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Abstract: The present paper focuses on adaptive audio detection, segmentation and classification
techniques in audio broadcasting content, dedicated mainly to voice data. The suggested framework
addresses a real case scenario encountered in media services and especially radio streams, aiming to
fulfill diverse (semi-) automated indexing/annotation and management necessities. In this context,
aggregated radio content is collected, featuring small input datasets, which are utilized for adaptive
classification experiments, without searching, at this point, for a generic pattern recognition solution.
Hierarchical and hybrid taxonomies are proposed, firstly to discriminate voice data in radio streams
and thereafter to detect single speaker voices, and when this is the case, the experiments proceed
into a final layer of gender classification. It is worth mentioning that stand-alone and combined
supervised and clustering techniques are tested along with multivariate window tuning, towards the
extraction of meaningful results based on overall and partial performance rates. Furthermore, the
current work via data augmentation mechanisms contributes to the formulation of a dynamic Generic
Audio Classification Repository to be subjected, in the future, to adaptive multilabel experimentation
with more sophisticated techniques, such as deep architectures.

Keywords: audio semantics; content analysis; radio broadcasting

1. Introduction

The remarkable progress of web technologies and multimedia services has promoted
the quick, easy and massive interchange of multimodal digital content. The involvement of
plural heterogenic resources and customized user preferences require applicable content
description and management mechanisms [1]. Moreover, content recognition, semantic
interpretation and conceptualization attempts are currently being deployed, thus generat-
ing further difficulties and challenges, especially for time-based media (TBM) [2]. From
the media organization point of view, media assets management (MAM) automation and
intelligent multimedia processing technologies are needed for proper content archiving
with optimum exploitation of both human resources and infrastructures, thus facilitating
content reuse scenarios and audiovisual production in general. The same applies to the
individual producers, the freelancers that are involved in the media and the contributors
to the so-called user-generated content (UGC). In fact, their needs in audiovisual content
management and archiving services are even harder to meet [3], considering that they
do not usually have at their disposal professional MAM software equipped with radio
and audiovisual broadcasting automation utilities. Considering the media consumer site,
content classification, summarization and highlighting are pursued for multimedia content
indexing, searching and retrieval automation. New trends regarding content recognition
refer to topic classification, story understanding and/or enhanced semantic interaction,
thus requiring adaptive audiovisual feature extraction and selection engines along with
machine learning methods. These services rely on the utilization of extended multivariate
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databases, usually demanding applicable content annotation and/or semantic tagging.
However, there are issues regarding the inhomogeneity of labeling meta-data, while in
some cases, ground-truth training pairs are difficult to obtain (or are even completely
unavailable). Hence, combinations of supervised, semi-supervised and unsupervised
data mining algorithms are utilized to serve the specific necessities of various real-world
multimedia semantics [1,4–9].

Sound recognition plays an important role in most of the encountered audio and au-
diovisual pattern analysis cases, where related content is massively produced and uploaded
(i.e., digital audio broadcasting, podcasts and web radio, but also video on demand (VoD),
web-TV and multimodal UGC sharing in general). Specifically, there are various pattern
recognition and semantic analysis tasks in the audio domain, including speech–music
segmentation [8], genre recognition [10], speaker verification and voice diarization [11],
speech enhancement [12,13], sound event detection [14], phoneme and speech recogni-
tion [15–17], as well as topic/story classification [18–20], sentiment analysis and opinion
extraction [4,5,21], multiclass audio discrimination [22], environmental sound classifica-
tion [23] and biomedical audio processing [24]. Audio broadcast is generally considered to
be one of the most demanding recognition cases, where a large diversity of content types
with many detection difficulties are implicated [1]. In addition, audio broadcasted content
can be easily accessed, while new productions are massively and continuously created and
uploaded/distributed. Hence, smart multi-purpose audio semantic and associated future
Web 3.0 services can be built and progressed upon such audio broadcasting scenarios.

The current paper focuses on the investigation of various audio pattern analysis
approaches in broadcast audio content. Following the results of previous research [1,25],
stress test evaluation procedures and assessment of real-word scenarios are conducted,
investigating the impact of the involved feature engines, the windowing configuration and
the formulated classification schemes in both supervised and unsupervised strategies. The
main target is to highlight the most effective parameterization at each stage of the entire
modeling, aiming at assembling hybrid smart systems featuring optimum behavior without
excessive computational load and resources demand (like in deep neural architectures).

The rest of the paper is organized as follows. The subsequent section addresses the
problem definition and background work, with the corresponding particularities of the
current experimental approach in radio productions. The literature state of the art follows,
presenting previous research related to the topic under investigation. The implementation
section describes the configuration and modeling aspects, including pre-processing actions,
definition of classification taxonomies, ground truth data acquisition and feature engine
formulation. Thereafter, experimental results of various methods and classification schemes
are analyzed with the use of appropriate performance metrics. Finally, validation and
optimization aspects regarding the whole implementation are addressed, followed by the
discussion and conclusion section.

