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On the Value of the Cosmological Constant in Entropic Gravity
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Abstract: We explicitly calculate the value of the cosmological constant, Λ, based on the recently
developed theory connecting entropic gravity with quantum events induced by transactions, called
transactional gravity. We suggest a novel interpretation of the cosmological constant and rigorously
show its inverse proportionality to the squared radius of the causal universe Λ ∼ R−2

U .
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1. Introduction

The cosmological constant Λ has played a pivotal role in cosmology ever since Einstein
introduced it in 1917. He invented it with the desire to describe a static universe and
for this purpose to counterbalance the effects of gravity. As explained in detail in [1],
several phases in the history of Λ can be discerned. Hubble’s discovery of the expanding
universe led Einstein to dismiss the cosmological constant in 1931. However, in 1927,
Lamaître already incorporated the cosmological constant into his non-static model of the
universe, interpreting it as a sort of vacuum energy density, which is still today’s standard
interpretation [2]. More precise measurements of the Hubble constant in the 1930s again
undermined the case for a non-zero Λ. In the 1960s, there was a short-lived revival of a
non-zero Λ due to the observation of quasars, which seemed to suggest a non-conventional
expansion of the universe. Afterward, physicists thought for a long time that Λ should be
exactly zero, but observations by Perlmutter, Riess, and collaborators in 1998 [3,4] on Type
Ia supernovae definitively showed that the expansion of the universe is accelerating. This
discovery is empirical evidence that Λ > 0, with a value of Λ ∼ 10−52m−2 (the dimension
is hence an inverse area like in the Ricci tensor), as calculated by the Planck collaboration [5].
However, there is a significant mismatch between the theoretical expectations and the
empirical facts [6], since what would be a natural value of the quantum vacuum energy,
given the theories we have, lies many orders of magnitude away from the measured
reality [7,8]. This raises the question of the true nature of Λ. A second mystery is the
question as to where the striking relation to the age (size) (time is expressed by τ = ct
and hence has the dimension of length), RU , of the causal universe, namely Λ ∼ R−2

U ,
comes from [9]. Attempts have been made to explain the origin and value of the constant
in, e.g., [10–15]. Yet, the topic is far from conclusively settled.

Recently, a connection between the relativistic transactional interpretation of quantum
mechanics and entropic gravity has been found and a transactional theory of gravity
has been developed [16,17]. This theory gives a different physical interpretation of the
cosmological constant, Λ, which, as we will show in this paper, directly leads to the relation
Λ ∼ R−2

U . To this end, we first introduce the basics of transactional gravity and then, in
Section 2, give the main result of this paper, namely the calculation of Λ.

Transactional Gravity

In [16,17], it is shown how empirical spacetime together with its metric structure
emerge from quantum events that happen pairwise by transactions. Quantum systems are
elements of a realm of potentialities that empirically become actualized by transactions,
which consist of the emission and absorption of (on-shell) photons between these systems.
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The choice of a propagator thereby defines the direction of time. Empirical spacetime thus
becomes the connected set of emission and absorption events, between which spacetime
intervals are being created through the four-momentum of the exchanged photons. Let us
look at this in some more detail.

Quantum amplitudes of closed, isolated systems are represented as unit vectors in a
Hilbert space, ψxϵH, also called quantum states. In the transactional interpretation [17],
a quantum state, ψx, is launched as an “offer-wave” by an emitter and obtains possible
responses by “confirmation-waves”, represented by dual vectors, ψ∗

y , launched by possible
absorbers. The selection of a specific “response”, ψ∗

y , is fundamentally indeterministic and
leads to a “transaction”, which is the actualization of absorption and emission as real events
in spacetime, and whose probability (density) is

