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Abstract: Ascophyllum nodosum is an ecologically and economically important species
forming marine forests in temperate regions. In Europe, this brown seaweed reaches its
southern distribution limit in the north of Portugal, where populations are under climatic
pressure. Conservation and restoration actions are essential to preserve the important
ecological roles of these populations, including biodiversity enhancement. In this study, we
assessed the effect of temperature and light on the development of the early life stages of
A. nodosum, from gamete germination and rhizoid development to germling growth, in
order to support the establishment of nursery protocols for producing seedlings that can
be used in reforestation actions. We found that for this population, temperature around
12 ◦C and low-light conditions (40 µmol m−2 s−1) favor gamete germination, rhizoid
development, and initial germling growth during the first month, after which higher light
supply (>80 µmol m−2 s−1) is needed to sustain further growth stages. The results obtained
in this study are relevant for the establishment of nursery methods for A. nodosum and
should be complemented by further studies to determine more precisely the light and
nutrient requirements to optimize growth in the germlings’ later growth stages.

Keywords: fucoids; marine forests; germination; reforestation; nursery

1. Introduction
Canopy-forming seaweeds, mainly brown macroalgae like fucoids and kelps, play a

crucial role in creating diverse and complex ecosystems in rocky shores. Acting as ecological
engineers, they sustain a multitude of species by providing them with a habitat, shelter,
and food, thereby increasing productivity and affecting nutrient cycling [1].

Several stressors, both natural and anthropogenic, can dramatically shape these
macroalgal assemblages by affecting their distribution, abundance, and diversity [2]. Even
if macroalgal communities may adapt to natural disturbance, their resistance and resilience
to sporadic events, such as those caused by anthropogenic pressures, is largely depen-
dent on the traits of individual species, such as recruitment and settlement rates [3,4].
In species with low dispersal ability and a low recruitment rate, like most fucoids, the
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natural recovery of canopy stands after loss is infrequent, if not impossible, in many pop-
ulations [5,6]. During the last decades, climate change, pollution, resource depletion, the
introduction of non-native species, and habitat destruction have all contributed to the de-
cline of canopy-forming species along the coasts of Europe, with reductions in abundance
and extinctions in several locations [7]. Despite substantial conservation efforts, most of
these degraded ecosystems have yet to recover, underscoring the necessity for proactive
restoration measures [8].

As a result, there has been a growing interest in marine forest restoration, accen-
tuated in recent years by the EU Biodiversity Strategy 2030, which envisions reversing
the decline of these habitats through the active reintroduction of individuals to create
self-sustainable populations [9]. Active restoration has traditionally involved several tech-
niques, including transplantation, seeding, and the introduction of artificial habitats [10,11].
Out-planting, which consists of producing juveniles from fertile material in nurseries for
deployment in the field, is one of the techniques recommended for species with low dis-
persal capacities, such as fucoids, or threatened species, to avoid the depletion of natural
donor populations [12].

Ascophyllum nodosum (Linnaeus) Le Jolis 1863, one of the main canopy-forming species
in the North Atlantic Ocean, is a brown seaweed belonging to the family Fucaceae, closely
related to the Fucus genus. In Europe, this species is found between the Arctic circle and
Portugal, its southern distribution limit, in sheltered intertidal rocky shores [13,14]. Repro-
duction usually occurs during winter, although variations might arise due to fluctuations
in atmospheric and seawater temperature [14]. Ascophyllum nodosum is a long-lived species
with limited dispersal ability and a low recruitment rate, with its recruits having extremely
slow growth rates, ranging 1–2 mm in the first year and reaching 1.5 cm after 2 years, when
compared to those of other fucoids such as Cystoseira spp, which can grow up to 1 cm per
month [5,14–17]. However, these species have a high potential to produce gametes and
zygotes under optimal cultivation conditions [5].