2. Materials and Methods
2.1. Background Work and Problem Definition

The current work investigates efficient and easy-to-implement adaptive strategies
for voice detection, segmentation and classification in audio broadcast programs. Such
audio signals usually comprise multiple segments—events, implicating various patterns,
such as speakers’ voices, phone correspondences, recorded reports, commercial jingles
and other sound effects. Thus, efficient treatment and management of the broadcasted
content involve demanding semantic analysis tasks. There are many issues that deteriorate
the efficiency of audio recognition, requiring special attention. A common difficulty that
must be faced in typical radio programs relies on the temporal overlapping of events and
patterns, where music usually coexists with voice components. In addition, background
noise and/or reverb contamination (mostly in non-studio recordings) deteriorate the recog-
nition accuracy, while fade in/out operations and similar creative (/mixing) effects further
complicate the speech detection task. Other unwanted matters include various recording
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and preprocessing artifacts, speech rate variability, pronunciation effects and subjective
speech degradation issues in general.

Motivated by the results of a previous research on program-adaptive pattern analysis
for Voice/Music/Phone [1] and Language Discrimination taxonomies [6], the presented
methodology functions as an add-on module towards the formulation of a dynamic Generic
Audio Classification Repository. Hence, following already adopted hierarchical classifica-
tion strategies, new schemes were adapted based on clustering techniques, but also their
combination with supervised training methods. In this context, semi-supervised hierarchi-
cal and hybrid pattern recognition systems are proposed for light-weighted speech/non-
speech segmentation, noise detection and further discrimination of male/female voices,
independently of the involved speakers. Several experiments were conducted for the
determination and validation of adaptive audio feature engines at every classification level
of the involved hierarchies. Another issue that is addressed in the current work is the inves-
tigation of the impact of the temporal segmentation accuracy in the overall classification
performance. Several stress tests were conducted in this direction, using different window
lengths and segmentation resolution, offering windowing efficiency insights.

Semantic analysis procedures in radio content mainly involve voice detection, speech
recognition and speaker identification tasks. Machine learning approaches based on clus-
tering techniques that determine speech/non-speech frames were implemented for voice
activity detection via Gaussian mixture models, Laplacian similarity matrices, expectation
maximization algorithms, hidden Markov chains and artificial neural networks [26–30]. A
more specific and interesting audio pattern that can be detected in audio signals, i.e., in
broadcast programs, refers to phone line voices, due to the contained particular spectral
audio properties [1,25,26].

It must be noted that an extended study was carried out in [1] for content analysis and
description purposes of broadcast radio programs, aiming at the formulation of adaptive
classification taxonomies (speech/non-speech and voice/music discrimination, speaker ver-
ification, noise detection) with the utilization of various direct, hierarchical and combined
hybrid schemes implementations. In this direction, efficient annotation and segmentation
processes were applied in the radio signals formulating the ground truth database for the
subsequent corresponding semantic analysis. During supervised classification, based on
the developed taxonomies, several algorithms were employed from the statistical domain
(i.e., linear, logistic regressions), decision trees (i.e., J48 tree models), support vector machine
techniques (i.e., SMO) and artificial neural network modeling. The comparison between
the respective classification performances indicated that neural network implementations
provided the highest discrimination efficiency in almost all cases/schemes. Moreover, a
thorough feature evaluation was conducted in [25] to investigate the saliency of an initial
augmented extracted audio feature set. Ranking algorithms were employed, aiming at
the detection of the most efficient feature subsets for classification purposes, based on
the above speech/non-speech segmentation and speaker discrimination taxonomies. In
this context, the current paper aims to extend the previously conducted work, trying to
integrate unsupervised classification potentials via clustering techniques in the content
of radio programs. Indicative comparisons of the previously and currently employed
classification methods are presented in the following sections.

2.2. Proposed Framework

Figure 1 presents the proposed methodology for the program-adaptive classifica-
tion problem. In real-world cases, the sound source could be consisted of a short length
broadcasted signal (for example 10 min duration), which is thereafter implicated in se-
mantic analysis tasks, based on pattern recognition operations, aiming to formulate effi-
cient/automated content description/labeling mechanisms for archiving purposes. As
mentioned above, the conducted work/experiments investigate the feasibility of the pro-
posed architecture via supervised classification and clustering strategies, mainly in voice
content. The audio signal that triggers the initiation of the process in Figure 1 could derive
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from radio streams, either traditionally broadcasted or hosted on web radio platforms.
Taking into consideration multiple speakers’ voices coexisting in different radio shows with
differentiated characteristics/structure, it is anticipated that the initially formed Ground
Truth Repository could not function efficiently towards multilayer classification, due to re-
duced data acquisition. On this basis, the current work proposes an initial experimentation
with a small input dataset of a specific radio stream in order to examine the potential voice
discrimination rates. Thereafter, the Ground Truth Repository will be gradually/iteratively
augmented with other instances of the same radio program (therefore retaining the same
content characteristics/structure), reinforcing the confidence in the classification results. In
this context, each group of records of the same radio program functions as a sub-(ground
truth) dataset in the Generic Repository, justifying the adaptive character of the proposed
framework (dotted lines in Figure 1). The same operation is followed for other radio shows
along with their respective diversified instances, in an iterative way, leading to effective
data augmentation of the Generic Ground Truth Repository, which subsequently can be
utilized for experimentation with more sophisticated deep learning strategies. As antici-
pated, the most crucial step (and demanding one) towards the feasibility of the proposed
architecture has to do with the classification effectiveness in the initial reduced duration
radio stream. The aforementioned topic/step constitutes the main research objective of
the current work, namely, to investigate if traditional light-weighted machine learning
methods could support efficient discrimination rates before proceeding into more complex
and with increased computational load methods on augmented data.

