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Abstract

:

Predicting the post-blast re-entry time precisely can improve productivity and reduce accidents significantly. The empirical formulas for the time prediction are practical to implement, but lack accuracy. In this study, a novel method based on the back-propagation neural network (BPNN) was proposed to tackle the drawbacks. A numerical model was constructed and 300 points of sample data were recorded, with consideration to fresh air volume, occupational exposure limit, toxic gas volume per kg of explosives and roadway length. The BPNN model with six neurons in a hidden layer was then developed and prediction performance was discussed in terms of four indicators, namely, the root mean square error (RMSE), the coefficient of determination (R2), the mean absolute error (MAE) and the sum of squares error (SSE). Furthermore, one representative empirical formula was introduced and calibrated for the comparison. The obtained results showed that the BPNN model had a more remarkable performance, with RMSE of 21.45 (R2: 0.99, MAE: 10.78 and SSE: 40934), compared to the empirical formula, with RMSE of 76.89 (R2: 0.90, MAE: 42.06 and SSE: 526147). Hence, the BPNN model is a superior method for predicting the post-blast re-entry time. For better practical application, it was then embedded into the software.
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1. Introduction


The number of underground mines is increasing due to the depletion of resources on the surface. The drill and blast (D&B) and tunnel boring machines (TBM) have been used in underground mines for excavation. Although TBM has been adopted at sites such as San Manual Mine and Stillwater Mine [1], many difficulties, including cutter wear and rock popping, etc., have hindered its development [2]. Consequently, D&B is still the main excavation method due to its flexibility and economy [3,4]. However, one of the shortcomings of D&B is that it emits a substantial amount of toxic gases, including carbon monoxide (CO), nitric oxide (NO) and nitrogen dioxide (NO2). Among them, CO is the primary research object, due to its stability and large quantity [5]. For the purposes of improving cleaning efficiency and enhancing the production capacity, ventilation has been identified as one of the most effective methods and has been used widely [6].



The ventilation time taken to reduce the toxic gas concentration below the occupational exposure limit is defined as the post-blast re-entry time [5]. Additionally, a report has shown that most mines have more than four blasts per day, so estimating the post-blast re-entry time as accurately as possible will avoid the loss of significant amounts of production time [7]. Several methods have been studied and applied. For example, many mines have relied on the fixed-time interval to determine when the miners can re-enter the heading face to work continuously [8]. However, it should be noted that this may lead to a number of associated safety and health issues for workers. In order to improve accuracy, some empirical formulas were developed by using the flow balance, fitting the data obtained from numerical simulations, site tests, and laboratory experiments [4,7,9,10,11,12,13,14,15]. Despite the considerable advantages of empirical formulas, such as being simple, convenient, and timesaving, the calculation is less universal so that some parameters such as the dilution efficiency factor, need to be calibrated according to the particular mine where the concentration data can be monitored [15].



As opposed to the empirical formulas, artificial intelligence (AI) technologies have a good history of performance in prediction [16]. The technique has gained popularity in many fields, including UCS of rock [17,18], shear strength of rockfill material [19], backbreak in open-pit mines [20], ozone concentration [21] and carbon monoxide concentration [22]. Additionally, the AI technologies have the ability to consider several factors, and the results can be obtained directly based on the optimized AI model. AI can also avoid the above-mentioned limitations of the empirical formula. However, AI technologies have rarely been implemented into the re-entry time prediction, to the author’s knowledge.



Gathering reliable sample data is necessary for the construction of AI models [23]. Field data is of course the most reliable type, but one that is not easy to access, due to the harsh environment in the mines [24]. On the contrary side, numerical simulation has gained worldwide attention in the study of the migration behaviors of blasting production in the underground roadway, owing to the superiority of visualization, data richness and ease of operation [25,26,27,28]. However, the length of these models is typically short, as numerical simulation requires a high level of computational performance, especially for long roadways with a significant amount of nodes. The Ventsim software, which is based on the Hardy Cross algorithm, and which has been used to study the post-blast re-entry time in some complex roadways with affordable computation time [15,29], was thus selected to calculate the time under various conditions in this study.



Therefore, this paper aims to develop a BPNN model for predicting the post-blast re-entry time. The rest of this study is organized as follows. The section titled “Model process and data preparation” introduces the construction of models used, as well as the process of database establishment, including the selection and analysis of parameter ranges. The section titled “Methodology” describes the algorithm of BPNN as well as the process of calibrating the empirical formula in detail, in addition to four indicators adopted to evaluate the performance of proposed models. The section titled “Results and discussions” contains the description of building the architecture of the BPNN and a performance comparison of both models for the time prediction. The section titled “Algorithm embedding” exhibits one software developed based on the proposed models. In the last section, the main conclusions and future development are given.




2. Model Process and Data Preparation


2.1. Model Construction


The research object is one cross-section of the roadway at a depth of approximately 580 m below the surface. The section’s size and its corresponding 3-D model constructed in Ventsim are shown in Figure 1. It is a three-core arch structure with an area of 14.04 m2. The width, wall height and arch height are 3.95 m, 2.8 m and 0.95 m, respectively. Facilities such as cables and supports inside the roadway were not taken into consideration. The amount of explosives used each time are about 40 kg and the temperature is around 300 K. It is worth pointing out that the ventilation duct was placed off the roadway in this software for the convenience of real-time viewing of ventilation performance.




