Spatial Discretization for Stochastic Semilinear Superdiffusion Driven by Fractionally Integrated Multiplicative Space–Time White Noise
Abstract
:1. Introduction
2. Continuous Problem
2.1. The Spatial Regularity of the Solution Defined in (8)
2.1.1. The Spatial Regularity of the Homogeneous Problem (13) When
2.1.2. The Spatial Regularity of the Homogeneous Problem (13) When
2.1.3. The Spatial Regularity of the Inhomogeneous Problem (14)
3. Spatial Discretization
3.1. The Spatial Regularity of the Solution Defined in (16)
3.1.1. The Spatial Regularity of the Homogeneous Problem (17) When
3.1.2. The Spatial Regularity of the Homogeneous Problem (17) When
3.1.3. The Spatial Regularity of the Inhomogeneous Problem (16)
4. Error Estimates
- 1.
- If , then we have
- 2.
- If , then we have
4.1. Proof of Theorem 2
4.2. Proof of Theorem 1
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2. Green Function and Its Discretized Analogue
Appendix A.3. Green Function G 2 (t,x,y) and Its Discretized Analogue G 2 M (t,x,y)
Appendix A.4. Green Function and Its Discretized Analogue
Appendix A.5. Green Function and Its Discretized Analogue
References
- Gyöngy, I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I. Potential Anal. 1998, 9, 1–25. [Google Scholar] [CrossRef]
- Anton, R.; Cohen, D.; Quer-Sardanyons, L. A fully discrete approximation of the one-dimensional stochastic heat equation. IMA J.Numer. Anal. 2020, 40, 247–284. [Google Scholar] [CrossRef]
- Walsh, J.B. Finite element methods for parabolic stochastic PDE’s. Potential Anal. 2005, 23, 1–43. [Google Scholar] [CrossRef]
- Szabo, T.L. Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 1994, 96, 491–500. [Google Scholar] [CrossRef]
- Chen, W.; Holm, S. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 2004, 115, 1424–1430. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Deng, W. Galerkin finite element approximations for stochastic space-time fractional wave equations. SIAM J. Numer. Anal. 2017, 55, 3173–3202. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Deng, W.; Nie, D. Galerkin finite element approximation for semilinear stochastic time-tempered fractional wave equations with multiplicative Gaussian noise and additive fractional Gaussian noise. Numer. Math. Theory Methods Appl. 2022, 15, 1063–1098. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Deng, W.; Nie, D. Existence and regularity results for semilinear stochastic time-tempered fractional wave equations with multiplicative Gaussian noise and additive fractional Gaussian noise. Discret. Contin. Dyn. Syst. Ser. S 2023, 16, 2686–2720. [Google Scholar] [CrossRef]
- Zou, G.A.; Atangana, A.; Zhou, Y. Error estimates of a semidiscrete finite element method for fractional stochastic diffusion-wave equations. Numer. Methods Partial. Differ. Equ. 2018, 34, 1834–1848. [Google Scholar] [CrossRef]
- Egwu, B.A.; Yan, A. Galerkin finite element approximation of a stochastic semilinear fractional wave equation driven by fractionally integrated additive noise. Foundation 2023, 3, 290–322. [Google Scholar] [CrossRef]
- Anh, V.V.; Leonenko, N.N.; Ruiz-Medina, M. Space-time fractional stochastic equations on regular bounded open domains. Fract. Calc. Appl. Anal. 2016, 19, 1161–1199. [Google Scholar] [CrossRef]
- Anh, P.T.; Doan, T.S.; Huong, P.T. A variational constant formula for Caputo fractional stochastic differential equations. Statist. Probab. Lett. 2019, 145, 351–358. [Google Scholar] [CrossRef]
- Chen, L. Nonlinear stochastic time-fractional diffusion equations on ℝ: Moments. Hölder regularity and intermittency. Trans. Am. Math. Soc. 2017, 369, 8497–8535. [Google Scholar] [CrossRef]
- Chen, L.; Hu, Y.; Nualart, D. Nonlinear stochastic time-fractional slow and fast diffusion equations on ℝd. Stoch. Process. Appl. 2019, 129, 5073–5112. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Kim, K.H.; Kim, P. Fractional time stochastic partial differential equations. Stoch. Process. Appl. 2015, 125, 1470–1499. [Google Scholar] [CrossRef]
- Al-Maskari, M.; Karaa, S. Strong convergence rates for the approximation of a stochastic time-fractional Allen-Cahn equation. Commun. Nonlinear Sci. Numer. Simul. 2023, 119, 107099. [Google Scholar] [CrossRef]
- Dai, X.; Hong, J.; Sheng, D. Mittag—Leffler Euler Integrator and Large Deviations for Stochastic Space-Time Fractional Diffusion Equations. Potential Anal. 2023. [Google Scholar] [CrossRef]
- Gunzburger, M.; Li, B.; Wang, J. Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise. Numer. Math. 2019, 141, 1043–1077. [Google Scholar] [CrossRef]
- Gunzburger, M.; Li, B.; Wang, J. Sharp convergence rates of time discretization for stochastic time fractional PDEs subject to additive space-time white noise. Math. Comp. 2019, 88, 1715–1741. [Google Scholar] [CrossRef]
- Kang, W.; Egwu, B.A.; Yan, Y.; Pani, K.A. Galerkin finite element approximation of a stochastic semilinear fractional subdiffusion with fractionally integrated additive noise. IMA J. Numer. Anal. 2022, 42, 2301–2335. [Google Scholar] [CrossRef]
- Wu, X.; Yan, Y.; Yan, Y. An analysis of the L1 scheme for stochastic subdiffusion problem driven by integrated space-time white noise. Appl. Numer. Math. 2020, 157, 69–87. [Google Scholar] [CrossRef]
- Wang, J.; Hoult, J.; Yan, Y. Spatial discretization for stochastic semi-linear sub-diffusion equations driven by fractionally integrated multiplicative space-time white noise. Mathemaitcs 2021, 9, 1917. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Kilbas, K.K.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies: Amsterdam, The Netherlands, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoult, J.A.; Yan, Y. Spatial Discretization for Stochastic Semilinear Superdiffusion Driven by Fractionally Integrated Multiplicative Space–Time White Noise. Foundations 2023, 3, 763-787. https://doi.org/10.3390/foundations3040043
Hoult JA, Yan Y. Spatial Discretization for Stochastic Semilinear Superdiffusion Driven by Fractionally Integrated Multiplicative Space–Time White Noise. Foundations. 2023; 3(4):763-787. https://doi.org/10.3390/foundations3040043
Chicago/Turabian StyleHoult, James A., and Yubin Yan. 2023. "Spatial Discretization for Stochastic Semilinear Superdiffusion Driven by Fractionally Integrated Multiplicative Space–Time White Noise" Foundations 3, no. 4: 763-787. https://doi.org/10.3390/foundations3040043
APA StyleHoult, J. A., & Yan, Y. (2023). Spatial Discretization for Stochastic Semilinear Superdiffusion Driven by Fractionally Integrated Multiplicative Space–Time White Noise. Foundations, 3(4), 763-787. https://doi.org/10.3390/foundations3040043