Figure 1. Block diagram of the proposed methodology.

Analyzing Figure 1, the block diagram of the suggested framework is initiated with
the presence of the aforementioned reduced duration radio signal. Thereafter, the con-
tent is subjected to multiple looping operations for window selection/tuning and feature
extraction. At this point, the experimentation could begin with unsupervised/clustering
methods without any data annotation, based on hierarchical taxonomies for voice discrimi-
nation (the classification schemes will be discussed in next section). The labeling procedure
based on specific radio program adaptation leads to confident supervised machine learn-
ing modeling in the same taxonomies. Both classification strategies are tested separately
and combined in multilayer/hierarchical discrimination schemes, given the investigative
character of the presented work. It must be noted that the dataflow withholds an iterative
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character for the determination of optimized windowing in terms of classification rates of
stand-alone and combined machine learning topologies in every layer of the hierarchical
framework. The multivariate experimentation in window lengths, feature engine and
classification algorithms, along with meaningful results extraction, could thereafter lead
to the formulation of pretrained models in the Generic Repository before testing in future
implementations (i.e., deep architectures).

2.3. Data Collection—Content Preprocessing

For the demands of the model under development, audio content from different
broadcast shows is combined and transcoded in the common uncompressed PCM WAV
format (16 bit, 44,100 Hz). During the conducted experiments, the stereo information is
not taken into consideration, since the differentiations in channels properties have been
thoroughly studied in previous work [26]. Moreover, the selected audio content involves
the typical audio patterns in radio productions, namely, speaker voices, different kinds of
noise and music, and phone conversations are also included.

Thereafter, the synthesized audio file is segmented into smaller audio frames. In order
to quantitatively investigate the impact of the time windows duration, especially in the
unsupervised classification performance, four different temporal lengths are employed:
1000 ms, 500 ms, 250 ms and 125 ms. Table 1 presents the formulated audio database,
including the label of the samples, of the 3.5 min (210 s) synthesized audio file.

Table 1. Population of annotated audio samples.

Window Length 1000 ms 500 ms 250 ms 125 ms

P 100 200 400 800

V 300 600 1200 2400

VMV 120 240 480 960

VFV 120 240 480 960

VGV-GV, G=M, F 30 60 120 240

VMV-FV 30 60 120 240

R 200 400 800 1600

M 120 240 480 960

J 40 80 160 320

N 40 80 160 320

Sum 600 1200 2400 4800

In Table 1, the phone conversation samples are notated with P, the voice signal with V
and the residual non-speech segments with R. The voice signal implicates different male and
female voices, VMV and VFV, respectively, while VGV-GV,G=M,F represent speech overlapping
between same gender speakers (G = M, F) and VMV-FV withholds speech overlapping
between different gender speakers, which commonly occur in radio productions. The
residual signal includes the music content and the noisy interferences. In the music content
(M), different music genres are selected, such as rock, lounge, hip-hop and classical music,
with both male and female singers, which are usually heard in radio programs. Moreover,
the audio content includes representative jingles of radio programs (J). Finally, noise
reductions (N) refer to reverb, hiss effects, silence and other noisy interferences. In this way,
the collected data contain all the typical audio patterns in radio productions.

2.4. Classification Taxonomies and Ground Truth Data

As Table 1 exhibits, there are many audio patterns that can be investigated/classified
in the audio content of radio broadcasting. An initial experimental procedure was con-
ducted in [1], implicating several direct, hierarchical and hybrid classification schemes
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with the utilization of supervised classification algorithms and the subsequent comparison
of results. The current work attempts to extend the semantic analysis process for speech
detection/discrimination. In this context, three classification schemes are employed in an
hierarchical mode, in order to disintegrate the initial complex pattern recognition problem
into more efficient layers. Figure 2 presents the classification schemes with the respective
audio content labeling. The first layer includes the voice discrimination of speaker and
phone conversations (VPR scheme). It must be noted that phone voice is considered as a
distinct audio speech signal because of its specific audio and spectral properties, as [1,25]
present. In this way, the voice and phone signals can be classified from music, jingles and
other noise content (residual signal). The second layer includes a single speaker vs multiple
speakers scheme (SM scheme) that attempts to discriminate a speakers’ voice from speech
overlapping between them. Finally, the subsequent third layer presents the speaker genre
diarization problem, aiming to classify male/female voices (MF scheme). It must be stated
that the whole semantic analysis is conducted with both supervised and unsupervised
classification algorithms, and a combination of them, but the procedure can be also served
by the solely automatic clustering process between the layers/schemes.

Figure 2. Proposed classification schemes.