2.2. Database Generation


Four parameters, namely, average velocity within the roadway, occupational exposure limit, toxic gas volume per kg of explosives and length of roadway, have frequently been considered when calculating the relevant time [11,15]. Hence, these four parameters were also used for developing the BPNN model in this study. Due to the fact that the fresh-air volume of the ventilation duct has a considerable impact on the average velocity within the roadway, the minimal average velocity in the excavation roadway was set at 0.25 m/s and the highest average velocity was set at 4 m/s in the mining area, given in the safety regulations for metal and nonmetal mines of China [30]. As a consequence, the average velocity ranged from 0.25 m/s to 4 m/s in this study. Moreover, some indexes for assessing occupational exposure limit have been proposed, depending upon the actual requirements. For example, time weight average (TWA) is defined as the average permissible concentration within a normal 8 h workday and 40 h work-week. Short term exposure limit (STEL) considers the permissible concentration limit for up to 15 min with the serious implementation of the TWA. Table 1 shows the TWA and STEL of different countries for CO. It can be seen that China has the strictest regulations for exposure concentration, so 24 ppm was used as the monitoring standard rather than the 16 ppm level found in some regulations [31]. Taking all of the above factors into account, the occupational exposure limits in this study were taken to be between 24 ppm and 50 ppm, in order to meet a variety of requirements.



Toxic gas production is susceptible to a variety of influencing factors, such as the sort of explosives [32], the environment of the roadway [33], the type of blasting design, the method of detonation, and so on [34]. Therefore, the amount of toxic gases produced in each detonation varies slightly. The #2 rock emulsion explosive was adopted in this study. The toxic gas volume per kg of explosives in the underground roadway is from 36 L/kg to 42 L/kg, as given by Wang [35]. In addition, the length of the roadway is increased with the continuous construction of excavation engineering. Herein, the range from 200 m up to 1500 m was studied. Figure 2 presents the minimum, lower quartile, median, upper quartile and maximum for each parameter in boxplots. It illustrates that each parameter shows a uniform distribution.



A total of 300 input samples were generated based on the ranges mentioned above, and then these models with specific parameter values were constructed and simulated in Ventsim software to predict the post-blast re-entry time. In total, 300 pieces of data were archived herein as described in Appendix A. The correlation matrix of the dataset is presented in Figure 3. The distributions and correlation coefficients for any two parameters are presented in the lower and upper of this figure, respectively. For the lower, it is clear that the relationship between the inputs and outputs is nonlinear where only the relationship of velocity versus time reveals a distribution similar to a negative exponential. For the upper, the darker the blue, the stronger the negative correlation. Conversely, the lighter the red, the weaker the positive correlation. As can be observed, the correlation coefficient between the four input parameters is low, as they are independent of each other. Additionally, both length and velocity show statistically significant relationships with the time, after significance tests. Despite the fact that gas and limit have lower correlation coefficients, these parameters still remain valid for the subsequent comparative analysis with the empirical formula.





3. Methodology


3.1. BPNN Algorithm


BPNN is a classical supervised learning method fusing the feedforward neural network and the back-propagation algorithm. It has been used in many fields and achieved excellent performance because of its capabilities of outstanding nonlinear fitting and generalization. For instance, Li et al. [23] have successfully used a BPNN model to predict the stress values when evaluating pillar stability. Zhao et al. [36] applied an integrated model based on the traditional BPNN to predict air pollution concentration and demonstrated that the method is more practical. Hence, BPNN was chosen in this study for predicting the post-blast re-entry time. There are five steps, namely, initialization of weights and biases, feedforward propagation of data, back-propagation of error, optimization of weights and biases and judgment of termination conditions.



At first, weights w and biases θ at the hidden layer and output layer are initialized with random numbers. The magnitude of each weight stands for the degree of influence of the connected neurons on the output, while the bias represents the level of difficulty in generating activation. After that, the accumulation of yj in the hidden layer and zk in the output layer can be calculated by the following formulas, respectively:


    y j  = f  (    ∑  i = 1  n    (   w  i j   ×  x i   )  −  θ j     )      ( i = 1 , 2 , ⋯ n   ; j = 1 , 2 , ⋯ m )   



(1)






    z k  = f  (    ∑  j = 1  m    (   w  j k   ×  y j   )  −  θ k     )      ( j = 1 , 2 , ⋯ m   ; k = 1 , 2 , ⋯ l )   



(2)




where f is an activation function; x, y and z are the output values of the input layer, hidden layer and output layer, respectively; and n, m and l represent the number of neurons at the input layer, hidden layer and output layer, respectively.



Afterward, the back-propagation is performed. The neuron error in the hidden layer and the output layer are Ej and Ek, respectively. As the error is the functions of weights, the tuning weights ∆wij between the input layer and the hidden layer as well as the tuning weights ∆wjk between the hidden layer and the output layer are as follows:


  Δ  w  i j   = − η   ∂  E j    ∂  w  i j      



(3)






  Δ  w  j k   = − η   ∂  E k    ∂  w  j k      



(4)




where η is the learning rate.



Subsequently, the updated weights wij (t + 1) and wjk (t + 1) are given as:


   w  i j   ( t + 1 ) =  w  i j   ( t ) + Δ  w  i j    



(5)






   w  j k   ( t + 1 ) =  w  j k   ( t ) + Δ  w  j k    



(6)




where t represents the number of iterations.



Finally, the process of training is conducted until the convergence conditions are satisfied, or otherwise, these steps (except for the initialization) are looped. In total, the framework of this research based on the BPNN model can be found in Figure 4.




