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Abstract: In response to the recent formalization of Filipino Sign Language (FSL) and the lack of
comprehensive studies, this paper introduces a real-time FSL gesture recognition system. Unlike
existing systems, which are often limited to static signs and asynchronous recognition, it offers
dynamic gesture capturing and recognition of 10 common expressions and five transactional inquiries.
To this end, the system sequentially employs cropping, contrast adjustment, grayscale conversion,
resizing, and normalization of input image streams. These steps serve to extract the region of interest,
reduce the computational load, ensure uniform input size, and maintain consistent pixel value
distribution. Subsequently, a Convolutional Neural Network and Long-Short Term Memory (CNN-
LSTM) model was employed to recognize nuances of real-time FSL gestures. The results demonstrate
the superiority of the proposed technique over existing FSL recognition systems, achieving an
impressive average accuracy, recall, and precision rate of 98%, marking an 11.3% improvement
in accuracy. Furthermore, this article also explores lightweight conversion methods, including
post-quantization and quantization-aware training, to facilitate the deployment of the model on
resource-constrained platforms. The lightweight models show a significant reduction in model size
and memory utilization with respect to the base model when executed in a Raspberry Pi minicomputer.
Lastly, the lightweight model trained with the quantization-aware technique (99%) outperforms the
post-quantization approach (97%), showing a notable 2% improvement in accuracy.

Keywords: computer vision; CNN-LSTM; deep learning; Filipino sign language; image processing;
sign language recognition system; machine learning

1. Introduction

According to the World Health Organization (WHO), approximately 5% of the global
population is hearing impaired, necessitating rehabilitation efforts [1]. Notably, a compre-
hensive survey conducted in 2011 on hearing loss and ear diseases at the national level
in the Philippines revealed that about 15% of the total nation’s populace suffers from
moderate to severe hearing conditions [2,3]. In turn, the report calls for concerted efforts to
alleviate the social implications of those affected individuals.

Sign language serves as the primary mode of communication for many individuals with
hearing impairments, enabling them to convey messages. American Sign Language (ASL) has
emerged as a widely adopted sign language system, extending its influence beyond its borders,
including the Philippines. This paved the way for the development of Filipino Sign Language
(FSL). While FSL has been influenced by ASL, it possesses distinct rules and linguistic structure,
encompassing phonology, morphology, syntax, and discourse [4]. To date, FSL plays a crucial
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role not only in education but also in the day-to-day life of the Filipino deaf community [5].
Furthermore, FSL was declared the national sign language of the country through Republic
Act 11106 [6], requiring the government educational sector to implement FSL as the medium of
instruction in deaf education at all levels.

Following the designation of FSL as an official sign language in the Philippines in 2018,
formal and high-quality education for visually- and hearing-impaired students utilizing FSL
commenced in the following year [7]. This timeline highlights that the efforts to formalize FSL in
education are still in their early stages. Despite this progress, there remains an ongoing struggle
to incorporate FSL into teaching due to lack of a curriculum or a dictionary that hearing teachers
can utilize to learn the language and effectively communicate with their students [8]. In addition,
a noticeable gap arises between FSL users and those who are hearing-enabled, with the latter
often lacking substantial background knowledge of FSL. Hence, developing computer-aided
assistive systems is imperative for making invaluable contributions to the implementation
of FSL, not only within educational settings but also for promoting greater accessibility and
inclusion for deaf individuals. These systems play a pivotal role in bridging communication
gaps, enhancing learning experiences, and empowering the deaf community to participate fully
in various aspects of society.

To this end, machine learning-enabled gesture recognition systems stand out as cutting-
edge solutions capable of bridging these gaps. Unfortunately, the current landscape of
FSL-focused research remains sparse. Moreover, the existing systems primarily focus on
static handshape recognition, covering alphabets and numbers. In addition, they either
offer non-real-time gesture recognition processes or require highly computationally capable
devices, posing limitations to widespread accessibility and usability [9–12].

Motivated by this, we developed a deep neural network-based sign language recog-
nition system, specifically designed to detect FSL gestures, by combining Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM) techniques. This work aims
to overcome the mentioned limitations while providing expanded recognition abilities and
improved accuracy. The main contributions of this paper are as follows:

• We collected a video dataset of FSL gestures from the partner deaf community.
• We constructed and trained a neural network-based SLR system optimized to recog-

nize FSL and dynamic gestures in real-time.
• We derived a lightweight subset model with performance comparable to the proposed

SLR system.
• We assessed and evaluated the performance of the designed SLR and its corresponding

lightweight versions.

The remainder of this paper is organized as follows. Section 2 provides the background
and significant related works, including the analysis of their shortcomings. The details
of the methods adopted in this paper are discussed in Section 3, while Section 4 shows
performance results. Finally, Section 5 concludes the paper.

2. Background and Related Work

This section elucidates the fundamental concepts and terminologies pivotal to this
research endeavor. Additionally, it conducts a comparative analysis of previous studies,
shedding light the contributions of the current work and its advantage over existing works,
as it succinctly encapsulates the challenges encountered in FSL recognition.

2.1. Filipino Sign Language

A common misconception exists regarding the language of the deaf community, pre-
suming it to be a single universal system. However, the reality is far more diverse, with
numerous variations of sign language existing worldwide. FSL is the focus of this research,
as it is the primary language used by the Filipino deaf community. FLS, a multi-modal
language, naturally integrates manual and non-manual components [9]. Manual signals
encompass hand gestures, movements, and shapes conveying lexical messages, while
non-manual signals, including facial expressions and head movements, convey syntac-
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tic and semantic information. In practical usage, these components complement each
other seamlessly.