According to the previous mentioned discrimination schemes, the annotation pro-
cedure assigns the corresponding class to the respective segmented audio frames, with
the notation of Table 1. In this context, a ground truth database is formulated only for
supervised classification purposes, since unsupervised classification utilizes only the initial
non-labeled audio samples for clustering detection. The annotation procedure is also
essential in order to evaluate the discrimination rates of the unsupervised automated clas-
sification, comparing the clustering structures to the assigned classes of the ground truth
formulated database.
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2.5. Feature Engine

In the current paper, 90 different features were initially selected and extracted via
bibliographic suggestions, empirical observations and trial and error experiments. Hence,
we utilize standard spectral audio features that are frequently used in audio content
classification, such as spectral centroid (SPc) and its MPEG-7 perceptual version (audio
spectral centroid, ASC), audio spectral spread (ASS), spectral flatness measure (SFM), roll-
off frequency (RF), bandwidth (BW), spectral irregularity and brightness, spectral flux (SF)
and delta spectrum magnitude (DFi) [1,25].

Similarly, popular time–domain audio features are employed (i.e., low short time en-
ergy ratio—LSTER; crest factor—CF; logarithmic expressions of normalized recording level,
average power and dynamic range—loudness, pav and DR, respectively), in combination
with time and frequency–domain signal statistics (audio entropy, RMS energy, temporal
and spectral skewness and kurtosis, etc.) [1,25]. In addition, the first thirteen mel frequency
cepstral coefficients (MFCCs) are selected due to their increased discriminative power in
speech and speaker recognition. Audio envelope thresholding and peak analysis is also
performed for the estimation of additional features, such as global and efficient signal to
noise ratio (GSNR/ESNR); envelope level that has been exceeded in 85% of the signal
length (E85 [dB]); estimation of the total number envelope peaks (nPeaks), including the
average and variance values of their magnitudes and their time distances (PKSavr, PKSvar,
PKS-Distavr, PKS-Distvar, respectively); peak transition measure (PTM) and its normalized
version (nPTM); and estimation of the number of significant samples (nss) exceeding the
envelope threshold level of E85, providing also the average and variance of the length of
the silent (insignificant) segments (meanL-SP, varL-SP) [1,25]. Finally, spectral bands’ com-
parison features are extracted by means of FFT and 9-level DWT/UWT analyses. Hence,
band energy ratios (BER) of low (LF, <250 Hz), medium (MF, 250 Hz–4 kHz) and high
frequencies (HF, >4 kHz) to the overall spectral energy formed using the FFT sequences.
Similarly, wavelet average power and crest factor sequences of all the k = 10 formed scales
of the WT coefficients are estimated (WPav-k, WCF-k), also allowing the extraction of
wavelet power centroid (WPc) and time variance (WPcv), the energy ratio of the lowest
band to the total energy expressing the significance of the lowest band (WLBsign) and the
energy concentration to the highest level wavelet band (WLBconc).

The above initially extracted feature set was engaged and tested in previous experiments
in [25], and consequently, useful remarks and conclusions referring to their efficiency emerge
from comparisons in the current work. Figure 3 exhibits the main categories of the features.

Another aspect that must be taken into consideration refers to the evaluation of the
extracted features, because each audio property contributes at a different level to the dis-
crimination efficiency. Moreover, the exploitation of the whole feature set leads, as it is
anticipated, to increased computational load and processing needs and therefore, smaller
and efficient subsets are sought in order to resolve these issues. Several experiments have
been carried out in [1,25] concerning the saliency and ranking of the feature set while em-
ploying supervised classification in different implementations and schemes. The computed
cross-correlation matrices and principal component analysis revealed in [25] a feature vector
with dimension/rank equal to 36 for supervised classification with artificial neural system
implementations. For this reason, the subsequent experiments in the next section employ
the salient feature vector that has been determined for supervised classification purposes.

Since unsupervised classification algorithms do not use predefined classes and only
investigate clusters of data/values, the whole feature set cannot be evaluated strictly in
terms of the implemented scheme (VPR, SM, MF). Consequently, the attributes’ saliency is
determined by their respective discrimination impact in the classification efficiency. Nev-
ertheless, an initial indicative ranking of the audio properties (the first 30) is presented in
Table 2 for each classification scheme, while utilizing the “InfoGainAttributeEval” algo-
rithm on the audio feature values in the WEKA environment. This technique evaluates the
importance of each attribute individually by estimating the information gain with respect
to the class using entropy measures. Furthermore, in the next section, several subsets of the
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initially extracted features are tested on the grounds of their effectiveness in the clustering
procedure while employing the unsupervised classification algorithm each time.

Figure 3. Extracted feature set.

Table 2. Feature evaluation.