3.2. Calibrating Empirical Formula


The schematic of ventilation in the longitudinal profile of the roadway is presented in Figure 5. It is given that the length of the working area and roadway are L0 and L, respectively. The area of roadway is S. The fresh air volume discharged from the ventilation duct is Q and the toxic gases concentration uniformly distributed in the working area of volume V is C0 at the initial moment. According to the flow balance, the amount of toxic gases removed after   Δ t   time of ventilation is Q ×   Δ t  . Hence, the concentration C after T time of ventilation can be calculated by the following:


  C =   l i m   n → ∝    C 0    (   V − Q Δ t  V  )  n  =   l i m   Δ t → 0    C 0    ( 1 −   Q Δ t  V  )    T  Δ t     =  C 0   e  −   T Q  V     



(7)




where n is the ratio of T to   Δ t  .



Moreover, Equation (7) can be further written by taking the logarithm as:


  T =  V Q  ln    C 0   C   



(8)







Furthermore, some other empirical formulas shown in Table 2 have been developed by using different techniques such as mathematical derivation, data fitting and formula calibration. Among them, the empirical formula given by [15] was selected for comparison with the BPNN model because it provides some optimization based on Equation (8) and is more representative than others.



To acquire dilution efficiency factor fd in the formula given by [15], the sample with the post-blast re-entry time of 86 s, velocity of 3.79 m/s, length of 474 m, gas production of 36.2 L/kg and exposure limit value of 34 ppm was randomly picked. Some other parameters, namely the working space Vw, fresh air quantity Q and gas concentration C need to be calculated as follows, respectively:


   V w  =   G × b    x 0     



(9)






  Q = u × A  



(10)






  C =   28 × G × b   29 × l × A − G × b    



(11)






  l = 15 +  G 5   



(12)




where G is the mass of the explosive, kg; b is the toxic gas volume per kg of explosives, m3/kg; x0 is the peak concentration of gas at the entrance monitored, ppm; and l is the throwing distance of toxic gas, m.



After that, the dilution efficiency factor of 0.73 can be obtained. The final empirical formula, which was employed to calculate the post-blast re-entry time and then compared to the BPNN, is given below:


  T =    V w    0.73 Q   ln  (   C   C T     )   



(13)








3.3. Performance Indicators for the Assessment of Models


Four performance indicators, the root mean square error (RMSE), the coefficient of determination (R2), the mean absolute error (MAE) and the sum of squares error (SSE) were chosen to evaluate the performance of the models developed in this study [37]. Among them, RMSE is taken to measure the deviation between the actual value and the predicted value, where the smaller the value, the better the model’s performance. R2 is available to represent the goodness of fit of the model to the sample data. The closer it is to 1, the stronger the fit is. MAE can reflect the extent of actual prediction error, with smaller values indicating that the prediction is closer to the actual value. SSE is the accumulation of squared error between the predicted value and the actual value. A larger value means a worse quality model when the number of samples is the same. They are defined by the following:


  RMSE =    1 n    ∑  i = 1  n     ( T i m  e  o , i   − T i m  e  p , i   )  2       



(14)






   R 2  = 1 −     ∑  i = 1  n     ( T i m  e  o , i   − T i m  e  p , i   )  2        ∑  i = 1  n     ( T i m  e  o , i   −   T i m  e o   ¯  )  2       



(15)






  MAE =  1 n    ∑  i = 1  n    |    T i m  e  o , i   − T i m  e  p , i    |       



(16)






  SSE =   ∑  i = 1  n     ( T i m  e  o , i   − T i m  e  p , i   )  2     



(17)




where n is the number of samples; Timeo,i, Timep,i are the post-blast re-entry time of actual value and the predicted value, respectively; and     T i m  e o   ¯    represents the mean value of actual post-blast re-entry time.





4. Results and Discussion


4.1. Building the Architecture of the BPNN


An excellent BPNN model, one which has the best weights obtained from the training phase, can predict the post-blast re-entry time precisely. In this study, the BPNN model built on MATLAB was trained and tested with 210 samples (70%) and 90 samples (30%), respectively. The changes in RMSE and R2 were recorded while the model had a different number of neurons at the hidden layer, as shown in Table 3. It can be summarized that the model with six neurons in the hidden layer performed best in which the lowest RMSE of 12.6171 and the highest R2 of 0.9975 can be acquired. At the same time, it also has a remarkable performance in the testing phase. Hence, this model was served as the final post-blast re-entry time prediction model and the schematic diagram is presented in Figure 6.




4.2. Performance Comparison between BPNN and Formula


The BPNN and empirical formula previously developed were run to predict the post-blast re-entry time in the training set and the test set. The models’ performance, including RMSE, R2, MAE and SSE, was summarized in Table 4. As can be seen in this table, the BPNN model has a better performance in both the training set and the test set than does the empirical formula. The average prediction error of BPNN in the test set is only 10.78 s, which is approximately a quarter of the empirical formula. Additionally, the goodness of fit of BPNN is closer to 1, indicating that it can better account for the relationship between the inputs and output than can the empirical formula. It should be noted that the delay caused by the empirical formula each time will accumulate with the increasing number of detonations. To reduce the losses, the BPNN model should be adapted to predict the post-blast re-entry time.



