, u) ≥ Nσ1, for (t, u) ∈ [0, 1]× [0, σ1]
(C2) f (t, u) ≤ Mσ2, for (t, u) ∈ [0, 1]× [0, σ2]
(C3) f (t, u) ≥ Nσ3, for (t, u) ∈ [0, 1]× [0, σ3].

Then the problem (1) and (2) has at least two positive solutions u∗, u∗∗ ∈ P with

σ1 ≤ ‖u∗‖ < σ2 and σ2 < ‖u∗∗‖ ≤ σ3.

Proof. We know by Lemma 6 that T : P −→ P is completely continuous. Now, we divided
the proof into three steps.

Step 01. Let Ω1 = {u ∈ P/ ‖u‖ < σ1}. For any u ∈ P ∩ ∂Ω1, we have ‖u‖ = σ1 and
0 ≤ u(t) ≤ σ1 for all t ∈ [0, 1]. It follows from condition (C1) and Lemma 4 inequality (8)
that for t ∈ [0, 1]

‖Tu‖ = max
0≤t≤1

∣∣∣∣ ∫ 1

0
G(t, s) f (s, u(s)) ds

∣∣∣∣
≥ max

1/4≤t≤3/4

∣∣∣∣ ∫ 1

0
G(t, s) f (s, u(s)) ds

∣∣∣∣
≥ Nσ1

[ ∫ 3/4

1/4
k(s)G1(s, s) ds

]
= σ1 = ‖u‖

which implies that ‖Tu‖ ≥ ‖u‖ ∀u ∈ P ∩ ∂Ω1.
Step 02. Let Ω2 = {u ∈ P/ ‖u‖ < σ2}. For any u ∈ P ∩ ∂Ω2 we have 0 ≤ u(t) ≤ σ2

for all t ∈ [0, 1]. It follows from condition (C2) and Lemma 4 inequality (7) that for t ∈ [0, 1]

‖Tu‖ = max
0≤t≤1

∣∣∣∣ ∫ 1

0
G(t, s) f (s, u(s)) ds

∣∣∣∣
≤

(
1 +

λB
1− λA

) ∫ 1

0
G1(s, s) f (s, u(s)) ds

≤ Mσ2

[(
1 +

λB
1− λA

) ∫ 1

0
G1(s, s) ds

]
= σ2 = ‖u‖

so ‖Tu‖ ≤ ‖u‖ ∀u ∈ P ∩ ∂Ω2.
Step 03. Let Ω3 = {u ∈ P/ ‖u‖ < σ3}. For any u ∈ P ∩ ∂Ω3 we have ‖u‖ = σ3, then

0 ≤ u(t) ≤ σ3 for all t ∈ [0, 1]. Then by condition (C3) we have

‖Tu‖ = max
0≤t≤1

∣∣∣∣ ∫ 1

0
G(t, s) f (s, u(s)) ds

∣∣∣∣
≥ max

1/4≤t≤3/4

∣∣∣∣ ∫ 1

0
G(t, s) f (s, u(s)) ds

∣∣∣∣
≥ Nσ3

[ ∫ 3/4

1/4
k(s)G1(s, s) ds

]
= σ3 = ‖u‖
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which implies that ‖Tu‖ ≥ ‖u‖ ∀u ∈ P ∩ ∂Ω3. By Lemma 5, T has at least two fixed points
(u∗ and u∗∗) in P ∩ (Ω3\Ω1); therefore the problem (1) and (2) has at least two positive
solutions, u∗ and u∗∗,∈ P such that

σ1 ≤ ‖u∗‖ < σ2 and σ2 < ‖u∗∗‖ ≤ σ3.

In the next result, we show the existence of at least three positive solutions of the
boundary value problem (1) and (2).

Let the non-negative continuous concave positive functional ψ on the cone P be
defined by

ψ(u) = min
1/4≤t≤3/4

|u(t)|.

It is easy to verify that, ∀u ∈ P ψ(u) ≤ ‖u‖.

Theorem 3. Assume that f ∈ C
(
[0, 1]× [0,+∞), [0,+∞)

)
and there exist constants

0 < a < b < c such that

(H1) f (t, u) < Ma, for (t, u) ∈ [0, 1]× [0, a]
(H2) f (t, u) ≥ Nb, for (t, u) ∈ [1/4, 3/4]× [b, c]
(H3) f (t, u) ≤ Mc, for (t, u) ∈ [0, 1]× [0, c].