∣∣δ(y−x) ∗ ψx
∣∣2 =

∣∣ψy
∣∣2. The relativistic

transactional interpretation in addition offers the reason why offer waves (and confirmation
waves) are actually being created, by focusing on the electromagnetic interaction (it is un-
known to what extent a transactional theory of different bosons, belonging to the weak and
strong forces, can be constructed). While emitters correspond to the retarded solutions of
the wave equation and to creation operators, absorbers are connected to advanced solutions
and to annihilation operators. Relativistic electromagnetic interactions can be thought of
as the mutual exchange of virtual photons by quantum fields, creating possibilities in a
pre-spacetime process. Transactions, in turn, are characterized by the exchange of real
photons and their four-momenta between emitter and absorber. While virtual photons
correspond to the Coulomb force and such interactions are unitary, real photons correspond
to radiative processes, which are non-unitary interactions ([18], Chapter 5). The general
amplitude, α, for the emission and absorption of real photons is the coupling amplitude
between matter and gauge fields, and the non-unitary transactional process can arise if
the conservation laws are satisfied. By this non-unitary exchange of four-momentum, the
quantum states of emitter and absorber collapse, and the physical systems are localized
at the corresponding spacetime points (regions). Empirical spacetime thus becomes the
connected set of emission and absorption points, between which space-time (null)intervals
are being created through the four-momenta of the exchanged photons. It is here, where
the transactional view touches on the causal-set theory [19], in which events spread in
spacetime by a stochastic Poisson process. Boson exchange, understood as a decay pro-
cess in quantum field theory, is then a special case in this model [20] (the transactional
interpretation thinks differently of spacetime than the causal-set approach does, which is
unimportant for our purposes). Of note is that the actualization of a spacetime interval
amounts to spontaneously breaking the unitary evolution of the quantum states. At the
same time, the exchanged four-momentum selects a space direction, whereas a time direc-
tion is a priori determined, since only positive energy is being transferred (this amounts
to the choice of the Feynmann propagator as opposed to the Dyson propagator). Because
there is no preferred emission direction, the process is spatially isotropic, and because the
whole mechanism is indifferent to specific locations, it is also homogeneous. Observed
inhomogeneities of the universe are then the consequence of a possible anisotropic distri-
bution of initial transactions and the spatiotemporal variation of some other parameter, as
we will see in Section 2.

So far, we have motivated the idea that the formalism of quantum physics is suited
to explain the emergence of empirical space and time as unified, yet distinct, dimensions
by the mechanism of transactions. Real photon exchange creates metric relations between
emitters and absorbers and the mechanism contains therefore an intrinsic way to measure
time intervals by means of the exchanged photons, as described in [17]. This approach
clearly lends itself to the relational view of spacetime as it emerges from pairs of emitters
and absorbers, and there is no spacetime without matter (although the matter itself is not a
component of metrical spacetime; [18], Chapter 8). Mathematically, quantum states can be
described as fields parametrized by spacetime coordinates. Note that there is no circularity
here, since this description does not suggest that spacetime has a real a priori existence
of its own. It is only a continuous model representation of our observations, where we
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never measure standalone spacetime points. Hence, the term “empirical spacetime” is used
in order to distinguish observed reality from continuous mathematical models. We also
note that the conception of quantum states as fields over spacetime uses the spacetime
parameters as possibilities for localization relative to a particular inertial frame, and that
such quantum states are not physically ‘in spacetime’, where the latter is understood as the
emergent manifold of connected events.

By a transaction, the involved systems become localized which, in order to keep the
entropic balance, leads to a weak limit to Newton’s gravitational force. It is mathematically
shown in [16,17,21] that this entropic process leads more generally to a gauge of the length
in temporal direction, which together with the light-cone structure is sufficient to derive
the Einstein equations and hence to govern the four-metric of spacetime [22]. The three-
momenta of the exchanged photons in particular lead to a cosmological term in the Einstein
equations, which is what we are going to show next.