In order to compare the performance of both models more exactly, the regression diagrams in the training phase and the testing phase are described in Figure 7. The horizontal axes represent the actual time. The vertical axes render the prediction value obtained from the BPNN and the empirical formula. The slope of diagonal lines with the black color is 1. Other radical lines with deviations of 10% and 30% from the diagonal lines are also drawn in this diagram. Taken as a whole, the BPNN model has a higher accuracy than does the empirical formula in both sets, because the data points are closer to the diagonal line, whereas some data points obtained from the empirical formula are far outside of the line of 30%, especially in the testing phase. It can also be seen that most of them are larger than the actual time when the ventilation time required is larger than 400 s. At the same time, the BPNN in the testing phase has a larger error than in the training phase, but these data points are almost limited to the radical line of 10%. Hence, the BPNN model can offer more stable performance and more accurate results.



Figure 8 illustrates the error distributions of both models in the training phase and testing phase and some statistical indicators, i.e., the minimum of error (Errormin), the maximum of error (Errormax), the mean of error (Errormean) and the standard deviation of error (ErrorSt.D) are contained in this figure as criteria. The horizontal axes represent the error values between the actual time and the predicted time. The vertical axes are the count within a specified error range. Accordingly, the higher the error bar near the origin and the lower the statistical indicators are, the smaller the model error. As can be realized, the BPNN shows promising results because the region of horizontal axes of the first bar is only from 0 to 10 in the BPNN model when the count of the first bar is almost equal in both models. Additionally, it can be observed that the empirical formula has similar performance in both the training phase and the testing phase.





5. Algorithm Embedding


Given the complicated environment on the site and the inconvenience of running code in the engineering practice, some scientists have performed a lot of work on the application of construction schedule methods, such as the use of software. Song et al. [38] developed a universal engineering construction system simulation software for the construction schedule visualization simulation of hydraulics and hydropower. Wang et al. [10] embedded a ventilation time function in existing software to replace the empirical values for the construction processes and schedule arrangement. In this study, the trained BPNN model was embedded into an existing software module named Simulation Software for Post-blast Re-entry to enhance the performance and facilitate practical use in the central control room located on the surface (see Figure 9). It can be seen that the prediction time obtained from the BPNN model is displayed as both numeric and bar values. Additionally, some optimizations have been applied to the software based on this study. For example, the standard concentration can be input more flexibly according to the requirements rather than using the fixed one. The dilution efficiency factor in the empirical formula was also appended to this software to provide more reference information for users in the period of decision-making. Furthermore, the software can also be utilized to support the formulation of a preliminary schedule. To respond to the call to develop an intelligent mine, interfacing with the mine’s integrated system will be the object in future research.




6. Conclusions


Determining the post-blast re-entry time is essential in the excavation field of tunnel and mining to prevent the occurrence of poisoning and asphyxiation incidents. In this paper, a BPNN model was proposed with consideration of four parameters most used in former studies. An empirical formula was calibrated to compare the performance with the proposed BPNN model. It found that the BPNN model with six neurons in the hidden layer outperforms the others. Furthermore, the results show that the BPNN model has a higher reliability and accuracy (RMSE: 21.45; R2: 0.99; MAE: 10.78; SSE: 40934) compared with the empirical formula (RMSE: 76.89; R2: 0.90; MAE: 42.06; SSE: 526147). In order to facilitate the engineering use of the BPNN model developed in this study, the model has been embedded in one software application. The operator can not only set schedules for production tasks in advance but also can perform some ventilation optimization by adjusting parameters in this software to facilitate the cleaning efficiency of toxic gases.



This study provides an effective tool for the prediction of post-blast re-entry time in excavation engineering. However, some other influence factors, such as the temperature and the interactions between the wall roughness and the velocity of airflow, etc., may also affect the results; a fact which should be considered to achieve a better agreement between the predicted results and the actual situations. This will be discussed in future research.
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Appendix A












	
	Length/(m)
	Gas/(L/kg)
	Velocity/(m/s)
	Limit/(ppm)
	Time/(s)