In northern Portugal, A. nodosum occurs in a single marginal population over a rocky
intertidal area that is approximately three kilometers long and tens of kilometers from
the nearest northern populations [13,18]. Marginal populations are often reduced in
size, and the already sub-optimal local conditions can drastically diminish their abil-
ity to deal with further disturbances [19,20]. These populations may also exhibit unique
ecological adaptations with significant conservation value, especially under a changing
climate scenario [19,21,22].

Given its life history traits and the high sensitivity to stressors, out-planting seems to
be a viable option for the sustainable restoration of A. nodosum. This method has already
been performed with Cystoseira spp. and other large fucoids [23–25], but, as far as we know,
it has never been tested on A. nodosum.

The objective of this study was to contribute to the development of nursery proto-
cols for producing seedlings of A. nodosum for out-planting, by assessing the influence
of temperature and light intensity on the settlement and growth of A. nodosum’s early
life stages.

2. Materials and Methods
In January 2023, fertile receptacles of A. nodosum were collected from the southernmost

population in Europe, located in northern Portugal (Praia Norte, Viana do Castelo: 41.6970◦ N,
8.8510◦ W; Figure 1). Sampling was performed randomly across an approximate area of
100 m2 within the population. Five to ten receptacles were collected from each individual.
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were used in the experiment. 
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[26]. Next, male and female receptacles were placed together on a 0.5 cm diameter mesh 
within a beaker filled with sterile seawater to induce gamete release. After one hour, the 
receptacles were removed, and the resulting gamete suspension was distributed into six-
well plates at 10 mL per well. To examine the effects of varying cultivation conditions, a 
factorial laboratory experiment was conducted, combining different temperature and 
light levels. Three temperatures covering the range of the natural local temperature 
regime (12, 15, and 18 °C) and two light intensity levels (low: 40 µmol m−2 s−1 and high: 80 
µmol m−2 s−1) were selected. Six combinations of the cultivation conditions, consisting of 
two crossed levels of each cultivation condition (12H, 12L, 15H, 15L, 18H, 18L), were 
tested in a two-way crossed design. For each combination of factors, 6 replicates were 
used. 

To ensure nutrient provision, Provasoli’s Enriched Seawater [27] was added weekly. 
Germanium dioxide (GeO2) was also added to the nutrient medium to prevent diatom 
growth. 

The initial egg density and germination percentage were assessed after the first week 
by counting the number of eggs released and their development into embryos, 
respectively, in each well. Initial growth was evaluated by measuring the length of 
rhizoids three weeks after release. After one month in culture, the rhizoids had 
significantly elongated, making accurate measurement difficult. For this reason, embryo 
growth was assessed by measuring the occupied area each month. The cultivation 
experiment lasted three months (until April 2023). 

Measurements were always performed by processing photographic data using the 
software ImageJ (version 1.54g). For each replicate, 6 fields of vision were randomly 
selected in photos obtained by a Nikon Eclipse TE300 (Nikon Instruments Inc., Melville, 
NY, USA) inverted microscope using a Nikon Digital Sight DS-U3 image acquisition 
system. 

Statistical Analyses 

Figure 1. Location of the Ascophyllum nodosum population at its southern limit of distribution in the
north of Portugal.

At the laboratory, receptacles were separated by sex, after microscopic identification
of female (oogonia) or male (spermagonia) gametangia, and stored under dark, humid,
and cold (5 ◦C) conditions for 24 h. Receptacles from 16 individuals (7 female and 9 male)
were used in the experiment.

The following day, receptacles were left to air-dry for two hours at room tempera-
ture [26]. Next, male and female receptacles were placed together on a 0.5 cm diameter
mesh within a beaker filled with sterile seawater to induce gamete release. After one hour,
the receptacles were removed, and the resulting gamete suspension was distributed into
six-well plates at 10 mL per well. To examine the effects of varying cultivation condi-
tions, a factorial laboratory experiment was conducted, combining different temperature
and light levels. Three temperatures covering the range of the natural local temperature
regime (12, 15, and 18 ◦C) and two light intensity levels (low: 40 µmol m−2 s−1 and high:
80 µmol m−2 s−1) were selected. Six combinations of the cultivation conditions, consisting
of two crossed levels of each cultivation condition (12H, 12L, 15H, 15L, 18H, 18L), were
tested in a two-way crossed design. For each combination of factors, 6 replicates were used.