VPR Scheme SM Scheme MF Scheme

1 BER_MF nss-k = 8 Wpav-k = 9
2 Wpav-k = 3 LSTER MFCC13
3 Wpav-k = 10 nss-k = 7 PKSavr
4 RF WCF-k = 7 MFCC9
5 SFM nss-k = 4 RMS
6 BER_LF WCF-k = 8 Loudness
7 MFCC1 nss-k = 5 Pav
8 Wpav-k = 9 WLBconc PKS-DISTavr
9 ESNR PKSvar CF
10 nss-k = 6 nss nPTM
11 MFCC2 Sp_Kurtosis Sp_Kurtosis
12 Wpav-k = 2 WCF-k = 4 PTM
13 Sp_Entropy E85 GSNR
14 BER_HF WCF-k = 5 WCF-k = 10
15 Sp_Kurtosis CF nss-k = 10
16 ASS MFCC11 MFCC12
17 WCF-k = 6 Dfi RF
18 ASC nss-k = 9 nPeaks
19 Wpav-k = 4 WCF-k = 9 MFCC7
20 E85 nss-k = 6 nss
21 BW Sp_Skewness Wpav-k = 2
22 Sp_Skewness nPeaks Wpav-k = 4
23 nss-k = 5 MFCC10 BER_HF
24 Wpav-k = 7 WCF-k = 6 MFCC5
25 nss-k = 7 PKS-DISTavr MFCC2
26 GSNR DR nss-k = 2
27 Dfi DEMZc Wpav-k = 5
28 Sp_Brightness ESNR MFCC8
29 RMS PKS-DISTvar WCF-k = 2
30 Pav Wpav-k = 6 MFCC10
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3. Results
3.1. Classification Techniques and Performance Metrics

Several experiments have been conducted in [1] in order to compare supervised clas-
sification techniques (decisions trees, artificial neural systems, regressions, etc.) in terms
of their overall and partial discrimination efficiencies in various implementations and
schemes. One of the most balanced discrimination rates emerged from the employment
of artificial neural training for the development of the supervised classifier. Consequently,
in the current work, artificial neural systems (ANS) are solely utilized for supervised clas-
sification purposes. Several topologies were tested in order to achieve efficient training
performance leading to network implementations of two sigmoid hidden layers and an
output linear layer, while an approximate number of 20 nodes are engaged in the hidden
layers. Furthermore, the k-fold validation method is utilized, dividing the initial audio sam-
ples set into k-subsets and thereafter using the (k− 1) subsets for training requirements and
the remaining subset for validation purposes; the whole procedure is iteratively repeated k
times. The k-fold validation technique is employed for the performance evaluation of the
ANS classifiers and, moreover, favors the formulation of generalization classification rules.
For the current experiments, we selected k = 10, ensuring that for each of the 10 iterations,
90% of the audio frames’ feature values are engaged in the model training process and 10%
for validation purposes.

The performance rates for each parameters’ combination (window length, k-fold itera-
tion, etc.) are based on the extracted confusion matrix of the respective model. Specifically,
the confusion matrix represents an array of values of the correctly classified instances and
the misclassified ones. Table 3 presents an example of the output confusion matrix for the
temporal length 125 ms for the taxonomy voice (V), phone (P) and residual (R) according
to VPR scheme. As shown, the correctly classified samples are on the main diagonal of the
array, while above and below are the erroneously classified samples.

Table 3. Example of confusion matrix.

Predicted

Class V P R

Actual

V 2255 99 46

P 32 755 13

R 27 28 1545

The overall pattern recognition performance PS of the ANS for each of the imple-
mented schemes is evaluated by the % ratio of the number of the correctly classified
samples Ncor to the total number of the input samples N. In the same way, the partial
discrimination rate PSci of a class Ci is defined as the % ratio of the correctly classified
samples Ncci in the class Ci to the total number of samples Nci that Ci class includes. The
above definitions are described in Equations (1) and (2).

PS =
NCOR

N
×100% (1)

PSCi =
NCCi

NCi
×100% (2)

Applying Equations (1) and (2) in our example of Table 3, the numbers of correctly
classified samples in each class are NCCV = 2255 (for class V), NCCP = 755 (for class P) and
NCCR = 1545 (for class R), while the total number of correctly classified instances in the
model is Ncor = 2255 + 755 + 1545 = 4555. Furthermore, as Table 1 exhibits, the input
dataset had N = 4800 samples in total, and for each class, we have NV = 2400, NP = 800 and
NR = 1600. Consequently, the partial recognition rates for each class are:
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PSV = (2255/2400) × 100 = 93.96%

PSP = (755/800) × 100 = 94.38%

PSR = (1545/1600) × 100 = 96.54%

On the other hand, the clustering process in the current work is being implemented
through the k-means classification algorithm that aims to detect the formulation of group of
data/feature values, according to a similarity metric. The criteria that defines the integration
of a sample into a cluster, usually refers to a distance metric such as Euclidean, Manhattan,
Chebyshev or min–max distance from the cluster center/average. The experiments that
are carried out in the present work utilize both Euclidean and Manhattan distance in the
k-means implementation for additional comparison purposes.

Since the clustering process only detects data groups, the classification performances
cannot be directly evaluated with Equations (1) and (2). One of the main objectives of the
current work is to investigate the feasibility of the automatic unsupervised classification in
audio data through clustering methods and compare the results with the respective ones
by supervised ANS. In this way, we can compare the data clusters formulations of k-means
with the corresponding classes in ANS in order solely to evaluate the clusters. Table 4
presents the example of the output cluster formulation of the k-means algorithm for the
same window length of 125 ms.

Table 4. Example of cluster formulation.