To decode messages efficiently using FSL, it is essential to consider the five parameters
that describe how each sign operates within the signer’s space:

1. Handshape refers to the arrangement of the fingers and their respective joints. For
sign languages such as FSL that use a lot of initialization, a change in handshape will
change only the meaning of a sign.

2. Location refers to the placement of the hand(s). Signs, especially ones made on
the head and face, are often used to distinguish similarities or differences between
different forms of signs.

3. Palm orientation refers to where the palm is facing. For some signs, whether or not
the palm of the hand is facing upward or downward is crucial in distinguishing them,
as opposed to signs made in the opposite direction that mean entirely different words.

4. Movement refers to the change in handshape and/or path of the hands. Some signs
with the same handshape and location but with different changes in movement can
mean entirely different words.

5. Non-manual signals refer to facial expressions and/or movement of the other parts of
the body that are used with signing. These signals convey grammar and meaning in
addition to the use of hands. They portray tone, emotion, and intent in a visual form.

Hand gesturing is a method used in FSL for non-verbal communication. These gestures
have been analyzed as parallel to the gestures of articulators in the vocal tract. They are
regarded as part of the words and morphemes in grammatical structure. Static and dynamic
gestures are the two types of gestures that exist. The latter involves variable movement
and orientation of hands and facial expressions, and they are mostly used to recognize a
continuous stream of sentences, whereas the former refers to a specific pattern of hand and
finger alignment [13]. The current work is dependent on vision, and the system does not
distinguish hand forms using motion sensor gloves or colored gloves.

2.2. Sign Language Recognition (SLR) Systems

In order to translate and capture visual–spatial information such as in FSL, a Sign
Language Recognition (SLR) system is needed. Implementation of this system varies from
one researcher to another, in which the manual signals, non-manual signals, or both are
used as the basis of the input. Moreover, SLR architecture can be classified based on its input
methodology into data glove-based and computer vision-based [10,14]. A combination of
the two SLR architectures is also possible, wherein the data glove is used as the primary
motion reader, and the image processing handles the sparse hand data [15].

The studies in Table 1 used video input as the technique of capturing data from SLR.
One of the problems with using a video or camera system is that it is greatly affected by ex-
ternal factors in the environment, such as lighting and skin color [16]. Therefore, respective
developers of SLR systems have to apply imaging processing techniques to improve the ac-
curacy of the system. In [13], multiple signers were used in the implementation of the study.
Signers were subjected to different light conditions. The video acquisition was subjected to
many environmental conditions, and it took into account additional constraints, such as a
shirt with the same color as the background, making more room for error, and thus creating
additional algorithms to correct different factors. In [17], the authors used a snapshot of
a 160 × 120 pixel image size. Authors of the SLR system have noted that, when used in
such processing, the computational time is high. This is not ideal for devices that have low
computational power capacity. In [18], the background where the image is taken is black
with proper illumination. Additionally, images were taken with five different people, so
the skin color affects the reflection of light captured by the camera. In [11], techniques used
were similar to previous studies, but the cropped image size is 50 × 50 pixels, making it
easier to process, and illumination was improved in order to reduce image noise. Together
with [17], recognition methods with static inputs yield higher accuracy but do not provide
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real-time results, as static inputs exhibit unanimated sign and do not provide common
words that are based on gestural expression.

A notable similarity among the studies in Table 1 is the sign language parameter of
interest: handshapes or signs [11,13,17,18]. This study deviates from this trend and instead
focuses on hand gestures that do not include static handshapes but rather handshapes with
hand and arm movements. Moreover, this study also proposes a dynamic SLR system
that can perform recognition in real time. Since this study covers FSL, the studies [11,12]
are similar, especially the latter, due to its being focused on both FSL and hand gestures.
However, in contrast to the methodology of [12], the current work constructs a system
using CNN-LSTM with different pre-processing techniques.

Table 1. Summary of vision-based SLR systems.

Paper Parameters Data Input Form Method Accuracy

[11] Handshapes
(FSL)

Static Images ResNet
Convolutional NN

86.70%

[12] Handshapes
(FSL)

Video Convolutional NN 95.00%

[13] Hand signs and
Head movement

(Indian Sign Language)
Video

Fuzzy Inference
System 96.00%

[17] Handshapes
(ASL) Static Images Euclidean Distance 90.19%

[18] Handshapes
(ASL)

Video Artificial
Neural Network (NN) 94.32%

Aside from cameras, SLR data acquisition can also be done through motion-sensing
with the use of sensors, such as electromyography (EMG) sensors, RGB cameras, leap
motion controllers, or a combination of these [19]. This has an advantage in terms of
accuracy but has limitations in the degree of movement. Nevertheless, the vision-based
approach is the most viable method that has become popular over the years. The study of
Tolentino et al. [14] used this approach in the form of a system that recognizes static sign
gestures with the use of a webcam and that converts them into words. The converted data
are accessible for offline usage for those who want to learn the basic alphabet, numbers,
and common static signs of ASL.

For application programming, Python was favored by the developers for its use in
machine learning [20]. Around 3000 images for each sign were collected for high-accuracy
prediction of the gestures [21].