To ensure nutrient provision, Provasoli’s Enriched Seawater [27] was added weekly.
Germanium dioxide (GeO2) was also added to the nutrient medium to prevent
diatom growth.

The initial egg density and germination percentage were assessed after the first week
by counting the number of eggs released and their development into embryos, respectively,
in each well. Initial growth was evaluated by measuring the length of rhizoids three weeks
after release. After one month in culture, the rhizoids had significantly elongated, making
accurate measurement difficult. For this reason, embryo growth was assessed by measuring
the occupied area each month. The cultivation experiment lasted three months (until
April 2023).

Measurements were always performed by processing photographic data using the
software ImageJ (version 1.54g). For each replicate, 6 fields of vision were randomly selected
in photos obtained by a Nikon Eclipse TE300 (Nikon Instruments Inc., Melville, NY, USA)
inverted microscope using a Nikon Digital Sight DS-U3 image acquisition system.

Statistical Analyses

Prior to statistical analysis, assumptions of data normality were assessed using the
Levene’s test and data were log-transformed when necessary [28].
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To evaluate the effect of the different cultivation conditions on germination percentage,
a two-way ANOVA was performed with temperature (3 levels, fixed: 12, 15, and 18 ◦C)
and light intensity (2 levels, fixed: low light, high light) as factors. Unfortunately, due to a
malfunction of the climatic chamber set at 15 ◦C, analysis of growth data was carried out
only for temperatures 12 and 18 ◦C. The same statistical design was performed to assess
the effect of temperature (2 levels, fixed: 12 and 18 ◦C) and light intensity (2 levels, fixed:
low light, high light) on the length of rhizoids. To avoid problems of independence, we
ran separated analyses of embryos growth (areas) for each experiment month (February,
March, and April). All measurements were expressed as average ± standard deviation. All
the analyses were carried out using GraphPad Prism version10.0.0. Tukey’s tests were used
for post hoc comparisons of significant means.

3. Results
3.1. Egg Release and Development Stages

Gamete release occurred within 1 h after rehydration. The concentration of released
eggs was 10.95 per mL and the egg diameter ranged from 65.2 to 76.1 µm, averaging
71.2 ± 4.4 µm (Figure 2A). The first division of the fertilized eggs occurred in the first
24 h after release, starting germination (Figure 2B). Germination was followed by the
development of rhizoids (Figure 2C), and as the germlings continued to grow, several
rhizoids developed and elongated, and their body area increased (Figure 2D–F).
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Figure 2. Initial development stages of Ascophyllum nodosum. (A) Two female gametes surrounded by
male gametes released after one hour. (B) Germinating zygotes, after one week. (C) Embryo with
rhizoid 2 weeks after fertilization. (D) Embryo at the end of the first month. (E) Embryo at the end of
the second month. (F) Embryos at the end of the experiment.

3.2. Germination

A high percentage of germination was observed in all treatments (Figure 3). A signifi-
cant interaction was obtained between the factors light intensity and temperature on the
percentage of germinated eggs (p = 0.016) (Table 1). Tukey’s multiple comparisons showed
a significant difference only between the eggs at 15 ◦C and 18 ◦C at a lower light intensity
(15 L vs. 18 L: 98.8 ± 0.6% vs. 93.4 ± 4.2%; p = 0.0069; Table S1).
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Figure 3. Percentage of germinated eggs (mean ± SD), at the three different temperatures and two
light intensities. The asterisks indicate significant differences from Tukey’s pairwise comparisons
(**—p ≤ 0.01).

Table 1. Results for the two-way ANOVA testing the effect of the factors temperature (3 levels, fixed:
12, 15, and 18 ◦C) and light intensity (2 levels, fixed: low light, high light) on egg germination.

