Methylidyne Cavity Ring-Down Spectroscopy in a Microwave Plasma Discharge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Details
2.2. Diatomic Spectra Computation Details
3. Results and Discussion
3.1. Methylidyne Overview Spectra
3.2. Emission and Cavity Ring-Down Spectra of the A–X and B–X Bands
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BESP | Boltzmann equilibrium spectrum program |
CH | methylidyne |
CGP | Christian Gerhard Parigger |
CRD | cavity ring-down |
CRDS | cavity ring-down spectroscopy |
LIBS | laser-induced breakdown spectroscopy |
LIFBASE | database and spectral simulation program |
LSF | line strength file |
LN | László Nemes |
MoLLIST | molecular line lists, intensities, and spectra |
Nd:YAG | neodymium-doped yttrium aluminum garnet |
NMT | Nelder–Mead temperature |
HCO | oxymethyl |
References
- O’Keefe, A.; Deacon, D.A.G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 1988, 59, 2544–2554. [Google Scholar] [CrossRef] [Green Version]
- Romanini, D.; Lehmann, K.K. Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta. J. Chem. Phys 1993, 99, 6287–6301. [Google Scholar] [CrossRef] [Green Version]
- Huestis, D.L.; Copeland, R.A.; Knutsen, K.; Slanger, T.G.; Jongma, R.T.; Boogaarts, M.G.H.; Meijer, G. Branch intensities and oscillator strengths for the Herzberg absorption systems in oxygen. Can. J. Phys. 1994, 72, 1109–1121. [Google Scholar] [CrossRef]
- Scherer, J.J.; Paul, J.B.; Collier, C.P.; Saykally, R.J. Cavity ringdown laser absorption spectroscopy and time-of-flight mass spectrometry of jet-cooled copper silicides. Chem. Phys. Lett. 1995, 102, 5190–5199. [Google Scholar]
- O’Keefe, A.; Scherer, J.J.; Cooksy, A.L.; Sheeks, R.; Heath, J.; Saykally, R.J. Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3. Chem. Phys. Lett. 1990, 172, 214–218. [Google Scholar] [CrossRef]
- Jongma, R.T.; Boogaarts, M.G.H.; Holleman, I.; Meijer, G. Trace gas detection with cavity ring down spectroscopy. Rev. Sci. Instrum. 1995, 66, 2821–2828. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Lin, M.C. Kinetics of phenyl radical reactions studied by cavity-ring-down spectroscopy method. J. Am. Chem. Soc. 1993, 115, 4371–4372. [Google Scholar] [CrossRef]
- Yu, T.; Lin, M.C. Kinetics f the C6H5 + CCl4 Reaction in the Gas Phase: Comparison with Liquid-Phase Data. J. Phys. Chem. 1994, 98, 9697–9699. [Google Scholar] [CrossRef]
- Cheskis, S. Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric hydrocarbon flames. J. Chem. Phys. 1995, 102, 1851–1854. [Google Scholar] [CrossRef]
- Zalicki, P.; Ma, Y.; Zare, R.N.; Wahl, E.H.; Dadamino, J.R.; Owano, T.G.; Kruger, C.H. Methyl radical measurement by cavity ring-down spectroscopy. Chem. Phys. Lett. 1995, 234, 269–274. [Google Scholar] [CrossRef]
- Meijer, G.; Boogaarts, M.G.H.; Jongma, R.T.; Parker, D.H.; Wodtke, A.M. Coherent cavity ring down spectroscopy. Chem. Phys. Lett. 1994, 217, 112–116. [Google Scholar] [CrossRef]
- Wang, C.-C.; Nemes, L.; Lin, K.-C. New onservations on the B state of the CH radical from UV multiphoton dissociation of ketene. Chem. Phys. Lett. 1995, 245, 585–590. [Google Scholar] [CrossRef]
- Nemes, L.; Szalay, P.G. Rydberg-Klein-Rees potential function calculations for the ground state (X2Π) and excited (B2Σ−) states of methylidyne (CH) radical +. Models Chem. 1999, 136, 205–214. [Google Scholar]