2.3. Image Processing

Indexing images is crucial for ensuring that machine learning models are trained
as efficiently as possible. For this, captioning is a way to translate and compare two or
more images with distinct but often paired modalities. Best practices in assigning image
labels involve a descriptive statement that encapsulates the content of the image. Recent
implementations primarily rely on the encoder–decoder sequence, where the encoder, such
as a CNN, extracts visual patterns from the input image [22]. These extracted patterns
are then subjected to the decoder, such as a long short-term memory (LSTM) network,
which processes the information to generate a coherent label describing the image. LSTM
networks are adept at categorizing, processing, and predicting based on temporal data,
thereby making them suitable for classification problems with sequential image input.
In addition, the network is designed to overcome the challenge of vanishing gradients
inherent in the classical recurrent neural network [23].
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2.4. Contextual Captioning by Neural Networks for Images

When decoding signed languages such as FSL, it is crucial for the neural network
model to proficiently recognize patterns. Although vanilla LSTM models have shown
commendable performance in handling time-series data, they exhibit limitations in effec-
tively capturing spatially organized features, such as those found in video-based gesture
recognition applications. However, recent implementations of LSTM preceded by CNN
(CNN-LSTM) provide a solution to the aforementioned weaknesses [24]. The CNN-LSTM
combination offers both extraction of informative representations in image sequence inputs
and sequence prediction.

2.5. Challenges in FSL Research

The documentation for FSL has only commenced recently due to the nascent stage of
sign linguistic research in the country. Unfortunately, FSL lacks significant recognition from
the government for its integration within both private and public settings. Consequently,
only a small group within deaf and hearing Filipino communities around the country
acknowledges FSL as an authentic linguistic entity. The language as well as the practitioners
still find themselves on the margin of Filipino society despite a considerable number of
research studies conducted over the last two decades [25].

The cornerstone that unites the Filipino deaf community is the language they share and
understand. Sign language embodies the progressive perception of deafness as a culture
and signifies deaf individuals as a distinct cultural and linguistic minority [26]. Sadly,
a substantial number of hearing-enabled people remain unaware of the existence and sig-
nificance of the sign language within the deaf community [26]. Moreover, the access to sign
language capacity-building programs is exceptionally challenging across the 15 regions
of the Philippines [27]. Further complications arise due to the lack of comprehensive
documentation regarding regional variations in signs [28]. Another pressing issue to con-
sider involves non-verbal cues; i.e., non-sign gestures often blend seamlessly with signs.
Facial expressions and body posture also hold significant roles in most interactions [29].
It is also worth noting that research on facial expressions, particularly non-manual sig-
nals like mouthing, which impart emotions, feelings, and degrees of adjectives, remains
significantly limited.

3. Methodology
3.1. Design of System Architecture

This study utilizes a video-based sign language recognition system, as shown in
Figure 1. The architecture [16] involves several processes that are individually explained
in the following section, including the specific techniques to be used for each process.
Moreover, the system utilizes two databases: one for training the algorithm and the other
for the dataset of the FSL hand signs, which serves as a benchmark for determining the
expected output.

Data Collection Image
Pre-Processing

Data
Augmentation

Video Acquisition
Device

Sign Language
Recognition

Training
Database

Training

FSL Dataset

Validation
Database Test Database

Evaluation

Data Cleaning

Figure 1. Adopted architecture of the vision-based Sign Language Recognition system.
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3.2. System Flow

Algorithm 1 shows the overview of the proposed SLR system. It includes the tech-
niques to be used for the following processes: Image Preprocessing, Feature Extraction,
and Recognition. With that, the system is composed of a series of processes in order to
identify and recognize the perceived sign from the image acquisition device.

Algorithm 1: Proposed SLR System Process.

while True do
if hand detected then

CAPTURE gesture by image frames;
APPLY classical pre-processing methods to captured frames;
INPUT pre-processed image into Convolutional Neural Network (CNN);
INPUT extracted features into Long Short-Term Memory Network (LSTM);
OUTPUT corresponding text of recognized gesture.

3.3. Ethical Considerations

The study underwent an ethics review by an authorized research ethics committee,
since the data collection process requires human participants. We developed our own data
collection tools and a controlled setup for dataset generation. The appropriateness and
fairness of the selection and recruitment of participants are critical, since the scope of the
study requires knowledge of FSL. That said, the current work has collaborated with the
Deaf Association in order to provide correct and accurate information on signs.

Within the research execution period, the participants visited the site for a day at their most
convenient time. All participants were able to complete the data collection within a day. The
main qualification of the participants was for them to be FSL signers or at least able to perform
signs when taught with the proper execution. However, there were exclusions, such as minors,
senior citizens, pregnant women, and people with a comorbidity, as they may have difficulty
visiting the study site and fulfilling their roles as participants.

In consideration of participants’ protection, they were oriented about their roles and
rights as participants and provided an overview of the study. Added to that, informed
consent forms were given, which encapsulated the important details they needed to know
in participating, including reimbursement for participation, confidentiality, and protection
of their data. Participation in the study did not induce nor cause any form of risks/harm to
the participants in the process that they underwent, as disclosed in the consent form.

3.4. Data Protection Plan

Personal information was collected solely for identification purposes and is subject to
this work’s protection upheld with anonymity and confidentiality. All information pertain-
ing to the identities of the participants, including ages and names, are kept confidential
and only visible to the current work.

The participants were oriented with their roles and rights as contributors to the study
and were given an overview of the study itself. They were given informed consent forms
detailing reimbursement, data protection, and obligatory terms. They were given time
to ask questions and go over any clarifications before signing, which served as a legal
formalization of granting permission to participate in the study.