	1
	469
	40.47
	1.31
	38.52
	246



	2
	921
	39.53
	2.57
	31.90
	140



	3
	1475
	40.77
	2.33
	32.69
	185



	4
	893
	37.50
	0.38
	32.40
	1040



	5
	393
	40.27
	1.34
	24.62
	246



	6
	243
	38.16
	2.37
	37.60
	121



	7
	256
	40.40
	3.25
	33.73
	90



	8
	439
	40.02
	2.10
	41.43
	152



	9
	324
	40.61
	0.69
	29.08
	448



	10
	347
	41.58
	1.77
	44.34
	166



	11
	510
	38.91
	2.31
	31.86
	145



	12
	474
	36.20
	3.79
	33.98
	86



	13
	954
	36.09
	3.50
	38.44
	107



	14
	1145
	37.83
	1.59
	30.45
	246



	15
	1381
	36.61
	1.99
	40.52
	201



	16
	967
	39.21
	1.72
	34.15
	221



	17
	385
	41.72
	3.21
	36.36
	94



	18
	601
	38.99
	1.03
	36.23
	336



	19
	977
	36.35
	1.92
	30.20
	200



	20
	1028
	38.84
	2.40
	38.10
	169



	21
	957
	40.69
	2.92
	41.64
	129



	22
	733
	37.23
	3.53
	25.00
	101



	23
	1459
	41.48
	3.54
	49.79
	120



	24
	307
	36.69
	0.77
	31.24
	401



	25
	363
	41.33
	0.79
	39.60
	377



	26
	535
	37.85
	3.66
	46.26
	89



	27
	1358
	37.93
	1.17
	42.51
	337



	28
	1490
	40.42
	2.49
	34.57
	174



	29
	891
	39.11
	3.62
	35.44
	109



	30
	1388
	36.72
	3.89
	36.69
	104



	31
	1287
	38.94
	1.65
	39.18
	270



	32
	865
	41.51
	1.08
	30.82
	354



	33
	1089
	38.02
	0.30
	27.91
	1419



	34
	271
	41.53
	0.42
	37.10
	679



	35
	799
	38.20
	3.26
	26.70
	121



	36
	1056
	40.83
	0.92
	35.32
	456



	37
	1218
	39.50
	1.45
	24.92
	289



	38
	1261
	41.46
	2.26
	41.85
	193



	39
	540
	39.51
	3.22
	41.22
	102



	40
	1160
	36.17
	0.55
	42.26
	729



	41
	454
	41.63
	2.36
	45.01
	131



	42
	875
	39.01
	0.47
	47.88
	723



	43
	1343
	36.12
	1.73
	26.25
	270



	44
	1414
	41.35
	1.38
	38.31
	299



	45
	606
	40.44
	3.77
	26.08
	92



	46
	1002
	41.98
	1.80
	48.54
	219



	47
	1449
	37.53
	2.19
	47.50
	193



	48
	266
	39.80
	2.53
	45.38
	115



	49
	302
	41.93
	3.31
	25.87
	95



	50
	1383
	41.23
	0.85
	45.80
	471



	51
	1033
	40.59
	1.70
	37.31
	240



	52
	1134
	38.15
	2.47
	40.43
	157



	53
	530
	41.75
	0.88
	28.33
	395



	54
	1495
	37.79
	3.83
	28.24
	114



	55
	1302
	38.35
	2.76
	29.16
	163



	56
	779
	36.96
	2.51
	29.41
	152



	57
	931
	36.44
	1.63
	43.76
	224



	58
	487
	39.94
	1.22
	44.68
	257



	59
	246
	36.57
	1.04
	40.81
	282



	60
	322
	36.89
	3.92
	42.72
	74



	61
	1114
	36.37
	3.69
	27.95
	120



	62
	373
	39.85
	3.13
	30.66
	98



	63
	1322
	40.91
	3.38
	37.06
	136



	64
	591
	41.14
	3.61
	29.78
	94



	65
	1363
	39.36
	2.08
	36.44
	228



	66
	467
	37.42
	1.89
	24.50
	182



	67
	771
	36.16
	1.30
	27.20
	290



	68
	317
	41.21
	2.79
	39.35
	107



	69
	738
	39.38
	1.75
	47.09
	205



	70
	809
	37.48
	1.40
	28.99
	254



	71
	916
	37.14
	1.46
	34.98
	244



	72
	1048
	41.88
	3.02
	40.39
	138



	73
	952
	39.93
	2.24
	46.67
	167



	74
	236
	38.77
	0.34
	43.09
	831



	75
	520
	36.46
	0.61
	34.48
	558



	76
	566
	36.22
	0.94
	30.24
	372



	77
	1332
	38.68
	1.91
	44.88
	242



	78
	1221
	37.90
	0.32
	37.69
	1332



	79
	946
	37.95
	2.94
	45.17
	126



	80
	759
	40.64
	2.03
	30.86
	183



	81
	936
	38.12
	1.19
	36.65
	307



	82
	1279
	38.09
	2.96
	43.64
	149



	83
	406
	36.83
	3.60
	45.72
	85



	84
	642
	36.32
	3.86
	44.55
	88



	85
	352
	37.98
	2.87
	27.74
	110



	86
	449
	39.46
	0.50
	25.21
	652



	87
	1211
	38.54
	3.55
	35.19
	117



	88
	1373
	37.21
	0.64
	49.75
	618



	89
	489
	37.68
	1.69
	49.96
	187



	90
	855
	37.75
	3.56
	39.77
	106



	91
	1231
	41.73
	2.56
	47.25
	166



	92
	225
	41.01
	2.23
	27.08
	133



	93
	1292
	40.32
	1.18
	26.87
	379



	94
	446
	40.91
	1.84
	30.32
	177



	95
	804
	41.65
	0.49
	32.07
	717



	96
	1424
	38.79
	3.72
	30.41
	111



	97
	860
	38.52
	1.52
	25.46
	250



	98
	1246
	40.86
	3.64
	25.66
	118



	99
	495
	38.49
	2.67
	35.65
	120



	100
	708
	38.59
	3.85
	32.11
	89



	101
	1180
	39.75
	3.03
	49.13
	134



	102
	1038
	37.36
	1.00
	26.04
	409



	103
	576
	40.05
	3.05
	38.77
	107



	104
	1297
	36.15
	2.32