- Szalay, P.G.; Nemes, L. Tunnelling lifetimes of the rovibronic leveles in the B electronic state of the CH radical obtained from ab initio data. Molec. Phys. 1999, 96, 359–366. [Google Scholar] [CrossRef]
- Hornkohl, J.O.; Nemes, L.; Parigger, C.G. Spectroscopy of Carbon Containing Diatomic Molecules. In Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapors: Advances in the Understanding of the Most Complex High-Temperature Elemental System; Nemes, L., Irle, S., Eds.; World Scientific: Singapore, 2011; Chapter 4; pp. 113–165. [Google Scholar]
- Parigger, C.G.; Hornkohl, J.O. Quantum Mechanics of the Diatomic Molecule with Applications; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Parigger, C.G.; Surmick, D.M.; Helstern, C.M.; Gautam, G.; Bol’shakov, A.A.; Russo, R. Molecular Laser-Induced Breakdown Spectroscopy. In Laser Induced Breakdown Spectroscopy, 2nd ed.; Singh, J.P., Thakur, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 7; pp. 167–212. [Google Scholar]
- Parigger, C.G. Diatomic Line Strengths for Fitting Selected Molecular Transitions of AlO, C2, CN, OH, , NO, and TiO, Spectra. Foundations 2023, 3, 1. [Google Scholar] [CrossRef]
- Brzozowksi, J.; Bunker, P.; Elander, N.; Erman, P. Predissociation effects in the A, B, and C states of CH and the interstellar formation of CH via inverse predissociation. Astrophys. J. 1976, 207, 414–424. [Google Scholar] [CrossRef]
- Erman, P. Time Resolved Spectroscopy of Small Molecules. In Molecular Spectroscopy Volume 6: A Review of the Literature published in 1977 and 1978; Barrow, R.F., Long, D.A., Sheridian, J., Eds.; The Royal Society Chemistry: London, UK, 1979; Chapter 5; pp. 174–231. [Google Scholar]
- Erman, P. Astrophysical Applications of Time Resolved Molecular Spectroscopy. Phys. Scr. 1979, 20, 575–581. [Google Scholar] [CrossRef]
- Warnatz, J. Combustion Chemistry; Springer: New York, NY, USA, 1984. [Google Scholar]
- Raiche, G.A.; Jeffries, J.B. Laser-induced fluorescence temperature measurements in a dc arcjet used for diamond deposition. Appl. Opt. 1993, 32, 4629–4635. [Google Scholar] [CrossRef]
- Engeln, R.; Letourneur, K.G.Y.; Boogarts, M.G.H.; van den Sanden, M.C. M; Schram, D.C. Detection of CH in an expanding argon/acetylen plasma using cavity ring down absorption Spectroscopy. Chem. Phys. Lett. 1999, 310, 405–410. [Google Scholar] [CrossRef]
- Ubachs, W.; Meijer, G.; ter Meulen, J.J.; Dymanus, A. Hyperfine structure and lifetime of the C2Σ+, v = 0 state of CH. J. Chem. Phys. 1986, 84, 3032–3041. [Google Scholar] [CrossRef] [Green Version]
- Parigger, C.G.; Woods, A.C.; Surmick, D.M.; Gautam, G.; Witte, M.J.; Hornkohl, J.O. Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectrochim. Acta Part B At. Spectrosc. 2015, 107, 132–138. [Google Scholar] [CrossRef]
- MATLAB version 9.12.0 (R2022a Update 5); The MathWorks, Inc.: Natick, MA, USA, 2022.
- Surmick, D.M.; (The University of Tennessee, University of Tennessee Space Institute, Tullahoma, TN, USA); Hornkohl, J.O.; (The University of Tennessee, University of Tennessee Space Institute, Tullahoma, TN, USA). Personal communication, 2016.
- Hornkohl, J.O.; (The University of Tennessee, University of Tennessee Space Institute, Tullahoma, TN, USA). Personal communication, 2004.