Source df SS MS F p

Light_intensity = L 1 5.74 5.74 0.98 0.331
Temperature = T 2 35.34 17.67 3.01 0.064

L × T 2 56.18 28.09 4.79 0.016
Error 30 176.10 5.87

Corrected Total 35 273.35

3.3. Growth
3.3.1. Rhizoid Length

The two-way ANOVA highlighted a significant effect of the interaction between light
intensity and temperature on the length of rhizoids (p < 0.001, Table 2). Tukey’s multiple
comparisons (Table S2) showed that at 12 ◦C the length of rhizoids was significantly
higher at low light compared to at high light (473.1 ± 17.0 µm vs. 223.4 ± 40.4 µm,
p < 0.0001), while at 18 ◦C the differences between light levels were not significant (Figure 4).
Furthermore, the length was significantly higher at 12 ◦C compared to at 18 ◦C for both
light intensities (high light: 223.4 ± 40.4 µm vs. 83.9 ± 26.2 µm, respectively, p = 0.0012;
low light: 473.1 ± 17.0 µm vs. 119.0 ± 25.7 µm, respectively, p < 0.0001).

Table 2. Results for the two-way ANOVA testing the effect of the factors temperature (2 levels, fixed:
12 and 18 ◦C) and light intensity (2 levels, fixed: low light, high light) on rhizoid length.

df SS MS F p

Light_intensity = L 1 81,065.48 81,065.48 99.22 <0.001
Temperature = T 1 243,566.93 243,566.93 298.12 <0.001

L × T 1 46,016.69 46,016.69 56.32 <0.001
Error 12 9804.14 817.01

Corrected Total 15 380,453.23
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3.3.2. Embryo Area

An increase in embryo size was observed from February to March in all treatments,
remaining constant afterwards (Figure 5A). Differences in area between treatments were
assessed for each month, February, March, and April.
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Figure 5. Development of embryos during 3 months at two different temperatures and light intensities.
(A)—embryo area (mean ± SD) evolution with time, (B–D)—embryo area (mean ± SD) at the first
(February 2023), second (March 2023), and last experiment month (April 2023) in the different
conditions tested. The asterisks above bars indicate significant differences from Tukey’s pairwise
comparisons (*—p ≤ 0.05; **—p ≤ 0.01; ***—p ≤ 0.001; ****—p ≤ 0.0001).

In February, ANOVA highlighted a significant interaction effect between the fac-
tors of light intensity and temperature (p < 0.001, Table 3) concerning their influence on
the embryo area. Tukey’s multiple comparisons (Table S3) showed that the area of em-
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bryos kept at 12 ◦C was significantly higher in low light when compared to in high light
(0.026 ± 0.008 vs. 0.011 ± 0.004 mm2, p < 0.001, Figure 5B), while at 18 ◦C the differences
between light intensities were not significant. Under low light, the embryos were signif-
icantly larger at 12 ◦C when compared to at 18 ◦C (0.026 ± 0.008 vs. 0.022 ± 0.009 mm2,
p = 0.0009, Figure 5B). The opposite was observed under high light, with larger embryos at
18 ◦C than at 12 ◦C (0.022 ± 0.009 vs. 0.011 ± 0.004 mm2, p = 0.0027, Figure 5B).

Table 3. Results for the two-way ANOVA testing the effect of the factors temperature (2 levels,
fixed: 12 and 18 ◦C) and light intensity (2 levels, fixed: low light, high light) on the area of embryos
in February.