	35.23
	194



	105
	1063
	41.38
	2.82
	26.29
	150



	106
	1068
	37.06
	3.63
	31.65
	117



	107
	814
	39.68
	1.16
	34.36
	309



	108
	794
	37.80
	2.38
	43.72
	146



	109
	1119
	38.47
	3.45
	33.32
	111



	110
	413
	37.38
	0.68
	43.97
	463



	111
	203
	41.79
	1.15
	49.04
	242



	112
	210
	40.52
	2.59
	42.10
	109



	113
	220
	39.48
	0.86
	39.39
	331



	114
	1444
	41.80
	0.39
	24.58
	1284



	115
	748
	36.07
	2.97
	40.02
	123



	116
	1378
	39.56
	1.78
	32.32
	269



	117
	291
	36.30
	1.82
	37.94
	164



	118
	784
	39.28
	3.78
	49.33
	91



	119
	1368
	41.60
	2.95
	29.82
	161



	120
	850
	40.00
	2.39
	44.80
	157



	121
	677
	39.98
	3.95
	38.14
	91



	122
	1282
	36.47
	3.99
	48.92
	111



	123
	934
	41.57
	2.06
	25.12
	202



	124
	703
	36.62
	1.33
	32.90
	283



	125
	690
	40.24
	3.67
	36.56
	90



	126
	1348
	39.19
	2.90
	48.34
	135



	127
	1470
	39.83
	1.06
	27.33
	404



	128
	251
	38.96
	3.58
	28.37
	84



	129
	873
	40.39
	1.61
	42.60
	241



	130
	429
	36.25
	3.07
	28.74
	107



	131
	1226
	38.05
	1.98
	33.57
	214



	132
	261
	37.70
	2.09
	33.15
	145



	133
	545
	40.81
	1.93
	44.59
	173



	134
	698
	41.19
	0.75
	27.54
	496



	135
	1454
	39.65
	2.63
	42.47
	161



	136
	1129
	37.65
	2.25
	37.27
	172



	137
	332
	40.72
	1.21
	31.49
	251



	138
	568
	41.50
	2.52
	42.80
	128



	139
	1124
	40.20
	1.11
	44.38
	345



	140
	926
	40.99
	3.70
	46.63
	98



	141
	880
	41.16
	2.13
	37.73
	183



	142
	1251
	36.02
	3.17
	31.03
	136



	143
	718
	37.60
	0.81
	35.02
	430



	144
	1178
	41.13
	0.46
	43.84
	883



	145
	1241
	39.14
	0.93
	40.18
	461



	146
	444
	37.78
	3.23
	36.48
	100



	147
	1327
	37.31
	1.27
	32.94
	363



	148
	357
	39.35
	3.52
	33.11
	87



	149
	629
	40.09
	0.82
	33.24
	404



	150
	1256
	38.44
	1.09
	46.88
	397



	151
	1434
	36.40
	1.10
	38.93
	378



	152
	682
	40.68
	2.98
	24.08
	122



	153
	657
	36.49
	2.28
	25.25
	153



	154
	652
	40.35
	0.62
	40.60
	555



	155
	1340
	38.24
	0.99
	31.36
	468



	156
	1353
	40.62
	3.48
	43.30
	113



	157
	886
	36.54
	2.48
	24.79
	159



	158
	1155
	40.74
	3.28
	47.30
	121



	159
	434
	38.86
	0.96
	46.46
	326



	160
	548
	38.39
	3.75
	25.96
	90



	161
	789
	40.37
	1.02
	48.75
	340



	162
	1170
	40.46
	2.75
	29.28
	146



	163
	992
	37.41
	2.74
	38.98
	142



	164
	688
	36.67
	1.86
	48.96
	178



	165
	1312
	37.43
	1.79
	41.01
	254



	166
	1480
	36.52
	0.45
	31.70
	966



	167
	1150
	39.43
	1.26
	48.29
	314



	168
	378
	40.84
	0.26
	48.50
	1113



	169
	459
	37.28
	2.71
	39.97
	116



	170
	609
	39.57
	0.76
	45.92
	417



	171
	550
	36.02
	2.61
	37.48
	129



	172
	1139
	41.68
	3.84
	39.56
	102



	173
	812
	41.28
	2.29
	47.80
	155



	174
	555
	39.16
	0.27
	32.53
	1254



	175
	710
	37.05
	0.28
	41.56
	1213



	176
	337
	36.10
	2.02
	46.21
	147



	177
	743
	41.06
	0.95
	42.05
	381



	178
	835
	40.17
	2.69
	25.62
	137



	179
	1236
	37.04
	1.37
	45.22
	312



	180
	662
	38.10
	2.86
	30.61
	123



	181
	1216
	40.22
	3.08
	40.64
	136



	182
	1317
	39.41
	3.81
	44.18
	120



	183
	1195
	38.81
	0.63
	26.91
	649



	184
	723
	39.88
	1.94
	28.95
	180



	185
	627
	37.26
	0.48
	36.27
	687



	186
	284
	37.57
	3.14
	41.76
	92



	187
	368
	37.09
	1.96
	38.73
	154



	188
	941
	40.30
	3.97
	32.74
	93



	189
	479
	38.32
	3.32
	47.67
	93



	190
	987
	40.10
	0.72
	35.81
	539



	191
	1462
	39.28
	0.53
	37.40
	797



	192
	342
	38.07
	0.60
	49.38
	479



	193
	286
	40.12
	3.87
	47.05
	75



	194
	1175
	37.33
	3.46
	29.20
	116



	195
	1109
	41.28
	1.64
	28.53
	270



	196
	223
	36.39
	2.68
	32.20
	109



	197
	281
	38.67
	2.70
	33.36
	113



	198
	616
	38.30
	1.29
	43.14
	250



	199
	972
	40.89
	1.24
	24.83
	307



	200
	728
	41.56
	2.85
	37.52
	124



	201
	1404
	37.58
	2.84
	33.94
	143



	202
	1185
	41.85
	0.98
	35.86
	414



	203
	1307
	40.49
	0.52
	46.05
	865



	204
	241
	41.11
	1.47
	45.84
	191



	205
	754
	38.25