Screenshots of the signers’ recordings may be visible in the study as figures; however,
the participants can opt to have their likenesses censored.

The participants are referred to by code names in the study in place of their actual
names for the purpose of anonymization. Only the current work has access to the code
name designation. These data are stored in hard and soft copies.

Access to the participants’ information is logged per instance with timestamps and
indicated purpose for monitoring means. Additionally, computers that store the soft copies
are only accessible to the current work and are encrypted with a passkey that only this
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work knows. They are also stored locally and encrypted to prevent unauthorized access
and mitigate data loss and data theft.

The physical copies are secured inside a locked file cabinet that only this work can
access. All copies are kept by the current work for a duration of two years for the purpose
of the study’s validation. After that period of time, they will be shredded and fully wiped.
In the event that the participants are or choose to be prematurely withdrawn from their
participation in the study, their data will be wiped regardless of the time period elapsed.

Any findings acquired from the participants’ data will be shared with the partici-
pants first and further discussed before they will be made available to the public. This
work shall grant them access to their test results should they request them, but only after
data processing.

3.5. Data Collection and Preparation

Data collection involved capturing gestures through video recording using webcam.
These recorded videos constituted the input data for processing by the neural network. The
selection of 15 key gestures, as listed in Table 2, was a product of extensive consultations
with members of the deaf community. These gestures were thoughtfully categorized into
two distinct groups as common expressions (10) and transactional inquiries (5). The former
category encompasses gestures commonly used in day-to-day conversation, while the
latter pertains to typical queries encountered in transactional settings such as malls or
government offices.

Table 2. List of considered FSL signs.

Common Expressions
Please Hello Yes Issue

Thank You My name is No Sick
Understand Don’t Understand

Transactional Expressions Payment Where restroom Fill-up form
Check-up Doctor Wait in line

Given that the study’s data comprise video recordings, unlike the still images used in
related works, our approach anticipated potential variations in gesture execution speed
during data collection. To address this, we standardized the speed at which signs were
performed. This involved assessing video recordings of a signer executing gestures at three
distinct speeds: slow, moderate, and fast. As there is no universally recognized standard
for quantifying sign speed within the FSL community, these levels were determined based
on the signer’s perception. The moderate speed was then adopted as the reference for
gesture execution during the actual recording process.

As part of the data collection procedure, the signers performed the gestures under
controlled conditions, as shown in Figure 2. This ensured that the key upper body parts,
including arms, head, shoulders, and chest, were precisely within a designated central
area. This area was facilitated by a bounding box centered around the captured image,
measuring 1156 × 866 pixels, precisely customized to meet the aforementioned conditions.
By imposing such spatial restrictions, unwanted regions were effectively excluded, thereby
enhancing the integrity of the dataset.

The 15 signs were performed by a signer. Notably, the dataset was carefully balanced,
with an equal number of samples collected for each gesture. A sampling of 10 video
recordings was captured for each gesture across seven different signers, culminating in a
total of 1050 recordings.

For this study, we employed the ROG Eye S web camera, renowned for its exceptional
specifications, with a video resolution of 1080p (1920 × 1080 pixels), image resolution
of 5 megapixels, and a capture rate of 60 frames per second. These specifications were
carefully selected to minimize potential noise, distortion, and delay that could impede
subsequent steps in the methodology.
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Figure 2. Data collection setup.

3.5.1. Input Image Data Preparation

Data preparation for the training of our proposed deep learning model involved crucial
steps to ensure optimal model performance. Before image preprocessing, the recorded
videos underwent frame cleaning. This process involved the removal of frames from the
video that did not contain the signer’s hands, which was achieved through the utilization
of Google MediaPipe’s sophisticated hand detection solution [30]. The rationale behind this
frame cleaning step was to eliminate extraneous frames that could potentially introduce
noise and adversely affect the model’s loss and accuracy during training.

Following the frames’ removal, the resulting input image stream sequentially un-
derwent classical image pre-processing stages, including cropping, contrast adjustment,
grayscale conversion, resizing, and normalization, as presented in Figure 3. The bound-
ing box established during data collection served as the basis for cropping the images,
extracting only the region of interest for the subsequent processes. Afterwards, gamma cor-
rection was applied to enhance the contrast, followed by grayscale conversion to simplify
computations. The image stream was then resized to 128 × 128 pixels, further reducing
computational burden during both training and inference. This resizing ensured uniformity
in input size for the deep learning model. Finally, the resized image stream underwent
normalization, ensuring that all input frames had a comparable pixel distribution. This
normalization step accelerated convergence during training by scaling the pixel values
from the original [0, 255] integer range to the normalized [0, 1] float range [31].

Figure 3. Adopted image preprocessing workflow.

3.5.2. Data Augmentation

The preprocessed data were subjected to data augmentation in order to artificially
expand the dataset and provide variations to enhance model performance. As illustrated
in Figure 4, the augmentation procedures implemented in this study include translation,
flipping, and rotation with randomized configurations. The techniques were applied for
each batch of 30 frames.
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Figure 4. Illustration of the adopted data augmentation techniques.

Accordingly, a random translation moves the frame along the x-axis by between
−40 and 40 pixels and along the y-axis by between −35 and 35 pixels. Only horizontal
orientation was carried out for random flipping. The random rotation ranged from −10° to
10°. With augmentation, the FSL dataset increased from 1050 recordings to 21,000 after
augmentation, with 1400 samples for each class.

