Random Solutions for Generalized Caputo Periodic and Non-Local Boundary Value Problems
Abstract
:1. Introduction
2. Preliminaries
- (i)
- The function is jointly measurable for each
- (ii)
- The function is continuous for almost each and .
3. Existence of Solutions
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baleanu, D.; Agarwal, R.P. Fractional calculus in the sky. Adv. Differ. Equ. 2021, 2021, 117. [Google Scholar] [CrossRef]
- Ray, S.S.; Atangana, A.; Noutchie, S.C.O.; Kurulay, M.; Bildik, N.; Kilicman, A. Fractional calculus and its applications in applied mathematics and other sciences. Math. Probl. Eng. 2014, 2014, 849395. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Graef, J.R.; Henderson, J. Implicit Fractional Differential and Integral Equations: Existence and Stability; de Gruyter: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Lazreg, J.E.; Nieto, J.J.; Zhou, Y. Fractional Differential Equations and Inclusions: Classical and Advanced Topics; World Scientific: Singapore, 2023. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.; Tariboon, J. Quantum Calculus. New Concepts, Impulsive IVPs and BVPs, Inequalities. Trends in Abstract and Applied Analysis; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Salim, A.; Ahmad, B.; Benchohra, M.; Lazreg, J.E. Boundary value problem for hybrid generalized Hilfer fractional differential equations. Differ. Equ. Appl. 2022, 14, 379–391. [Google Scholar] [CrossRef]
- Salim, A.; Boumaaza, M.; Benchohra, M. Random solutions for mixed fractional differential equations with retarded and advanced arguments. J. Nonlinear Convex. Anal. 2022, 23, 1361–1375. [Google Scholar]
- Salim, A.; Lazreg, J.E.; Ahmad, B.; Benchohra, M.; Nieto, J.J. A study on k-generalized ψ-Hilfer derivative operator. Vietnam J. Math. 2022. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics Application of Fractional Calculus to Dynamics of Particles; Fields and Media; Springer: Berlin/Heidelberg, Germany; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Yakubovich, S.B.; Luchko, Y.F. The Hypergeometric Approach to Integral Transforms and Convolutions; Mathematics and its Appl. 287; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1994. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghanmi, M.; Alsaedi, A. Existence results for a nonlinear coupled system involving both Caputo and Riemann–Liouville generalized fractional derivatives and coupled integral boundary conditions. Rocky Mt. J. Math. 2020, 50, 1901–1922. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghanmi, M.; Alsaedi, A. A study of generalized Caputo fractional differential equations and inclusions with Steiltjes-type fractional integral boundary conditions via fixed-point theory. J. Appl. Anal. Comput. 2021, 11, 1208–1221. [Google Scholar] [CrossRef] [PubMed]
- Luchko, Y.; Trujillo, J.J. Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 2007, 10, 249–267. [Google Scholar]
- Boumaaza, M.; Benchohra, M.; Henderson, J. Random coupled Caputo-type modification of Erdélyi-Kober fractional differential systems in generalized banach spaces with retarded and advanced arguments. Commun. Optim. Theory 2021, 2021, 3. [Google Scholar]
- Benchohra, M.; Berhoun, F.; Boumaaza, M.; Sivasundaram, S. Caputo type modification of the Erdelyi-Kober fractional implicit differential equations with retarded and advanced arguments in Banach Spaces. Nonlinear Stud. 2020, 27, 285–296. [Google Scholar]
- Ahmad, B.; Sivasundaram, S. Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation. Appl. Math. Comput. 2008, 197, 515–524. [Google Scholar] [CrossRef]
- Heris, A.; Salim, A.; Benchohra, M.; Karapinar, E. Fractional partial random differential equations with infinite delay. Results Phys. 2022, 37, 105557. [Google Scholar] [CrossRef]
- Malki, Z.; Berhoun, F.; Ouahab, A. System of boundary random fractional differential equations via Hadamard derivative. Ann. Univ. Paedagog. Crac. Stud. Math. 2021, 20, 17–41. [Google Scholar] [CrossRef]
- El-Salam, S.A.A. On some boundary value problems with Non-local and periodic conditions. J. Egypt. Math. Soc. 2019, 27, 38. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Oliveira, D.S.; De Oliveira, E.C. Capelas de Oliveira, Hilfer–Katugampola fractional derivative. Comput. Appl. Math. 2018, 37, 3672–3690. [Google Scholar] [CrossRef]
- Itoh, S. Random fixed point theorems with applications to random differential equations in Banach spaces. J. Math. Anal. Appl. 1979, 67, 261–273. [Google Scholar] [CrossRef]
- Engl, H.W. A general stochastic fixed-point theorem for continuous random operators on stochastic domains. J. Math. Anal. Appl. 1978, 66, 220–231. [Google Scholar] [CrossRef]
- Poznyak, A.S. Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques; Elsevier: Amsterdam, The Netherlands, 2008; Volume 1. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, B.; Boumaaza, M.; Salim, A.; Benchohra, M. Random Solutions for Generalized Caputo Periodic and Non-Local Boundary Value Problems. Foundations 2023, 3, 275-289. https://doi.org/10.3390/foundations3020022
Ahmad B, Boumaaza M, Salim A, Benchohra M. Random Solutions for Generalized Caputo Periodic and Non-Local Boundary Value Problems. Foundations. 2023; 3(2):275-289. https://doi.org/10.3390/foundations3020022
Chicago/Turabian StyleAhmad, Bashir, Mokhtar Boumaaza, Abdelkrim Salim, and Mouffak Benchohra. 2023. "Random Solutions for Generalized Caputo Periodic and Non-Local Boundary Value Problems" Foundations 3, no. 2: 275-289. https://doi.org/10.3390/foundations3020022
APA StyleAhmad, B., Boumaaza, M., Salim, A., & Benchohra, M. (2023). Random Solutions for Generalized Caputo Periodic and Non-Local Boundary Value Problems. Foundations, 3(2), 275-289. https://doi.org/10.3390/foundations3020022