	0.70
	39.14
	527



	206
	528
	37.13
	2.22
	33.44
	157



	207
	621
	41.95
	1.87
	34.77
	192



	208
	693
	39.09
	2.80
	43.93
	119



	209
	1023
	37.19
	2.05
	41.06
	197



	210
	901
	36.05
	0.91
	49.17
	387



	211
	1015
	36.24
	1.53
	46.96
	262



	212
	1198
	37.72
	1.07
	46.76
	385



	213
	1190
	36.84
	2.15
	27.70
	190



	214
	312
	39.60
	1.88
	40.22
	155



	215
	1409
	38.64
	0.73
	41.26
	560



	216
	1165
	39.31
	2.34
	24.17
	171



	217
	418
	39.73
	1.49
	36.85
	214



	218
	505
	36.74
	1.14
	26.50
	290



	219
	830
	38.74
	2.21
	36.90
	166



	220
	647
	38.89
	3.39
	45.63
	101



	221
	1360
	41.05
	2.43
	28.04
	195



	222
	764
	37.35
	2.45
	48.71
	136



	223
	388
	38.02
	3.68
	42.68
	83



	224
	1073
	39.04
	0.83
	29.62
	513



	225
	464
	39.26
	1.55
	41.47
	205



	226
	304
	39.05
	1.35
	48.84
	217



	227
	1200
	40.02
	1.54
	32.28
	268



	228
	1393
	39.06
	3.09
	25.41
	157



	229
	825
	36.77
	3.40
	37.89
	107



	230
	1058
	39.90
	1.39
	42.89
	302



	231
	1485
	38.17
	1.62
	46.42
	268



	232
	649
	37.94
	1.76
	39.48
	195



	233
	769
	39.78
	0.40
	41.68
	830



	234
	1271
	39.95
	0.57
	29.57
	774



	235
	713
	41.36
	3.15
	46.84
	110



	236
	1421
	40.16
	3.44
	48.00
	120



	237
	327
	39.23
	2.99
	35.40
	100



	238
	962
	36.94
	0.58
	28.78
	653



	239
	853
	39.79
	3.29
	38.64
	115



	240
	383
	36.59
	2.78
	47.71
	108



	241
	1053
	37.56
	0.71
	47.92
	504



	242
	296
	38.62
	0.80
	24.37
	400



	243
	581
	37.73
	0.41
	26.45
	872



	244
	586
	39.70
	2.44
	24.42
	150



	245
	974
	38.61
	2.83
	49.88
	135



	246
	911
	41.70
	0.29
	43.55
	1209



	247
	820
	41.83
	3.74
	40.85
	96



	248
	525
	38.00
	1.32
	34.40
	261



	249
	870
	36.81
	3.01
	34.19
	128



	250
	1094
	41.78
	2.16
	31.28
	201



	251
	896
	40.57
	3.18
	27.29
	125



	252
	423
	41.04
	3.51
	34.82
	92



	253
	1007
	36.68
	0.84
	43.51
	472



	254
	365
	39.13
	2.60
	26.16
	121



	255
	398
	37.88
	0.87
	29.99
	363



	256
	1013
	39.33
	2.93
	28.16
	136



	257
	1104
	39.63
	0.37
	34.61
	1016



	258
	1137
	37.28
	3.37
	27.00
	135



	259
	632
	38.69
	1.85
	28.12
	198



	260
	1266
	37.63
	3.43
	24.21
	127



	261
	637
	40.94
	2.72
	49.58
	123



	262
	1299
	41.94
	3.90
	34.28
	115



	263
	611
	37.46
	3.33
	31.45
	105



	264
	774
	40.79
	1.57
	35.61
	241



	265
	1419
	37.11
	2.55
	25.04
	194



	266
	1035
	39.72
	2.14
	31.16
	191



	267
	1398
	40.07
	1.90
	28.58
	256



	268
	982
	38.72
	3.35
	41.89
	115



	269
	276
	36.99
	1.56
	25.83
	197



	270
	845
	38.46
	1.68
	39.68
	222



	271
	205
	38.42
	1.42
	29.37
	208



	272
	500
	41.43
	3.93
	27.49
	83



	273
	1338
	40.67
	0.56
	38.56
	834



	274
	731
	38.83
	3.06
	30.12
	116



	275
	561
	40.54
	1.41
	45.59
	225



	276
	667
	41.41
	1.67
	33.78
	212



	277
	1205
	36.27
	2.41
	42.93
	172



	278
	484
	40.15
	0.33
	30.03
	1030



	279
	906
	38.40
	2.17
	44.13
	162



	280
	215
	37.51
	3.76
	36.02
	71



	281
	1096
	38.91
	3.98
	40.72
	94



	282
	1079
	40.25
	2.00
	49.54
	184



	283
	840
	36.42
	0.35
	44.97
	1062



	284
	1018
	41.09
	0.65
	33.53
	614



	285
	515
	41.31
	3.41
	43.34
	91



	286
	1084
	36.64
	3.10
	36.06
	139



	287
	1099
	36.79
	2.64
	46.01
	142



	288
	1464
	37.01
	3.30
	44.76
	129



	289
	672
	36.91
	1.23
	47.46
	290



	290
	1277
	41.26
	2.62
	31.07
	168



	291
	403
	38.22
	2.01
	27.12
	160



	292
	1439
	38.37
	3.16
	38.35
	133



	293
	571
	38.57
	2.11
	48.09
	154



	294
	1259
	36.91
	2.91
	35.52
	150



	295
	408
	41.90
	2.46
	32.49
	125



	296
	230
	37.16
	3.20
	48.13
	89



	297
	997
	39.58
	3.91
	26.66
	100



	298
	1043
	38.27
	3.49
	45.42
	118



	299
	1429
	40.96
	1.44
	39.81
	288



	300
	596
	36.86
	1.50
	42.30
	228
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Figure 1. Geometry of researched model. 
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Figure 2. Boxplots of input parameters. 