3.6. CNN-LSTM Model

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) Re-
current Neural Networks are two cutting-edge deep learning models [32–36], which we
combined to create the proposed model, as shown in Figure 5. CNN is in charge of
extracting distinguishing or distinctive features from an input image [16]. In the CNN-
LSTM framework, CNN takes a sequence of input images X = X1, X2, ...., XT , where
Xt ∈ RH×W×C represents the image frame at time step t with height H, width W, and C
channels. The feature map extraction operates by running a convolutional filter on an input
image [37], as expressed in Equation (1):

C(l)
t (i, j, k) = σ

M(l)

∑
m=1

N(l)

∑
n=1

W(l)
m,n,k × Xt(i + m − 1, j + n − 1, k) + b(l)k

, (1)

where C(l)
t denotes the output feature map of the l-th convolution layer at time step t, W(l)

m,n,k

are the weights of the convolutional kernel, b(l)k is bias term, σ is the activation function
(e.g., ReLU), and M(l), N(l) are the spatial dimensions of the kernel. Subsequently, the max
pooling operation, defined in Equation (2), is applied to downscale the output feature:

P(l)
t (i, j, k) = max

m,n

(
C(l)

t (s · (i − 1) + m, s · (j − 1) + n, k)
)

, (2)

where Pl
t represents the output of the pooling layer at time step t, s is the stride, and (i, j, k)

denote the spatial position and channel index.
Meanwhile, LSTM introduces a way to capture long-term connections in sequences,

making it very good at analyzing data that are arranged in chronological order. LSTM
computes the hidden state ht at time step t using ht = LSTM(Pt, ht−1). Accordingly, the
LSTM cell processes the pooled feature maps Pt along with the previous hidden state ht−1
and updates its internal state using the following composite function:
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ft = σ(W f · [ht−1, Pt] + b f )

it = σ(Wi · [ht−1, Pt] + bi)

ot = σ(Wo · [ht−1, Pt] + bo)

Ĉt = tanh (WC · [ht−1, Pt] + bĈt
)

Ct = ft ⊙ Ct−1 + it ⊙ Ĉt

ht = ot ⊙ tanh (Ct),

(3)

where ft, it, and ot are the forget, input, and output gates, respectively, Ĉt is the candidate
cell state, Ct is the updated cell state, ⊙ denotes element-wise multiplication, and tanh is
the hyperbolic tangent activation function.

Finally, the output of the LSTM ht is subsequently fed to the fully connected layer with
softmax activation function at the output layer, as defined by the following equation:

z = Wp · ht + b

y = Wl · z + b

pk =
eyk

∑K
j=1 eyj

for k = 1, 2, . . . , K,
(4)

where Wp ∈ RM×H is the weight matrix connecting the LSTM output to the fully connected
layer, M is the number of neurons, H is the dimensionality of ht, Wp ∈ RK×M is weight
matrix connecting to the output layer, K is the number of target gestures, pk is the probability
of the input X belonging to gesture k, yk is the k-th component of the vector y, and b ∈ RF
is the corresponding bias vector at layer F.

Figure 5. Simplified illustration of the CNN-LSTM model.

The hyperparameter values for the CNN-LSTM model were determined through
empirical testing and informed by established practices and architecture found in relevant
literature of the same domain. Starting with initial settings and grounded in these princi-
ples, the model underwent training using these hyperparameters. Throughout the training
process, metrics such as loss and accuracy were monitored to assess the model’s learning
dynamics and detect indications of underfitting or overfitting. Adjustments to the hyperpa-
rameter setting were made iteratively based on observed performance trends, aiming to
achieve the preset accuracy specifically tailored to the characteristics of the dataset being
used. This iterative approach ensured that the model was effective for the task at hand.

The model architecture comprises a fully-connected dense layer, 1 dropout layer,
1 LSTM layer, and 4 CNN layers. The input model shape is (30, 128, 128, 1). The Rectified
Linear Unit (ReLU) was used as the activation function in all CNN layers, which all had
a 3 × 3 kernel size. A MaxPooling layer with a 2 × 2 pooling window follows the initial
CNN layer, which comprises 64 convolution filters. Additionally, 128 convolution filters
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are used in the second layer, which is followed by a 3 × 3 MaxPooling layer. Following
another 2 × 2 MaxPooling layer, the third and fourth layers include 64 and 16 convolution
filters. A Flatten layer is used to flatten the CNN features that have been retrieved. The
LSTM network with 256 nodes, tanh as its activation function, and sigmoid as its recurrent
activation function receives the flattened output. Before the fourth layer, a dropout layer
with a dropout rate of 0.2 is added as a regularization method that uses a random “drop-
out” or node-disabling process during training to prevent overfitting. Finally, there are
15 softmax-activated nodes in the output dense layer. The CNN-LSTM model’s executive
summary is shown in Figure 6.

time_distributed_input input: (None, 30, 128, 128, 1) 

InputLayer output: (None, 30, 128, 128, 1) 

    

time_distributed(conv2d) input: (None, 30, 128, 128, 1) 

TimeDistributed(Conv2D) output: (None, 30, 128, 128, 64) 

    

time_distributed_1(max_pooling2d) input: (None, 30, 128, 128, 64) 

TimeDistributed(MaxPooling2D) output: (None, 30, 64, 64, 64) 

   

time_distributed_2(conv2d_1) input: (None, 30, 64, 64, 64) 