Clusters/Groups

Class G1 G2 G3

Actual Class

V 2240 90 70

P 0 800 0

R 106 165 1329

The partial discrimination performance PUGi of cluster Gi is defined as the % ratio of
the number of samples of class Ci that have been classified to cluster Gi to the total number
of samples of class Ci. The above metric is essentially a % measurement of resemblance
of cluster class. In addition, the overall discrimination performance of clustering PU
is evaluated as the % ratio of the sum of the numbers of samples of each class Ci that
have been correctly grouped in cluster Gi to the total number of input samples N. The
above metrics are described in Equations (3) and (4). The classification results of the
employed supervised/unsupervised techniques in the next section are evaluated based on
Equations (1)–(4).

PUGi =
NCi→ Gi

NCi
× 100% (3)

PU =
∑nclusters

1 NCi→Gi
N

× 100% (4)

Applying Equations (3) and (4) in our example of Table 4, the number of clusters is
nclusters = 3 and the distribution of class samples in the respective clusters is NV→G1 = 2240
(for class V in Group1), NP→G2 = 800 (for class P in Group 2) and NR→G3 = 2240 (for class
R in Group 3). Again, as Table 1 exhibits, the input dataset had N = 4800 samples in total
and for each class, we have NV = 2400, NP = 800 and NR = 1600. Consequently, the partial
recognition rates for each class are:

PUG1 = (2240/2400) × 100 = 93.33%

PUG2= (800/800) × 100 = 100%

PUG3 = (1329/1600) × 100 = 83.08%
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3.2. Performance Results on Combined Taxonomies

The supervised ANS models and the clustering k-means algorithm are implemented
independently in the first classification layer of the VPR scheme. Furthermore, the data
mining techniques are optionally combined in the subsequent layers, in order to evaluate
either a strict supervised or unsupervised character of classification or a hybrid one, while
moving down in the classification schemes/layers. Figure 4 exhibits the combinations
of classification methods. It must be noted that the clustering “path” leads to a more
automated whole semantic analysis process compared to the prerequisites of ground truth
databases that ANS classifiers demand.

Figure 4. Description of classifier connectivity.

In order to follow the successive implementations of ANS and k-means algorithms,
each path in Figure 4 is represented with the initials S (for supervised classification) and U
(for clustering) for the three layers, namely, the X-X-X notation where X = S or X = U. For
example, the notation S-S-U stands for the combined classification with ANS modeling in
VPR and SM schemes and k-means clustering in the MF scheme.

Table 5 presents the performance rates of ANS and k-means for the first VPR clas-
sification scheme for several temporal segmentation windows. The overall and partial
discrimination rates for supervised classification are quite high for all of the V, P and R
classes, reaching even values of 100%. A useful remark derives from the slight decline in
performances dependent on the window duration. The unsupervised k-means algorithm
also presents high performance rates, i.e., for 1000 ms windowing, 94.76% for overall
discrimination, and 96.67%, 100.00% and 93.08% for the cluster formulation according to
the corresponding class V, P and R respectively. The phone signal class reaches the 100%
discrimination performance, for both algorithms, confirming the initial assumptions of its
more specific temporal and spectral audio properties. Moreover, the implementations with
Manhattan distance usually lead to slightly increased performance values, but on the other
hand, decreases in temporal windowing considerably deteriorate the clustering process
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with discrimination values of 71.55% and 63.51% for 250 ms and 125 ms framing windows,
respectively. The 1000 ms segmentation window leads to the highest discrimination rates
for both supervised/unsupervised techniques, but the impact of temporal differentiations
is quite obvious, especially in the clustering process.

Table 5. Classification performances for VPR scheme.

Window P Pv Pp PR

S

1000 ms 99.05 100.00 100.00 98.46
500 ms 96.43 96.67 100.00 95.77
250 ms 95.83 94.17 95.00 96.73
125 ms 95.60 93.96 94.38 96.54

U

1000 ms (Manh) 94.76 96.67 100.00 93.08
1000 ms (Eucl) 94.29 95.00 100.00 93.08
500 ms (Manh) 87.62 93.33 100.00 83.08
500 ms (Eucl) 83.10 88.33 100.00 78.08

250 ms (Manh) 71.55 61.25 5.00 86.54
250 ms (Eucl) 73.33 65.00 5.00 87.69

125 ms (Manh) 63.51 22.71 85.63 78.94
125 ms (Eucl) 65.77 38.96 10.00 86.73

In order to proceed to the next classification level/layer, the most efficient results of
1000 ms segmentation windowing are employed from the VPR scheme, which provide
100% voice signal discrimination in ANS and 96.67% clustering in k-means. Thereafter, the
classification techniques are employed again for the SM scheme, in order to discriminate
a single speaker from multiple speakers in the detected voice signal of the VPR scheme.
Table 6 exhibits the discrimination rates for the SM scheme.

Table 6. Classification performances for SM scheme.