- Luque, J.; Crosley, D.R. LIFBASE: Database and Spectral Simulation Program (Version 1.9). 1999, SRI International Report MP 99-009. Available online: http://www.sri.com/cem/lifbase (accessed on 2 January 2023).
- Luque, J.; Crosley, D.R. LIFBASE: Database and Spectral Simulation for Diatomic Molecules. 2021. Available online: https://www.sri.com/platform/lifbase-spectroscopy-tool (accessed on 2 January 2023).
- Luque, J.; Crosley, D.R. Electronic transition moment and rotational transition probabilities in the CH. I. A2Δ − X2Π system. J. Chem. Phys. 1996, 104, 2146–2155. [Google Scholar] [CrossRef]
- Luque, J.; Crosley, D.R. Electronic transition moment and rotational transition probabilities in the CH. II. B2Σ − X2Π system. J. Chem. Phys. 1996, 104, 3907–3913. [Google Scholar] [CrossRef]
- Tennyson, J.; Yurchenko, S.N.; Al-Refaie, A.F.; Clark, V.H.J.; Chubb, K.L.; Conway, E.K.; Dewan, A.; Gorman, M.N.; Hill, C.; Lynas-Gray, A.E.; et al. The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 2020, 255, 107228. [Google Scholar] [CrossRef]
- Masseron, T.; Plez, B.; Van Eck, S.; Colin, R.; Daoutidis, I.; Godefroid, M.; Coheur, P.-F.; Bernath, P.; Jorissen, A.; Christlieb, N. CH in stellar atmospheres: An extensive linelist. Astron. Astrophys. 2014, 571, A47. [Google Scholar] [CrossRef] [Green Version]
- Furtenbacher, T.; Hegedus, S.T.; Tennyson, J.; Császár, A.G. Analysis of measured high-resolution doublet rovibronic spectra and related line lists of 12CH and 16OH. Phys. Chem. Chem. Phys. 2022, 24, 19287–19301. [Google Scholar] [CrossRef]
1.5 | 2.5 | P | 0 | 0 | +f | −f | 2 | 3 | 24,663.5612 | 1569.6083 | 23,093.9531 | 0.2013 | 0.8026 |
1.5 | 2.5 | P | 0 | 0 | +f | −f | 2 | 2 | 24,663.5612 | 1489.0759 | 23,174.4844 | 0.1996 | 0.7973 |
1.5 | 2.5 | P | 0 | 0 | −e | +e | 1 | 2 | 24,663.5612 | 1489.2381 | 23,174.3223 | 0.2004 | 0.8001 |
1.5 | 2.5 | P | 0 | 0 | −e | +e | 1 | 3 | 24,663.5612 | 1569.1156 | 23,094.4453 | 0.2005 | 0.7986 |
1.5 | 1.5 | Q | 0 | 0 | +f | −e | 2 | 1 | 24,663.5612 | 1433.8288 | 23,229.7324 | 0.7998 | 3.200 |
1.5 | 1.5 | Q | 0 | 0 | +f | −e | 2 | 2 | 24,663.5612 | 1482.8608 | 23,180.7012 | 0.8038 | 3.211 |
1.5 | 1.5 | Q | 0 | 0 | −e | +f | 1 | 2 | 24,663.5612 | 1483.1056 | 23,180.4551 | 0.8075 | 3.224 |
1.5 | 1.5 | Q | 0 | 0 | −e | +f | 1 | 1 | 24,663.5612 | 1433.8051 | 23,229.7559 | 0.7963 | 3.184 |