2. The Cosmological Constant

In transactional gravity, the energy of the transferred photons gauges the rhythm of
becoming as it defines the period of a natural light clock which, together with the light-
cone structure, leads to Einstein’s equation [17,22]. The three-momenta of the transferred
photons enter this equation in the form of a cosmological constant, Λ, as we will now show.
This fact is intuitively plausible, since the momenta of the photons exercise a repulsive
pressure on the material systems involved in the transactions. Note that in transactional
gravity, it is the energies and momenta of matter involved in transactions that add to the
local energy–stress tensor and there is no basis for the inclusion of expectation values
of quantum fields or alike [16]. This fact excludes the vacuum energies of the different
fields from being the cause of expansion. Concretely, there arises pressure from photon
three-momenta, emitted in all the spatial directions equiprobably, which defines at a given
point the Laue-scalar T:

T =
3

∑
i=1

Tii = lim
Ai→0

3

∑
i=1

Fi
Ai

= lim
Ai→0

3

∑
i=1

1
Ai

dpi
dt

. (1)

Let NR(t) be the number of actualizations within (spatial) volume VR at a time t. We

have with x0 = ct, NR(t) = NR
( x0

c
)
=

∼
NR(x0) and with the de Broglie relation

∣∣→p ∣∣ = h
R

T = −3
dNR(t)

dt
· 1
AR

· h
R

= −3
c·h
3
·d

∼
NR(x0)

dx0VR
= −c·h·dλ(x0)

dx0
. (2)

The negative sign indicates the repulsive effect and the function λ(x0) =
∼
NR(x0)

VR
denotes the number of transactional events per spatial volume at time x0, which we simply
call transaction density. The term dλ(x0)

dx0
is therefore the change rate of the transaction

density and there holds to first order λ(x0 + ∆x0) = λ(x0) +
dλ(x0)

dx0
·∆x0. In (2), we assumed

that λ(x0) is constant over space, which also amounts to the homogeneity and isotropy
of space with respect to transactional events. Equation (2) also tacitly assumes that λ(x0)
is a differentiable function in x0. This is an assumption, which cannot hold in quantum
mechanics, since quantum events represent discrete sets and are not deterministic, but obey
a random process. The only known Lorentz-invariant stochastic process for the spreading
of quantum events in Minkowski space, such that the number of events is proportionate
to the volume, is a Poisson process with constant transaction density rate ϱγ [23]. Hence,
in analogy to the above terminology, there holds for the average transaction density λ(x0)
and for ∆x0 > 0 :

λ(x0 + ∆x0) = λ(x0) + ϱγ·∆x0. (3)
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So, by (3), we can define, in analogy to (2), a scalar Tγ:

Tγ = −3
c·h
3
·∆λ(x0)

∆x0
= −c·h·ϱγ. (4)

Remember the Einstein equation:

Rµν =
8πG

c4

(
Tµν −

1
2

Tgµν

)
, 0 ≤ µ, ν ≤ 3. (5)

Equation (4) leads on the right-hand side of Einstein’s equation, with lP =
√

Gℏ
c3

denoting the Planck length, to the term

4πG
c4 Tγ = −4πGh

c3 ϱγ = −8π2l2
Pϱγ. (6)

The right-hand side of Equation (5) consists of the local energy–momentum distri-
bution, whereas Expression (6) is global and independent of any local fields. It hence
represents a structural component of Equation (5). Consequently, putting it to the left-hand
side of the Einstein equation leaves us to interpret it as the cosmological constant (note that
[Λ] = m−2):

Λ = 8π2l2
Pϱγ. (7)

Einstein’s equation hence takes the form of:

Rµν + Λgµν =
8πG

c4

(
Tµν −

1
2

Tgµν

)
, 0 ≤ µ, ν ≤ 3. (8)

2.1. Spatial Information

Since transactions localize emitters and absorbers, there is an entropy production in
the process (see Appendix A). The resulting information will, of course, depend upon the
physical systems involved. In order to estimate the number of transactional events in the
absence of concrete knowledge of the matter fields, we can define the spatial information
content and then calculate the number of bits residing in a region of space Ω ⊂ R3, as
performed in [17] and shown next.