TimeDistributed(Conv2D) output: (None, 30, 64, 64, 128) 

    

time_distributed_3(max_pooling2d_1) input: (None, 30, 64, 64, 128) 

TimeDistributed(MaxPooling2D) output: (None, 30, 21, 21, 128) 

   

time_distributed_4(conv2d_2) input: (None, 30, 21, 21, 128) 

TimeDistributed(Conv2D) output: (None, 30, 21, 21, 64) 

    

time_distributed_5(max_pooling2d_2) input: (None, 30, 21, 21, 64) 

TimeDistributed(MaxPooling2D) output: (None, 30, 10, 10, 64) 

    

time_distributed_6(dropout) input: (None, 30, 10, 10, 64) 

TimeDistributed(Dropout) output: (None, 30, 10, 10, 64) 

    

time_distributed_7(conv2d_3) input: (None, 30, 10, 10, 64) 

TimeDistributed(Conv2D) output: (None, 30, 10, 10, 64) 

    

time_distributed_8(max_pooling2d_3) input: (None, 30, 10, 10, 16) 

TimeDistributed(MaxPooling2D) output: (None, 30, 5, 5, 16) 

    

time_distributed_9(flatten) input: (None, 30, 5, 5, 16) 

TimeDistributed(Flatten) output: (None, 30, 400) 

   

lstm input: (None, 30,400) 

LSTM tanh output: (None, 256) 

   

dense input: (None, 256) 

Dense softmax output: (None, 15) 

 

 

 

Figure 6. Structure of the proposed CNN-LSTM model.
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3.7. Training Environment

Google Colaboratory was used for model training. This is a cloud service that provides
access to computational infrastructure such as memory, storage, processing power, graphics
processing units (GPUs), and tensor processing units (TPUs) for applications like machine
learning. The FSL dataset was divided into training, validation, and testing datasets with
a split ratio of 8:1:1, and the training dataset has 16,800 or 1120 samples per class—an equal
amount of samples for each class. The FSL dataset is pipelined using the TensorFlow
Dataset API to enhance training efficiency. Prior to training and evaluation, the datasets
are shuffled and batched. The model was trained using a batch size of 8 and 25 epochs.
Callback functions were included in the training setup to aid in preventing overfitting,
tracking, logging training progress, and saving checkpoints. Table 3 summarizes the
training configuration.

Table 3. Summary of the adopted training configuration.

Parameters Details

Batch Size 8

Callback Functions EarlyStopping, TensorBoard, CSVLogger,
ModelCheckpoint

Loss Categorical Cross-entropy

Metrics Accuracy

Optimizer Adam

3.8. Optimization

A lightweight model was developed that was optimized to be used with low-processing
power-enabled devices such as mobile phones. This work employed the Quantization method
in the new model, a technique in which the weights and inputs are searched for optimal
low-bit intervals. This results in an insignificant reduction in precision in the weights and
inputs by making floating-point operations into integer operations [38,39], but which speeds
up inferences and reduces memory utilization. There are two quantization methods. The
Post-Quantization method is where the quantization application is done after extraction and
training of data. The usage of dynamic range post-quantization is a good starting point, as
it reduces memory utilization and speeds up calculations without requiring a representative
dataset for calibration [40]. Quantization-aware training, on the other hand, involves continuous
weight adjustments as it learns in order to better fit the quantization operations [39]. This
training is designed to have a low error in quantized models, as it involves numerical errors
being exposed and simulating them to a forward pass [41].

3.9. Testing Environment

The study used two test setups to evaluate the models on different platforms, namely,
on a laptop and embedded, which utilize different architectures. The first setup is a laptop
for model testing and evaluation in the x86 architecture. On the other hand, the second
setup is a Raspberry Pi 4 for the ARM architecture. Additionally, both setups used the same
software versions for testing in order to control software-related impact on performance.
Table 4 shows the detailed hardware and software specifications of the setups.
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Table 4. Hardware and software specifications.

Hardware & Software Details

Setup 1

Model Lenovo IdeaPad 3 15ARE05
CPU AMD Ryzen 7 4700 U
Architecture Zen 2 (x86)
RAM 8 GB
OS Windows 11 22H2
Python 3.9.16
Tensorflow 2.10.0
Keras 2.10.0

Setup 2

Model Raspberry Pi 4 Model B
CPU Broadcom BCM2711
Architecture ARMv8-A
RAM 4 GB
OS Raspberry Pi OS 11 “Bullseye”
Python 3.9.16
Tensorflow 2.10.0
Keras 2.10.0

4. Results and Discussion
4.1. Base Model Training History

The metrics in Figure 7 demonstrate the progression of: (a) loss vs. accuracy during
model training, (b) validation loss vs. validation accuracy, (c) training loss vs. validation
loss, and (d) training accuracy vs. validation accuracy. The model had not undergone
overfitting, meaning it was able to generalize with its functions not too closely aligned to
a limited set of data points. During validation, accuracy levels peaked at the 24th epoch
at 0.976. It can be observed that there was a noticeable drop in the validation accuracy at
the 14th epoch. The training gradient momentum that is built up over a few mini-batches
may work very well for a while until it hits a mini-batch that requires the model to learn
something different, which explains this sudden spike in validation loss. The overall model
was able to reach similar accuracy levels during validation, implying that it was well-fit
with unseen data.

Figure 7. Cont.
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Figure 7. Comparison of training and validation performance.