Source df SS MS F p

Temperature = T 1 2,969,277.61 2,969,277.61 0.07 0.798
Light_intensity = L 1 185,769,146.15 185,769,146.15 4.16 0.048

T × L 1 1,412,922,613.31 1,412,922,613.31 31.61 <0.001
Error 40 1,788,204,485.00 44,705,112.13

Corrected Total 43 3,389,865,522.07

At the second sampling time (March 2023), the ANOVA also indicated a significant
effect of the interaction between the factors light intensity and temperature on the embryo
area (p < 0.001, Table 4; Figure 5C). Tukey’s multiple comparisons (Table S4) showed that
the area at 12 ◦C under high light was significantly higher (p < 0.0001) than in all other
conditions tested (0.236 ± 0.068 vs. 0.119 ± 0.021 mm2—12 L; 0.081 ± 0.017 mm2—18 L;
and 0.101 ± 0.031 mm2—18H). Under low light, the area was higher at 12 ◦C than at 18 ◦C
(0.119 ± 0.021 mm2 and 0.081 ± 0.017 mm2, respectively; p = 0.0025).

Table 4. Results for the two-way ANOVA testing the effect of the factors temperature (2 levels,
fixed: 12 and 18 ◦C) and light intensity (2 levels, fixed: low light, high light) on the area of embryos
in March.

Source df SS MS F p

Temperature = T 1 89,625,712,974.28 89,625,712,974.28 67.94 <0.001
Light_intensity = L 1 55,959,135,885.38 55,959,135,885.38 42.42 <0.001

T × L 1 28,291,829,689.33 28,291,829,689.33 21.45 <0.001
Error 44 58,043,693,184.93 1,319,174,845.11

Corrected Total 47 231,920,371,733.92

In the last experiment month (April 2023), both light intensity and temperature sig-
nificantly influenced embryo area, with no significant interaction between the two factors
(p = 0.01 and p < 0.001, respectively, Table 5; Figure 5D). Under high light, the embryos reached
a higher area than under low light (0.158 ± 0.085 vs. 0.103 ± 0.034 mm2); moreover, the area
was higher at 12 ◦C than at 18 ◦C (0.161 ± 0.084 and 0.100 ± 0.032 mm2, respectively).

Table 5. Results for the two-way ANOVA testing the effect of the factors temperature (2 levels, fixed:
12 and 18 ◦C) and light intensity (2 levels, fixed: low light, high light) on the area of embryos in April.

Source df SS MS F p

Temperature = T 1 47,649,748,923.31 47,649,748,923.31 14.50 <0.001
Light_intensity = L 1 38,357,634,749.89 38,357,634,749.89 11.67 0.001

T × L 1 6,269,528,224.31 6,269,528,224.31 1.91 0.174
Error 48 157,719,876,895.98 3,285,830,768.67

Corrected Total 51 249,996,788,793.49
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4. Discussion
There are global concerns growing over the loss of key habitat-forming organisms,

such as large brown macroalgae of the order Fucales, and the resulting cascade of effects
on the services these organisms provide. To tackle this problem there is an urgent need
to develop effective best practices and restoration strategies. Reforestation efforts that
depend on nursery-grown seedlings for out-planting require the development of protocols
to enhance efficiency and reduce laboratory cultivation time by controlling key factors
influencing seedling development and growth. Two of the main environmental drivers
influencing seaweed reproduction and growth are temperature and light [29]. Different
species may respond differently to these variables and also, for a given species, their
influence may lead to differences in the life history traits of different populations, especially
those at their distribution limits [19,30]. In fact, the seasonality that most populations
display in the field is caused by the influence of these factors on reproduction, initial life
stages development, and growth.