We assume a local inertial frame throughout the following exposition. Let there be a
bounded region, Ω ⊂ R3, on a spatial hyperplane and a partition by balls:

B = {Bεn(xn)}xnϵΩ, εn>0 ,
⋃

xn Bεn(xn) = Ω. (9)

Relative to the partition, B, position information can be attributed to a quantum
system in terms of square-integrable functions over Ω, ψ(x)ϵL2(Ω), by

IB(ψ) = − ∑
xnϵΩ

pxn ln(pxn), pxn =
∫

Bεn (xn)
|ψ(x)|2dx. (10)

By multiplication with the Boltzmann constant, kB, we obtain

SB(ψ) = IB(ψ)kB. (11)

We can ask whether it is possible to take a different perspective and attribute infor-
mation not to material systems, but to regions or idealized single points (x0ϵR3). A point,
x0ϵΩ, can empirically be associated with matter or not and hence represents in this sense
one bit of information. Given a single physical system, ψ(x)ϵL2(Ω), we can therefore state
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that the information of the one bit, x0ϵΩ, with respect to ψ(x) and the partition B (9) (we
picked the ball Bε∼

n

(
x∼

n

)
with x0ϵ Bε∼

n

(
x∼

n

)
and minimal

∣∣x0 − x∼
n

∣∣), is

IBψ (x0) = −[px0 ln(px0) + (1 − px0)ln(1 − px0)]. (12)

To find a generic definition, we have to account for all possible partitions (B), which
requires taking into account all probabilities, 0 ≤ px0 ≤ 1. Since it is always possible to find
a bounded Ω ⊂ R3 with x0ϵΩ, we can define the information I(x0), x0ϵR3, by

I(x0) = −2
∫ 1

0
px0 ln(px0)dpx0 =

1
2

. (13)

Evidently, (13) is not only independent of a chosen partition B, but also of the particular
material system ψ(x). While the choice of a particular B is, of course, frame dependent,
the described process will lead to the definition of I(x0) by Equation (13) in every local
inertial frame.

2.2. Transactional Density

In order to investigate the behavior of Λ, it is, by Equation (7), necessary to understand
the transaction density rate ϱγ. Since ϱγ is a constant and the transaction density at the
beginning of the period is zero, λ(0) = 0, we choose the direct approach and estimate the
spatial density of the expected number of transactional events in today’s universe and
divide it by the age of the universe to obtain the average transaction density rate. In order to
make closed calculations possible, we employ a simple model of an expanding, flat universe
where, due to the early rapid decay of the matter and radiation densities, expansion
dominates. Furthermore, we have evidence for a decreasing Hubble parameter H(t) and, if
tU is the age of the universe today, we set today’s Hubble parameter as H(tU)
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𝑎0𝑒∫ 𝐻(𝑠)𝑑𝑠
𝜏

0

.
𝑡

0

𝑡

0

 (14) 
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𝑐𝑑𝜏

𝑎0𝑒𝐻0𝜏

𝑡

0

=
𝑎(𝑡)

𝑎0
𝑅𝐻0

(1 − 𝑒−𝐻0𝑡). (15) 
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𝑅𝑃(𝑡𝑈) ≤
1

𝑎0
𝑅𝐻0

(1 − 𝑒−1) =
𝜖

𝑎0
𝑅𝐻0

. (16) 

We further remember, as calculated above (13), that a single point, 𝑥0, in space rep-

resents one bit of information with information content 𝐼(𝑥0) =
1

2
. Assuming the Planck 

length to be a minimal length in nature, the total number of bits, 𝑛𝑅, on the surface of a 

ball of radius 𝑅 with surface area 𝐴𝑅 amounts to 

𝑛𝑅 =
𝐴𝑅

2𝑙𝑃
2 . (17) 

By the holographic principle [24], Expression (17) represents the maximum infor-

mation encoded within the ball, 𝐵𝑅. Furthermore, the fine-structure constant, 𝛼2 (with 

𝑞 denoting the elementary electric charge and 𝜀0 the dielectrical constant, 𝛼2 =
𝑞2