Window P PSS PMS

S-S

1000 ms 98.33 97.50 100.00
500 ms 90.00 91.25 87.50
250 ms 88.75 92.50 81.25
125 ms 88.54 92.50 80.63

S-U

1000 ms (Manh) 67.24 52.50 100.00
1000 ms (Eucl) 68.33 57.50 90.00
500 ms (Manh) 59.17 41.25 95.00
500 ms (Eucl) 55.00 35.00 95.00

250 ms (Manh) 56.25 41.25 86.25
250 ms (Eucl) 55.42 40.00 86.25

125 ms (Manh) 58.96 48.75 79.38
125 ms (Eucl) 59.17 47.81 81.88

U-S

1000 ms 98.28 97.50 100.00
500 ms 90.52 91.25 88.89
250 ms 85.34 90.63 73.61
125 ms 88.36 92.50 79.17

U-U

1000 ms (Manh) 70.69 57.50 100.00
1000 ms (Eucl) 67.24 52.50 100.00
500 ms (Manh) 63.79 80.00 61.11
500 ms (Eucl) 60.34 60.00 61.11

250 ms (Manh) 65.95 68.13 61.11
250 ms (Eucl) 56.90 50.63 70.83

125 ms (Manh) 54.96 43.44 80.56
125 ms (Eucl) 54.09 40.63 84.03
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The selection of temporal window also remains crucial for the ANS and k-means im-
plementations for the SM classification scheme. The 1000 ms framing leads to more efficient
overall and partial discrimination rates for all of the S-S, S-U, U-S and U-U combinations.
Moreover, the Manhattan distance metric for the k-means results in better clustering perfor-
mances compared to Euclidean distance. Finally, the most useful remark refers to the 100%
discrimination and clustering performance in the combined algorithms’ implementation
for the multiple speakers class of the voice signal.

Moreover, the U-S and S-S sequences lead to more efficient single speaker discrimina-
tion (97.5%), and consequently, the ANS classification is vital in the second layer of the SM
scheme. This allows the semantic analysis to proceed in the third hierarchical MF scheme
for genre voice classification of the single speaker voice. Table 7 exhibits the classification
rates for the third layer of MF scheme.

Table 7. Classification performances for MF scheme.

Window P PMV PFV

U-S-S
S-S-S

1000 ms 92.50 95.00 90.00
500 ms 96.25 95.00 97.50
250 ms 95.63 95.00 96.25
125 ms 93.44 93.13 93.75

U-S-S
S-S-U

1000 ms (Manh) 90.00 100.00 80.00
1000 ms (Eucl) 90.00 100.00 80.00
500 ms (Manh) 81.25 95.00 67.50
500 ms (Eucl) 70.00 60.00 80.00

250 ms (Manh) 65.62 65.00 66.25
250 ms (Eucl) 52.50 73.75 31.25

125 ms (Manh) 51.25 41.88 60.63
125 ms (Eucl) 50.31 67.50 33.13

As Table 7 exhibits, the male/female voice is discriminated in high performances
for both supervised and unsupervised implementations, with overall discrimination val-
ues of about 90%. More thoroughly, the ANS modeling offers slightly better and more
balanced classification results (92.50%, 95%, 90%) compared to the k-means clustering
rates (90%, 100%, 80%). Furthermore, it is quite useful to note that, in the MF scheme,
the ANS implementations yield better overall and partial performances for smaller seg-
mentation windows, while the opposite stands for k-means clustering. Finally, the same
observation for the better selection of the Manhattan distance metric also remains for the
MF classification scheme.

Summarizing the remarks of the overall semantic analysis for hierarchical classification
in the three layers of Figure 4, it must be noted that several combinations can be sought for
pure or hybrid classification techniques in order to reach efficient discrimination results.
The integration of clustering methods in supervised implementations promotes automation
and functionality in the whole semantic analysis process.

3.3. Validation and Optimization Issues

As mentioned in Section 2.5, the feature evaluation process is crucial for the overall
processing load and time, especially for the supervised classification techniques. Even
though the clustering k-means algorithm noted reduced computational load in the previous
experiments while exploiting the whole extracted feature set, in this section, a feature
evaluation process is conducted especially for the clustering method, while also utilizing
the ranking results of Table 2. The k-means algorithm is employed for the three classification
schemes VPR, SM and MF, but different numbers of audio properties are exploited in each
implementation, based on the ranking of Table 2. Figures 5–7 present the overall and partial
discrimination rates while utilizing differentiated numbers of audio features.
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From the above diagrams, the optimum number of features is determined based on
the best performance rates. Table 8 presents the number of features and the corresponding
discrimination rates for the k-means clustering in the hierarchical classification schemes of
Figure 2. Comparing the values of Table 8 with the corresponding performances of Tables 5–
7, we can observe the positive impact of the diversification of the number of features in
clustering, in the context of the whole semantic analysis process performance rates.

Figure 5. Feature evaluation for VPR scheme.

Figure 6. Feature evaluation for SM scheme.
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Figure 7. Feature evaluation for MF scheme.

Table 8. Clustering performances with feature subsets.