Figure 2. Boxplots of input parameters.



[image: Knowledge 03 00010 g002]







[image: Knowledge 03 00010 g003 550] 





Figure 3. Correlation between input and output parameters. 
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Figure 4. Flowchart of the research process. 
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Figure 5. Schematic of ventilation. 






Figure 5. Schematic of ventilation.



[image: Knowledge 03 00010 g005]







[image: Knowledge 03 00010 g006 550] 





Figure 6. Proposed BPNN model for predicting time. 
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Figure 7. Regression diagrams of both models in the training and testing phase: (a) BPNN in training phase; (b) empirical formula in training phase; (c) BPNN in testing phase; and (d) empirical formula in testing phase. 
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Figure 8. Prediction error comparison of both models in the training and testing phase: (a) BPNN in training phase; (b) empirical formula in training phase; (c) BPNN in testing phase; and (d) empirical formula in testing phase. 
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Figure 9. Interface of simulation software for predicting time. 
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Table 1. Occupational exposure limit for CO in different countries [13].
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	TWA/ppm
	STEL/ppm





	ASM-2
	50
	100



	NIOSH REL
	35
	200



	NOHSC
	30
	200



	OSHA PEL
	35
	200



	CHINA
	16
	24







Note: ASM-2 is Instructions Technique Complementary to Mining Safety Actions (Spain); NIOSH is the National Institute for Occupational Safety and Health; NOHSC is the National Occupational Health and Safety Commission; OSHA is the Occupational Safety and Health Administration.
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Table 2. Empirical formulas for time prediction.
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	Reference
	Equation
	Way





	[4]
	   C =    V G    2 A   π D T      e   (    −   ( L − u T )  2    4 D T    )      
	Calibration



	[7]
	   T =  e  −  (    Q − 60.119   12.924    )      
	Calibration



	[7]
	   T = 2383.7  Q  − 1.574     
	Calibration



	[9]
	   C =  p 1   T n  +  p 2   T  n − 1   + ⋯ +  p n  T +  p  n + 1     
	Fitting



	[9]
	   C = 1048  e  −    (    T − 6.464   0.8676    )   2      
	Fitting



	[10]
	   T = 13.118  e  0.0017 L     
	Fitting



	[11]
	   T = n ln  (   C   C T     )    
	Derivation



	[11]
	   T =  V  Q +  Q g    ln  [     (   Q g  + Q  B g   )  −  (  Q +  Q g   )  C    (   Q g  + Q  B g   )  −  (  Q +  Q g   )   C T     ]    
	Derivation



	[15]
	   T =    V w    Q ×  f d    ln  (   C   C T     )    
	Calibration







Note: T: ventilation time required, min or s; Q: fresh air quantity, m3/s; C: gas concentration at the beginning of ventilation, ppm; p1, p2, …, pn+1: fitting constants; VW: volume of working space, m3; fd: dilution efficiency factor; CT: gas concentration at time T, ppm; VG: volume of gas at the heading and beginning of time, m3; A: area of cross-section of roadway, m2; D: effective axial dispersion factor, m2/s; L: distance away from the heading, m; u: average air velocity, m/s; n: numbers of fresh air which is passing through the working space; Qg: inflow rate of the toxic gases, m3/s; and Bg: concentration of toxic gases in the ventilation duct, %.













[image: Table] 





Table 3. Performance of BPNN models with different numbers of neurons in the hidden layer.
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Model

	
Neurons

	
RMSE

	
R2




	
Training

	
Testing

	
Training

	
Testing






	
1

	
2

	
16.0196

	
21.9249

	
0.9959

	
0.9922




	
2

	
3

	
55.9012

	
37.0202

	
0.9502

	
0.9776




	
3

	
4

	
72.4646

	
60.601

	
0.9163

	
0.9401




	
4

	
5

	
61.6996

	
50.5617

	
0.9393

	
0.9583




	
5

	
6

	
12.6171

	
21.3421

	
0.9975

	
0.9926




	
6

	
7

	
14.3551

	
21.026

	
0.9967

	
0.9928




	
7

	
8

	
14.7677

	
21.4577

	
0.9965

	
0.9925




	
8

	
9

	
14.2703

	
22.0516

	
0.9968

	
0.9921




	
9

	
10

	
13.1419

	
21.6439

	
0.9973

	
0.9924








Note: the line in bold type indicates the best model.
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Table 4. Performance comparison of both models.
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Indicators

	
Training

	
Testing




	
Empirical

	
BPNN

	
Empirical

	
BPNN






	
RMSE

	
61.81

	
12.61

	
76.89

	
21.34




	
MAE

	
38.34

	
7.66

	
42.06

	
10.78




	
R2

	
0.94

	
0.99

	
0.90

	
0.99




	
SSE

	
798352

	
33429

	
526147

	
40934
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