4𝜋𝜀0ℏ𝑐
≈

1

137
), is the base probability for a transaction to happen (at most reduced by a factor stem-

ming from additional amplitudes) and we can reasonably assume that the number of 

H0. Note

that in this situation the first Friedmann equation implies H(t)2 ∼ Λ(t)c2

3 . We use today’s
Hubble radius, RH0 = c

H0
, to express the age, tU , of the universe, which is tU = 1

H0
. We

further know that for the expansion factor, a(t), we have
.
a(t)
a(t) = H(t) : a(t) = a0e

∫ t
0 H(τ)dτ

and a(0) = a0, chosen such that a(tU) = 1. The causal universe at any time, t ≤ tU , is
bounded by the particle horizon, RP(t), which is defined by

RP(t) = a(t)
∫ t

0

cdτ

a(τ)
= a(t)

∫ t

0

cdτ

a0e
∫ τ

0 H(s)ds
. (14)

Since H(t) ≥ H0, there holds

RP(t) ≤ a(t)
∫ t

0

cdτ

a0eH0τ
=

a(t)
a0

RH0

(
1 − e−H0t). (15)

In particular, for today’s particle horizon, RP(tU), we have with ϵ
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𝑎0
𝑅𝐻0

. (16) 

We further remember, as calculated above (13), that a single point, 𝑥0, in space rep-

resents one bit of information with information content 𝐼(𝑥0) =
1

2
. Assuming the Planck 

length to be a minimal length in nature, the total number of bits, 𝑛𝑅, on the surface of a 

ball of radius 𝑅 with surface area 𝐴𝑅 amounts to 

𝑛𝑅 =
𝐴𝑅

2𝑙𝑃
2 . (17) 

By the holographic principle [24], Expression (17) represents the maximum infor-

mation encoded within the ball, 𝐵𝑅. Furthermore, the fine-structure constant, 𝛼2 (with 

𝑞 denoting the elementary electric charge and 𝜀0 the dielectrical constant, 𝛼2 =
𝑞2

4𝜋𝜀0ℏ𝑐
≈

1

137
), is the base probability for a transaction to happen (at most reduced by a factor stem-

ming from additional amplitudes) and we can reasonably assume that the number of 

(
1 − e−1):

RP(tU) ≤
1
a0

RH0

(
1 − e−1) = ϵ

a0
RH0 . (16)

We further remember, as calculated above (13), that a single point, x0, in space rep-
resents one bit of information with information content I(x0) =

1
2 . Assuming the Planck

length to be a minimal length in nature, the total number of bits, nR, on the surface of a ball
of radius R with surface area AR amounts to

nR =
AR

2l2
P

. (17)

By the holographic principle [24], Expression (17) represents the maximum information
encoded within the ball, BR. Furthermore, the fine-structure constant, α2 (with q denoting
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the elementary electric charge and ε0 the dielectrical constant, α2 = q2

4πε0ℏc ≈ 1
137 ), is the

base probability for a transaction to happen (at most reduced by a factor stemming from
additional amplitudes) and we can reasonably assume that the number of transactional
events at any time (x0) is (maximally) proportionate to the available spatial information
(this holds because emitting or absorbing material systems are much larger in size than the
Planck length). Hence, the (maximum) expected number of transactional events within a
ball of radius R, BR, is

NR = nR·α2 =
ARα2

2l2
P

. (18)

Since the causal universe has been growing to today’s particle horizon, RP(tU), we
can assume that the total amount of transactional events today is coded on the surface of
the radius RP(tU) and it is possible by Equation (18) to set the total expected number of
transactional events in the causal universe today, NRP(tU), as

NRP(tU) =
4πR2

P(tU)α
2

2l2
P

. (19)

To obtain the average transaction density today, λ(tU), we need to divide Expression
(19) by the volume of the causal universe today to obtain

λ(tU) =
NRP(tU)

4
3 πR3

P(tU)
=

3πα2

2l2
PRP(tU)

. (20)

Since λ(0) = 0, we have together with Equations (3) and (16):

ϱγ =
λ(tU)− λ(0)

ctU
≤ ϵλ(tU)

a0RP(tU)
=

3πϵα2

2a0l2
PR2

P(tU)
. (21)

By setting C0
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0

𝑡
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1
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𝑅𝐻0
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𝜖
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. (16) 