Figure 8 compares the accuracy and loss of the base CNN-LSTM model using test
and validation data. Both datasets comprise 2100 samples for evaluating the loss and
accuracy of the model on unseen data. On validation data, the base model has a 97.619%
accuracy rate and a 0.084 loss. The model’s accuracy on test data was 97.286%, which is
insignificantly less than the accuracy during validation. The test loss of 0.083 is the same
case. The results imply that the model is well-fit with unseen data and that it was successful
in generalizing the features while being trained.

Figure 8. Accuracy comparison between test data versus validation data for the Base Model.

4.2. Model Size

Figure 9 shows the model sizes of the base model and the quantized models. The base
model had a size of 9843.880 KB. Lightweight model 1 had a size of 842.102 KB, which is
92% less than the base model, while lightweight model 2 had a size of 3278.390 KB, which
is 66% less than the base model. Among the three models, the base model had the largest
size, while lightweight model 1 had the smallest.
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Results imply that the quantization method reduces the model size of the base model.
There is also a noticeable difference between the post-quantization and quantization-aware
processes. This difference is due to the post-quantization process of the whole model
making it much smaller, compared to the quantization-aware. In that model, critical layers
are not quantized directly, meaning only selected layers can be quantized, reducing only a
portion of the model.

Figure 9. Model size comparison between the base model versus lightweight versions.

4.3. Classification Evaluation

Every gesture in the model was labeled as one of the four outcomes through the
confusion matrix. One is a true positive (TP), wherein the model properly predicts the
positive class. A true negative (TN) is the result where the model properly predicts the
negative class. A false positive (FP) is the result where the model incorrectly predicts the
positive class, and a false negative (FN) is the result where the model incorrectly predicts
the negative class.

When classifying Gesture 0 (Check-up Doctor) as an example, the resulting values of
the outcome metrics are as follows:

TP = 140,

FN = 2,

FP = 2,

TN = 1956.

The confusion matrix in Figure 10 shows that there were gestures that were misclas-
sified by the system. The gesture that saw no problems in the detection was the gesture
Issue, with 162 as its true positive label and 0 as its false positive and false negative labels.
On the other hand, the gesture that had a high misclassification rate was Where Restroom,
where its true positive label was 121, with 6 and 4 for its false positive and false negative
labels, respectively.

Once the values of these outcomes were recorded, the accuracy level was defined as
the ratio between the number of correct predictions and the total number of predictions.
The precision level was defined as the ratio between the number of Positive samples
correctly classified and the total number of samples classified as Positive (either correctly or
incorrectly). Meanwhile, the recall level was defined as the proportion of Positive samples
that were accurately categorized as Positive to the total number of Positive samples. Lastly,
the F1-score was defined as the arithmetic mean of the precision and recall values.
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Figure 10. Validation data confusion matrix for base model.

Table 5 summarizes the precision, recall, F1-score, and support values for each gesture
and their respective accuracy levels, macro-averages, and weighted averages. Support
is defined as the number of ground truth occurrences of each class. The macro-averages
were calculated by averaging the unweighted mean per label and the weighted averages
by averaging the support-weighted mean per label. Based on the table, most of the values
of the F1-score were around 0.98 to 1.00, implying that the two gestures have near-perfect
precision and recall, implying that the model overall has a high classification rate of
distinguishing between gestures.

Figure 11 shows the classification metrics of the three models. It shows that there is
no difference in the classification metrics, with the models having an accuracy, precision,
recall, and F1-score of 0.98.

Figure 11. Classification Metrics in Setup 1.
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Table 5. Classification metrics summary.

Class Precision Recall F1-Score Support

0 (Check-up Doctor) 0.99 0.99 0.99 142

1 (Don’t Understand) 0.94 0.99 0.97 130

2 (Fill-up Form) 1.00 0.97 0.99 139

3 (Hello) 0.98 0.99 0.99 139

4 (Issue) 0.99 1.00 1.00 162

5 (My Name is) 0.98 0.96 0.97 131

6 (No) 0.97 0.99 0.98 140

7 (Payment) 1.00 0.98 0.99 160

8 (Please) 0.99 0.94 0.96 158

9 (Sick) 0.98 0.98 0.98 129

10 (Thank You) 0.97 0.99 0.98 136

11 (Understand) 0.93 0.96 0.94 141

12 (Wait in Line) 0.98 0.98 0.98 133

13 (Where restroom) 0.95 0.97 0.96 125

14 (Yes) 0.98 0.93 0.96 135

accuracy 0.98 2100

macro avg 0.98 0.98 0.98 2100

weighted avg 0.98 0.98 0.98 2100

Figure 12 shows the classification metrics of the three models. It shows that there is a
difference in the Post-Quantized (PQ) model’s (lightweight model classification metrics,
with the models having an accuracy, precision, recall, and F1-score of 97%. On the other
hand, both the base model and the lightweight model 2 scored 99%.

Figure 12. Classification metrics in Setup 2.

4.4. Inference Time

The data used for inference time are a subset of the validation data. For this test,
100 samples from the validation dataset were randomly selected as input for measuring the
time duration of model inference. Additionally, the inference time is measured per input,
and then the minimum, mean, and maximum times are computed.