Then the problem (1) and (2) has at least three positive solutions—u1, u2 and u3—with

max
0≤t≤1

|u1(t)| < a, b < min
1/4≤t≤3/4

|u2(t)| < max
0≤t≤1

|u2(t)| ≤ c,

a < max
0≤t≤1

|u3(t)| ≤ c, min
1/4≤t≤3/4

|u3(t)| < b.

Proof. We show that all the conditions of Theorem 1 were satisfied. Let u ∈ Pc then ‖u‖ ≤ c
and by (H3) with Equation (10), we have

‖Tu‖ = max
0≤t≤1

∣∣∣∣ ∫ 1

0
G(t, s) f (s, u(s)) ds

∣∣∣∣
≤

(
1 +

λB
1− λA

) ∫ 1

0
G1(s, s) f (s, u(s)) ds

≤ Mc

[(
1 +

λB
1− λA

) ∫ 1

0
G1(s, s) ds

]
= c.

Hence T : Pc −→ Pc, and by Lemma 6 is completely continuous.
Choosing u(t) = (b + c)/2 for t ∈ [0, 1]. It is clear that

b + c
2
∈ P(ψ, b, c) and ψ

(
b + c

2

)
> b;

therefore, {u ∈ P(ψ, b, c)/ ψ(u) > b} 6= ∅. Let u ∈ P(ψ, b, c) then b ≤ u(t) ≤ c for
t ∈ [1/4, 3/4]. From assumption (H2) and Equation (11), we obtain

ψ(Tu) = min
1/4≤t≤3/4

∫ 1

0
G(t, s) f (s, u(s)) ds

≥
∫ 1

0
k(s)G1(s, s) f (s, u(s)) ds

> Nb
∫ 3/4

1/4
k(s)G1(s, s) ds.

Consequently, we have ψ(Tu) > b ∀u ∈ P(ψ, b, c).
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Hence, condition (B1) from Theorem 1 holds. Now, we show that the condition (B2) of
Theorem 1 is satisfied. If u ∈ Pa then ‖u‖ ≤ a. Assumption (H1) implies that f (t, u) < Ma
for t ∈ [0, 1]. Thus

‖Tu‖ = max
0≤t≤1

∣∣∣∣ ∫ 1

0
G(t, s) f (s, u(s)) ds

∣∣∣∣ ≤ (1 +
λB

1− λA

) ∫ 1

0
G1(s, s) f (s, u(s)) ds

< Ma
(

1 +
λB

1− λA

) ∫ 1

0
G1(s, s) ds = a.

This implies that condition (B2) from Theorem 1 is satisfied.
Finally, we prove that the condition (B3) of Theorem 1 w satisfied. If u ∈ P(ψ, b, c)

then b ≤ u(t) ≤ c for 1/4 ≤ t ≤ 3/4. From assumption (H2), we have

ψ(Tu) = min
1/4≤t≤3/4

∫ 1

0
G(t, s) f (s, u(s)) ds

≥
∫ 1

0
k(s)G1(s, s) f (s, u(s)) ds

> Nb
( ∫ 3/4

1/4
k(s)G1(s, s) ds

)
.

Thus, the condition (B3) from Theorem 1 is also satisfied. By Theorem 1, problem (1)
and (2) has at least three positives solutions u1, u2 and u3 with

max
0≤t≤1

|u1(t)| < a, b < min
1/4≤t≤3/4

|u2(t)| < max
0≤t≤1

|u2(t)| ≤ c,

a < max
0≤t≤1

|u3(t)| ≤ c, min
1/4≤t≤3/4

|u3(t)| < b.

4. Examples

In this section, we provide the following examples to demonstrate the consistency of
the main theorems.

Example 1. Consider the following problem D3/2
0+ u(t) + f (t, u(t)) = 0, 0 < t < 1

u(0) = 0 u(1) = 2
∫ 1

0
su(s)ds,

(13)

with

f (t, u) =
u3

16
+

et/2

8
; t ∈ [0, 1].

In system (13), we see that δ =
3
2

and λ = 2 and h(t) = t. Then A =
∫ 1

0
h(r)r1/2 dr =∫ 1

0
r3/2 dr =

2
5

with condition

1− λA = 1− 4/5 > 0 holds.

B =
∫ 1

0
r dr =

1
2

and C =
∫ 3/4

1/4
r dr =

1
4

. By simple calculation, we obtain

M ≈ 0.3761 and N ≈ 8.4092.