1.5 | 0.5 | R | 0 | 0 | +f | −f | 2 | 1 | 24,663.5612 | 1416.0299 | 23,247.5312 | 2.005 | 8.020 |
1.5 | 0.5 | R | 0 | 0 | −e | +e | 1 | 0 | 24,663.5612 | 1415.9191 | 23,247.6426 | 2.005 | 8.021 |
2.5 | 3.5 | P | 0 | 0 | −f | +f | 2 | 4 | 24,661.8291 | 1683.5813 | 22,978.2480 | 0.0070179 | 0.027893 |
2.5 | 3.5 | P | 0 | 0 | −f | +f | 2 | 3 | 24,661.8291 | 1573.3187 | 23,088.5098 | 0.3709 | 1.478 |
2.5 | 3.5 | P | 0 | 0 | +e | −e | 3 | 3 | 24,750.4863 | 1573.6950 | 23,176.7910 | 0.2022 | 0.8070 |
2.5 | 3.5 | P | 0 | 0 | +e | −e | 3 | 4 | 24,750.4863 | 1682.7661 | 23,067.7207 | 0.5651 | 2.248 |
2.5 | 3.5 | P | 0 | 0 | −f | +f | 3 | 4 | 24,750.4863 | 1683.5813 | 23,066.9043 | 0.5666 | 2.254 |
2.5 | 3.5 | P | 0 | 0 | −f | +f | 3 | 3 | 24,750.4863 | 1573.3187 | 23,177.1680 | 0.2009 | 0.8017 |
2.5 | 3.5 | P | 0 | 0 | +e | −e | 2 | 3 | 24,661.8291 | 1573.6950 | 23,088.1348 | 0.3707 | 1.478 |
2.5 | 3.5 | P | 0 | 0 | +e | −e | 2 | 4 | 24661.8291 | 1682.7661 | 22,979.0625 | 0.0072268 | 0.028723 |
2.5 | 2.5 | Q | 0 | 0 | −f | +e | 2 | 2 | 24,661.8291 | 1489.2381 | 23,172.5918 | 1.738 | 6.944 |
2.5 | 2.5 | Q | 0 | 0 | −f | +e | 2 | 3 | 24,661.8291 | 1569.1156 | 23,092.7129 | 0.1448 | 0.5773 |
2.5 | 2.5 | Q | 0 | 0 | +e | −f | 3 | 3 | 24,750.4863 | 1569.6083 | 23,180.8789 | 2.093 | 8.354 |
2.5 | 2.5 | Q | 0 | 0 | +e | −f | 3 | 2 | 24,750.4863 | 1489.0759 | 23,261.4102 | 0.4911 | 1.964 |
2.5 | 2.5 | Q | 0 | 0 | −f | +e | 3 | 2 | 24,750.4863 | 1489.2381 | 23,261.2480 | 0.4952 | 1.980 |
2.5 | 2.5 | Q | 0 | 0 | −f | +e | 3 | 3 | 24,750.4863 | 1569.1156 | 23,181.3711 | 2.089 | 8.335 |
0.5 | 1.5 | P | 0 | 0 | −f | +f | 0 | 1 | 27,114.2564 | 1433.9116 | 25,680.3457 | 2.498 | 0.2572 |
0.5 | 1.5 | P | 0 | 0 | −f | +f | 0 | 2 | 27,114.2564 | 1483.2126 | 25,631.0430 | 0.1750 | 0.018018 |
0.5 | 1.5 | P | 0 | 0 | +e | −e | 1 | 2 | 27,139.5581 | 1482.9686 | 25,656.5898 | 2.493 | 0.2567 |
0.5 | 1.5 | P | 0 | 0 | +e | −e | 1 | 1 | 27,139.5581 | 1433.9356 | 25,705.6230 | 0.1802 | 0.018552 |
0.5 | 0.5 | Q | 0 | 0 | −f | +e | 0 | 0 | 27,114.2564 | 1416.0057 | 25,698.2500 | 1.337 | 0.1376 |
0.5 | 0.5 | Q | 0 | 0 | +e | −f | 1 | 0 | 27,139.5581 | 1416.1159 | 25,723.4414 | 1.337 | 0.1376 |
1.5 | 2.5 | P | 0 | 0 | +f | −f | 1 | 2 | 27,139.5166 | 1489.1826 | 25,650.3340 | 3.508 | 0.3612 |
1.5 | 2.5 | P | 0 | 0 | +f | −f | 1 | 3 | 27,139.5166 | 1569.7157 | 25,569.8008 | 0.1008 | 0.010374 |