We further remember, as calculated above (13), that a single point, 𝑥0, in space rep-

resents one bit of information with information content 𝐼(𝑥0) =
1

2
. Assuming the Planck 

length to be a minimal length in nature, the total number of bits, 𝑛𝑅, on the surface of a 

ball of radius 𝑅 with surface area 𝐴𝑅 amounts to 

𝑛𝑅 =
𝐴𝑅

2𝑙𝑃
2 . (17) 

By the holographic principle [24], Expression (17) represents the maximum infor-

mation encoded within the ball, 𝐵𝑅. Furthermore, the fine-structure constant, 𝛼2 (with 

𝑞 denoting the elementary electric charge and 𝜀0 the dielectrical constant, 𝛼2 =
𝑞2

4𝜋𝜀0ℏ𝑐
≈

1

137
), is the base probability for a transaction to happen (at most reduced by a factor stem-

ming from additional amplitudes) and we can reasonably assume that the number of 

(
3πϵ
2a0

)
, which is a dimensionless number, and by Equation (7), we

obtain the (maximal) cosmological constant:

Λ = 8π2C0
α2

R2
P(tU)

. (22)

In Equation (22), we directly recover the measured fact that Λ ∼ R−2
U (we have

RP(tU) = 46.5Gly ≈ 4.2·1026 m today). Also, the key role of the fine-structure constant
becomes clear. It is a governing factor of the expected number of transactional events in the
universe and as such enters the formula for its expansion.

3. Conclusions

The problem of the empirically found tiny value of the cosmological constant has
been bothering physicists for a long time. In addition, the proportionality to the squared
inverse of the age of the universe seemed a coincidence, albeit an intriguing one. In the
theory of transactional gravity, where spacetime and its metric emerge from quantum
events, called transactions, the cosmological constant arises very naturally as the repulsive
pressure generated by the three momenta of event radiation, i.e., of the photons constituting
transactions. By the same entropic considerations that lead to an entropic force, i.e., gravity,
we also arrive at a natural expression for the cosmological constant which turns out to
have exactly the desired behavior. The vacuum energy of the diverse quantum fields
plays no role anymore, since in transactional gravity non-transacting parts do not enter
the equations. In our theory, Λ is at any stage related to the age of the universe but does
not necessarily become infinite as time returns back to the origin, since the number of
transactions also decreases. In addition, it might be the case that the transaction density
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rate regionally differs, which would, next to the distribution of initial transactional events,
lead to observable inhomogeneous structures at large scales of the universe. It remains to
be seen in the future whether transactional gravity is the model that nature actually follows.
In any case, the theory very naturally produces a number of explanations for so far rather
elusive facts around gravity.
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Appendix A

Let there be a bound state B in equilibrium with an environment of temperature T0
and a photon γ with energy Eγ = hν before absorption by the bound state. To model the
situation as simply as possible and reasonable, we assume that the wave function Ψ

(
x,

→
x j
)
,

jϵJ ⊂ N,
(
x,

→
x j
)
ϵ
(
R,R3), of the bound state is factorizable as the product of a center of mass

component ψ(x) and an orbital component Y
(→

x j
)
, jϵJ ⊂ N, Ψ

(
x,

→
x j
)
= ψ

(
x
)
Y
(→

x j
)

[25].
Since the main contribution of the mass m > 0 stems from the nucleus, we may assume that
the center of mass component ψp0

(
x
)

“carries” linear kinetic energy, whereas orbital energy

components reside in Y
(→

x j
)
. The bound state together with the photon form a closed system,

Σ0, and under the assumption that the bound state “moves freely” with small momentum
uncertainty, the function ψp0(x) can be assumed to be Gaussian (i.e.,

∣∣ψp0(x)
∣∣2 ∼ N (µx, σx)).

We will use ψp0(x) in order to model and analyze the entropic situation before and after
absorption.