Choosing σ1 =
1

80
, σ2 = 2 and σ3 = 14. We get
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(C1)’ f (t, u) =
u3

16
+

et/2

8
> 0.125 ≥ Nσ1 ≈ 0.1051 for t ∈ [0, 1] and ‖u‖ = 1

80

(C2)’ f (t, u) =
u3

16
+

et/2

8
≤ 0.7061 ≤ Mσ2 ≈ 0.7522 for t ∈ [0, 1] and ‖u‖ = 2

(C3)’ f (t, u) =
u3

16
+

et/2

8
≥ 171.6 ≥ Nσ3 ≈ 117.7288 for t ∈ [0, 1] and ‖u‖ = 14.

With the use of Theorem 2, problem (13) has at least two positive solutions, u∗ and u∗∗

such that
1

80
≤ ‖u∗‖ < 2 and 2 < ‖u∗∗‖ ≤ 14.

Example 2. Now, we consider the same boundary value problem D3/2
0+ u(t) + f (t, u(t)) = 0, 0 < t < 1

u(0) = 0 u(1) = 2
∫ 1

0
su(s)ds,

(14)

where

f (t, u) =


t

25
+ 9u4, u < 1,

89
10

+
t

25
+

u
10

, u ≥ 1.

We have
M ≈ 0.3761 and N ≈ 8.4092.

Choosing a =
1
5

, b = 1 and c = 35 there hold

(H1)’ f (t, u) =
t

25
+ 9u4 ≤ 0.0544 < Ma ≈ 0.0752 for (t, u) ∈ [0, 1]× [0, 1/5]

(H2)’ f (t, u) =
89
10

+
t

25
+

u
10
≥ 9.01 > Nb ≈ 8.4092 for (t, u) ∈ [1/4, 3/4]× [1, 35]

(H3)’ f (t, u) =
89
10

+
t

25
+

u
10
≤ 12.44 < Mc ≈ 13.1635 for (t, u) ∈ [0, 1]× [0, 35].

With the use of Theorem 3, problem (14) has at least three positive solutions, u1, u2 and u3 with

max
0≤t≤1

|u1(t)| <
1
5

, 1 < min
1/4≤t≤3/4

|u2(t)| < max
0≤t≤1

|u2(t)| ≤ 35,

1
5
< max

0≤t≤1
|u3(t)| ≤ 35, min

1/4≤t≤3/4
|u3(t)| < 1.

Example 3. Let us consider the following problem D3/2
0+ u(t) + f (t, u(t)) = 0, 0 < t < 1

u(0) = 0 u(1) =
∫ 1

0

√
su(s)ds,

(15)

with

f (t, u) =


1

20
t2 + 12u3, u < 1,

35
3

+
1
20

t2 +
u
3

, u ≥ 1.
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In system (15), we see that δ =
3
2

and λ = 1 and h(t) =
√

t. Then A =
∫ 1

0
h(r)r1/2 dr =∫ 1

0
r dr =

1
2

on the condition that

1− λA = 1− 1/2 > 0 holds.

B =
∫ 1

0

√
r dr =

2
3

and C =
∫ 3/4

1/4

√
r dr =

3
√

3− 1
12

. By simple calculation, we obtain

M ≈ 0.9671 and N ≈ 11.6313.

Choosing a =
1

10
, b = 1 and c = 20 there satisfy

(H1)" f (t, u) =
1
20

t2 + 12u3 ≤ 0.062 < Ma ≈ 0.0967 for (t, u) ∈ [0, 1]× [0, 1/10]

(H2)" f (t, u) =
35
3

+
1

20
t2 +

u
3
≥ 12.003 > Nb ≈ 11.6313 for (t, u) ∈ [1/4, 3/4]× [1, 20]

(H3)" f (t, u) =
35
3

+
1

20
t2 +

u
3
≤ 18.384 < Mc ≈ 19.342 for (t, u) ∈ [0, 1]× [0, 20].

Then all conditions of Theorem 3 hold. Thus, the problem (15) has at least three positive
solutions—u1, u2 and u3—with

max
0≤t≤1

|u1(t)| <
1
10

, 1 < min
1/4≤t≤3/4

|u2(t)| < max
0≤t≤1

|u2(t)| ≤ 20,

1
10

< max
0≤t≤1

|u3(t)| ≤ 20, min
1/4≤t≤3/4

|u3(t)| < 1.
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