In order to develop methods for the establishment of nurseries where seedlings are
produced for reforestation purposes, it is fundamental to understand the influence of light
and temperature on the initial life stages in order to correctly manipulate those variables
according to each of those stages. Relatively few studies have examined the effects of
temperature and light on the early life stages of A. nodosum. Bacon and Vadas [31], in their
study on the dynamics of gamete release in a Maine, USA, population, found that gamete
release was closely correlated with seawater temperature at high tide. Release began at
6 ◦C and ceased at 15 ◦C, exhibiting both yearly and spatial variability in line with local
water temperature patterns. In another study, Sheader and Moss [32] examined gamete
germination and found that it occurred at temperatures between 4 ◦C and 20 ◦C, though
with variable success rates. The highest germination rates consistently occurred at 10 ◦C
across a wide range of light intensities, including in total darkness. Our results showed
a high percentage of germination across all the temperatures and light intensities tested,
indicating that germination occurs without major limitations between 12 and 18 ◦C. This
population, located at the southern limit of the geographic distribution of the species, was
found to have a higher investment in reproduction at the expense of individual growth
and defense against herbivores, translating into higher fertility [19], which can account for
the observed high germination efficiency within the conditions tested. Additionally, the
highest germination rate was observed at 15 ◦C, a temperature typical of the northern coast
of Portugal. This suggests that the local population may be adapted to higher temperatures
compared to populations further north, which may be a valuable advantage against the
impacts of climate change, considering the foreseen global temperature increase.

After germination, an essential step for germling survival is their settlement, facili-
tated by the development of rhizoids that anchor them to the substrate [33]. Our results
suggest that this development stage is favored by low light, consistent with the findings
of Sheader and Moss [32]. Preference for low light is supported by field observations,
since germlings usually settle under a canopy, which provides shade to protect this fragile
development stage against photoinhibition, heat, and dissection stress [34]. Coverage with
other macroalgae was also found to be important in the earlier stages of reproduction and
settlement for other fucoid species [35–38]. Besides light, a canopy also reduces temper-
ature rises during emersion periods, which can be lethal to juvenile individuals [39,40].
Considering temperature, lower temperature (12 ◦C) led to higher rhizoid length, contrary
to the findings by Sheader & Moss [32], who found that rhizoid length increased with
increasing temperature, from 0 to 20 ◦C.

Once germlings settle, their thallus starts increasing in size, and our results suggest
that the effect of light is different between the initial and later thallus growth stages. After
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one month in culture, larger germlings were obtained at lower temperature (12 ◦C) and
reduced light intensity, as during the rhizoid development stage, indicating that during the
first month, growth under a canopy is advantageous. During the second month, however,
germlings reached higher sizes under high-light conditions, which may be explained by
an increase in light requirements as thalli grow to fulfill the juvenile and adult needs for
photosynthesis. In A. nodosum, photosynthesis is light saturated at 200 µmol m−2 s−1 [41],
higher than the high-light conditions defined for our study. These observations are also
in agreement with data obtained by Sheader & Moss [32] who also found that high light
increased thallus growth in a later stage.

Although the slow growth rate in this species is acknowledged [14], the significant
growth between February and March followed by the very low growth obtained during
the third month may indicate that the cultivation conditions did not meet the requirements
of the species at this later stage. Limitations to further growth may have occurred besides
light, namely insufficient space and/or nutrients. Our results suggest that, from the third
month forward, light should be further increased and nutrient supply should be adjusted
to optimize growth.

In conclusion, our study found that for this population of A. nodosum, gamete ger-
mination, rhizoid development, and initial growth (first month) respond well to 12 ◦C
temperature and low light, although with interaction between these factors. In the second
month, light intensity should be increased to 80 µmol m−2 s−1, and afterwards both the
light and nutrient supply needed to fulfill the growing germlings’ requirements should
be adjusted. Further studies are thus needed to determine more precisely what the light
and nutrient requirements are to optimize growth in the third month until they reach
approximately 2.5 mm, which was considered, for other fucoid species, an adequate size
for out-planting [12].

For population conservation purposes, additional studies are needed to understand
how the interacting factors light and temperature can affect this population and better
assess the role of canopy cover over the later stages of recruitment. Since recruitment
and growth in this population may decrease with the predicted temperature increase in a
scenario of climate change, studying the effect of higher temperature ranges on germlings
and juvenile development is essential to understand how temperature shifts will further
affect this population, considering their marginal location. Also, assessing the effect of
higher temperature on growth and survival may also be useful for temperature-resistant
strain identification and selection. These strains can then be used in reforestation actions
by applying nursery seedlings production and out-planting methods.
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