1.5 | 2.5 | P | 0 | 0 | −e | +e | 2 | 3 | 27,190.0681 | 1569.2245 | 25,620.8438 | 3.505 | 0.3609 |
1.5 | 2.5 | P | 0 | 0 | −e | +e | 2 | 2 | 27,190.0681 | 1489.3449 | 25,700.7227 | 0.1032 | 0.010624 |
1.5 | 1.5 | Q | 0 | 0 | +f | −e | 1 | 2 | 27,139.5166 | 1482.9686 | 25,656.5488 | 0.019638 | 0.0020218 |
1.5 | 1.5 | Q | 0 | 0 | +f | −e | 1 | 1 | 27,139.5166 | 1433.9356 | 25,705.5801 | 3.723 | 0.3833 |
1.5 | 1.5 | Q | 0 | 0 | −e | +f | 2 | 1 | 27,190.0681 | 1433.9116 | 25,756.1562 | 0.017592 | 0.0018112 |
1.5 | 1.5 | Q | 0 | 0 | −e | +f | 2 | 2 | 27,190.0681 | 1483.2126 | 25,706.8555 | 3.725 | 0.3835 |
1.5 | 0.5 | R | 0 | 0 | +f | −f | 1 | 0 | 27,139.5166 | 1416.1159 | 25,723.4004 | 0.6683 | 0.068806 |
1.5 | 0.5 | R | 0 | 0 | −e | +e | 2 | 0 | 27,190.0681 | 1416.0057 | 25,774.0625 | 0.6683 | 0.068803 |
2.5 | 3.5 | P | 0 | 0 | −f | +f | 2 | 3 | 27,189.9989 | 1573.4256 | 25,616.5742 | 4.511 | 0.4645 |
2.5 | 3.5 | P | 0 | 0 | −f | +f | 2 | 4 | 27,189.9989 | 1683.6892 | 25,506.3105 | 0.070992 | 0.0073091 |
2.5 | 3.5 | P | 0 | 0 | +e | −e | 3 | 4 | 27,265.6964 | 1682.8762 | 25,582.8203 | 4.510 | 0.4643 |
2.5 | 3.5 | P | 0 | 0 | +e | −e | 3 | 3 | 27,265.6964 | 1573.8017 | 25,691.8945 | 0.072257 | 0.0074393 |
2.5 | 2.5 | Q | 0 | 0 | −f | +e | 2 | 2 | 27,189.9989 | 1489.3449 | 25,700.6543 | 5.838 | 0.6010 |
2.5 | 2.5 | Q | 0 | 0 | +e | −f | 3 | 3 | 27,265.6964 | 1569.7157 | 25,695.9805 | 5.838 | 0.6011 |
2.5 | 1.5 | R | 0 | 0 | −f | +f | 2 | 1 | 27,189.9989 | 1433.9116 | 25,756.0879 | 1.494 | 0.1538 |
2.5 | 1.5 | R | 0 | 0 | −f | +f | 2 | 2 | 27,189.9989 | 1483.2126 | 25,706.7871 | 0.1099 | 0.011316 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemes, L.; Parigger, C.G. Methylidyne Cavity Ring-Down Spectroscopy in a Microwave Plasma Discharge. Foundations 2023, 3, 16-24. https://doi.org/10.3390/foundations3010002
Nemes L, Parigger CG. Methylidyne Cavity Ring-Down Spectroscopy in a Microwave Plasma Discharge. Foundations. 2023; 3(1):16-24. https://doi.org/10.3390/foundations3010002
Chicago/Turabian StyleNemes, László, and Christian G. Parigger. 2023. "Methylidyne Cavity Ring-Down Spectroscopy in a Microwave Plasma Discharge" Foundations 3, no. 1: 16-24. https://doi.org/10.3390/foundations3010002
APA StyleNemes, L., & Parigger, C. G. (2023). Methylidyne Cavity Ring-Down Spectroscopy in a Microwave Plasma Discharge. Foundations, 3(1), 16-24. https://doi.org/10.3390/foundations3010002