Let us define any wave function ψϵL2(]−∞, ∞[,C), with the information entropy Iψ

to be
Iψ = −

∫ ∞

−∞
|ψ(s)|2ln|ψ(s)|2ds. (A1)

The total information entropy Itot
ψp0

of ψp0(x) is then defined by

Itot
ψp0

= Iψp0 (x) + Iφp0 (p), (A2)

where φp0(p) = ψ̂p0
(p) is the conjugate state (the Fourier-transformed state). As a result

of Leipnik [26], there holds for any pair of conjugate variables ψ(x) and φ(p) and with
Planck’s constant, h,

Itot
ψ = Iψ(x) + Iφ(p) ≥ ln

(
he
2

)
, (A3)

with equality in the case of Gaussian functions, which we may assume to be a good
representation of systems in an equilibrium situation, as mentioned above. Since the bound
state is supposed to move freely at a definite momentum, φp0(p) is highly concentrated
around a mean value, µp = p0, and there is hence a negative entropy contribution Iφp0 (p) <

0 (note that the differential entropy, IN , of a Gaussian N (µ, σ) is IN = ln
(√

2πσ
)
+ 1

2 and
hence lim

σ↘0
IN = −∞). By (A2), there holds

Iφp0 (p) = ln
(

he
2

)
− Iψp0 (x). (A4)
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At the same time, the momentum of the photon γ is known to be pγ = hν
c and its

position is undefinable since there is no rest-frame. So, we set (consistent with µ(pγ) = 1)

Itot
γ = 0. (A5)

For the total system entropy Itot
Σ0

before absorption, we therefore have

Itot
Σ0

= Itot
ψp0

. (A6)

Let us finally define, in analogy to Boltzmann’s H-function, the thermodynamic
entropy of the system Σ0 by

SΣ0 = kB Iφp0 (p) = −kB

∫ ∞

−∞

∣∣φp0(p)
∣∣2ln

∣∣φp0(p)
∣∣2dp, (A7)

where kB denotes the Boltzmann constant. If, initially, we have ψp0(x) = ψp0(x, 0) and
φp0(p) = φp0(p, 0), respectively, then a free evolution leads after some time t > 0 to new
states ψp0(x, t) and φp0(p, t), still conjugates of each other (note that ψp0(x, t) is no more a
function with real variance). The evolution is unitary and causes an increasing dispersion,
σx(t), of the density

∣∣ψp0(x, t)
∣∣ around some evolving position mean value µx(t), while the

density
∣∣φp0(p, t)

∣∣ remains equally concentrated around p0 and
∣∣φp0(p, t)

∣∣ = ∣∣φp0(p, 0)
∣∣.

Therefore, there holds by Definition (A7) for t ≥ 0:

SΣ(t) = const. (A8)

In other words, the entropy of the unitarily evolving free bound state remains constant,
as expected from a reversible process (time reversal t → −t demands ψ → ψ∗ ).

Let us now look at the situation after the absorption. The absorption at some time
t1 > 0 does two things at once: it annihilates the photon and localizes the center of mass
component and thus transforms system Σ0 into a spatially localized system, Σ1. This leaves
us with a state, ψx1(x), which is a Gaussian well concentrated around some spatial mean
value, µx = x1. So, there is now a negative entropy contribution, Iψx1 (x) < 0, to total
entropy (A2). But because of (A3), the entropy contribution of the conjugate Gaussian
φx1(p) must compensate and we have in analogy to (A4) the following:

Iφx1 (p) = ln
(

he
2

)
− Iψx1 (x). (A9)

So, by (A4), (A8) and (A9), the transition Σ(t) → Σ1 induces for 0 ≤ t < t1 an entropy
difference of

∆Σ1
Σ(t)S = kB

(
Iφx1 (p) − Iφp0 (p,t)

)
= kB

(
Iφx1 (p) − Iφp0 (p,0)

)
=

kB

(
Iψp0 (x) − Iψx1 (x)

)
> 0.

(A10)

After the measurement, the bound state Σ1 will again develop freely (Σ1 → Σ 1(t) ) and
by Equation (A8) the entropy, SΣ1(t), remains constant, while the position state disperses
around a moving mean position.
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