P PV PP PR

U(32) 95.24 100.00 100.00 92.31

P PSS PMS
U(32)—U(10) 90.00 85.00 100.00

P PMV PFV
U(32)—U(10)—U(24) 95.00 100.00 90.00

Another aspect that must be taken into consideration while employing the pattern
recognition analysis refers to the selection of the segmentation window, which has a crucial
impact on the discrimination performances. More specifically, in almost all of the current
experiments and also previous ones in [1,25], the 1000 ms framing length leads to better
classification results. One justification may derive from the fact that 1000 ms contains
more information data, which is a determinant factor for classification purposes, especially
of heterogeneous audio content (i.e., VPR scheme). In order to further investigate and
validate the selection of 1000 ms framing length, besides the comparisons in the previous
section with various temporal windows (1000 ms, 500 ms, 250 ms, 125 ms) in terms of
their corresponding classification results, several experiments are conducted in this section
with a sliding 1000 ms segmentation window. In the following analysis, the 1000 ms
segmentation begins with 100 ms, 200 ms, 300 ms and 400 ms delays, resulting in successive
information loss compared to the initial accurately annotated frames. Moreover, in real
conditions, the whole semantic analysis process may suffer from inaccurate annotation
tasks, and consequently, the sliding 1000 ms windows may reveal the impact of the selected
window, on the grounds of a sensitivity analysis in the classification problem. Table 9
presents the performance values for supervised and unsupervised classification on the VPR
scheme with the sliding effect.
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Table 9. Temporal sensitivity analysis.

P Pv Pp PR

S-no sliding 99.05 100.00 100.00 98.46
U-no sliding (all feat.) 94.76 96.67 100.00 93.08
U-no sliding (32 feat.) 95.24 100.00 100.00 92.31

S-100 ms sliding 99.05 100.00 100.00 98.46
U-100 ms sliding (all feat.) 91.90 96.67 100.00 88.46
U-100 ms sliding (32 feat.) 92.38 100.00 100.00 87.69

S-200 ms sliding 99.05 100.00 100.00 98.46
U-200 ms sliding (all feat.) 92.38 96.67 100.00 89.23
U-200 ms sliding (32 feat.) 94.29 98.33 100.00 91.54

S-300 ms sliding 98.57 100.00 100.00 97.69
U-300 ms sliding (all feat.) 88.57 93.33 100.00 84.62
U-300 ms sliding (32 feat.) 93.33 98.33 100.00 90.00

S-400 ms sliding 97.62 98.33 95.00 97.69
U-400 ms sliding (all feat.) 88.57 95.00 100.00 83.85
U-400 ms sliding (32 feat.) 90.95 96.67 95.00 87.69

S-all together 99.90 100.00 100.00 99.85
U-all together (all feat.) 88.29 91.00 100.00 85.23
U-all together (32 feat.) 92.95 98.33 98.00 89.69

As Table 9 exhibits, the segmentation delay results are different from the respective
ones with no sliding. Nevertheless, the impact of the sliding effect is not so obvious for
100 ms, 200 ms or 300 ms temporal delays, but when referring to 400 ms sliding, the clas-
sification performances decrease for both ANS and k-means methods, which indicates a
significant information loss. Consequently, the 1000 ms framing selection appears to be an
efficient segmentation window, which also allows real condition annotation fault margins.
Furthermore, in the same table, the discrimination results for k-means with 32 feature
implementations are exhibited, which are more increased with the corresponding imple-
mentations with the whole feature set. This remark reinforces the previous conclusions of
the feature adaptivity potential in the whole semantic analysis process.

4. Conclusions and Future Aspects

This paper presents a framework for quick and light-weighted adaptive segmenta-
tion and classification processes in audio broadcasted content. Several combinations of
training techniques were implicated in hybrid and hierarchical taxonomies, along with
multivariate experiments in feature sets and temporal window tuning. The classification
rates (especially in supervised strategies) revealed that such a methodology is feasible for
effective content discrimination while choosing a profile of parameters in terms of audio
properties, window lengths and machine learning techniques. While moving into more
careful conclusions drawn by the whole experimentation setup, it must be mentioned that
traditional machine learning strategies can be exploited when limited data exist in order
to support initial broadcasted data classification for effective radio content description
and archiving purposes. The temporal length of windowing process contributes radically
to the taxonomies’ performance, favoring mainly medium lengths (around 1 s duration),
while the sensitivity experiments with overlapping potentials revealed that sliding op-
erations improve the general classification rates compared to more strict segmentation
choices. Moreover, it must be highlighted that clustering methods can facilitate a quick and
effective semi-automated “blind” data discrimination without the data annotation step,
especially for the initial voice classification layer. In all cases, the audio signals deriving
from broadcasted programs can be efficiently processed in hierarchical/hybrid classifica-
tion implementations since error propagations are treated better while breaking down the
content in multilayer discrimination schemes compared to direct ones.

The overarching purpose of this work is the formulation of a dynamic Generic Au-
dio Classification Repository, fed by iterative radio program-adaptive classification pro-
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cesses/experimentation. In this context, the audio database is constantly evolving and
augmenting, and more taxonomies could be incorporated, either in voice signals (language
discrimination, emotion estimation, etc.) or in residual data (music genre classification,
noise removal, etc.). In this direction, the semantic analysis process could facilitate more
complex and resource-demanding machine learning strategies in rich data content that
could involve deep architectures (RNNs, 1d/2d CNNs, etc.). The main target of the pre-
sented work is to integrate, step by step, all possible classification schemes based on radio
content structures, in order to support effective pretrained models and automated solutions
independent of adaptive methodologies.
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