Figure 13 compares the time duration of the base model, lightweight model 1, and
lightweight model 2 in Setup 1 or the x86 laptop machine environment. The base model
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has an average of 0.161 s inference time, a minimum time of 0.134 s, and a maximum of
0.134 s. Lightweight model 1, applied with Post-Quantization, has an inference time of
46.992 s on average, 46.707 s minimum, and 52.899 s maximum. Lastly, lightweight model 2
with Quantization-Aware Training (QAT) has a 0.401 s mean, 0.341 s minimum, and 2.759 s
maximum inference time. In this setup, the base model performs the best in terms of speed,
as it has the fastest minimum, mean, and maximum inference time. On the other hand,
the lightweight 1 model performed the worst, as it has the slowest minimum, mean, and
maximum inference time. The results of the lightweight models are slower by 1.540% on
minimum, 1.480% on mean, and 1.180% on max time compared to that of the base model.

Figure 13. Inference Time in Setup 1.

Figure 14 compares the time duration of the base model, lightweight model 1, and
lightweight model 2 in Setup 2, or the Raspberry Pi setup. The base model has an average of
1.450 s inference time, a minimum time of 1.233 s, and a maximum of 3.014 s. Lightweight
model 1 has an inference time of 1.615 s on average, 1.597 s minimum, and 2.068 s maximum.
Lastly, lightweight model 2 has a 2.631 s mean, 2.605 s minimum, and 3.587 s maximum
inference time. In this setup, the base model has the fastest minimum and mean inference
but has the second-highest maximum time. In contrast, lightweight 1 (LW 1) has the lowest
maximum inference time of 2.068 s and follows the base model in terms of minimum and
mean inference times of 1.597 s and 1.615 s, respectively. Furthermore, lightweight 2 (LW2)
has the slowest overall inference time in this setup, with 2.631 s mean, 2.605 s minimum,
and 3.587 s maximum.

Figure 14. Inference time in Setup 2.
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4.5. Memory Utilization

This testing uses the same sampling technique in the previous subsection, namely,
a random selection of 100 samples from the validation dataset. Similar to how inference
time was measured, the memory utilization per inference is traced, and then the minimum,
mean, and the maximum are computed.

Figure 15 compares the memory utilization per inference of the base model, lightweight
model 1, and lightweight model 2 in Setup 1, measured in kilobytes. Among the three mod-
els, the base model used the largest memory per inference, with an average of 255.102 KB,
a minimum of 242.711 KB, and a maximum of 261.944 KB. The two lightweight models, on
the other hand, utilized the same amount of memory—only 0.063 KB—across their minimum,
mean, and maximum utilization. This is around 255 KB less than the base model uses.

Figure 15. Memory utilization during inference in Setup 1.

Figure 16 compares the memory utilization per inference of the base model, lightweight
model 1, and lightweight model 2 in Setup 2, measured in kilobytes. Similar to the previous
results in Setup 1, the base model used the largest amount of memory, with 7.546 KB
minimum usage and 25.141 KB average, which is 9.15% smaller than in Setup 1, and
a maximum utilization that spiked to 1745.840 KB. The memory utilization of the two
lightweight models is 0.063 KB across minimum, mean, and maximum, which is consistent
with the results of Setup 1.

Figure 16. Memory utilization during inference in Setup 2.
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4.6. Results Summary

Table 6 summarizes the results of the previous subsections in terms of model size, classifi-
cation evaluation, average inference time, and average memory utilization. The summary is
divided according to the setups in which the models were evaluated and tested.

The classification metrics results in Table 6 can be attributed to the Post-Quantization
process applied to the whole model, in that all its layers are quantized, and the critical
layers on the time-distributed and Long Short-Term Memory layers are affected, reducing
its attributed classification metrics [42,43]. Meanwhile, the Quantization-Aware process
that recommends not quantizing the critical layers results in quantizing only selected layers,
specifically, the Dense layers, which are only a minor portion of the entire CNN-LSTM
model, making its accuracy similar to that of the base model [44].

The inference time results show that the base model performs the fastest in terms of
inference among the three models. This can be attributed to the fact that the TensorFlow
build used in this setup is for x86/x64 processors, where the execution of the base model
is optimized. Nevertheless, as a drawback, the base model’s performance became slower
by 7.99% in terms of average time in Setup 2. Lightweight models 1 and 2 were both
converted from the base model using TensorFlow Lite, which supposedly optimized them
for the ARM instruction set for faster execution [45]. However, this is only evident with
the Post-Quantized model, lightweight 1, with its improved mean inference time in Setup
2 of 28%; however, this is not the case for lightweight 2, which became slower by 5.56%
in the same setup. This is due to quantizing only selected layers for Quantization-Aware
training [44], specifically the Dense layers, which are only a minor portion of the entire
CNN-LSTM model. Hence, the lightweight 2 model has only a few optimizations for Setup
2, and the majority of its weights and activations still have the same level of precision as
the base model.

The overall results of the memory utilization test show that the base model is the
most memory-intensive model, which is not ideal for devices that have limited memory
capacity, such as the Raspberry Pi and mobile devices. This is different than the two
lightweight models’ memory utilization, which only uses less than a kilobyte per inference.
Furthermore, the results show that optimizing the base model with TensorFlow Lite greatly
impacts the model’s memory usage [45].

From the given results, it can be summarized that different versions of the proposed
CNN-LSTM model are more appropriate to deploy than the others depending on the setups
or environments. The base model provides the best possible accuracy and fastest inference
speed. This model is highly applicable to desktops and laptops, as these machines do
not typically have concerns with limited memory and storage resources. On the other
hand, if the aforementioned resources are to be taken into consideration, particularly in
embedded devices, the lightweight 1 model or the Post-Quantized model is appropriate,
since it minimizes both model size and inference memory utilization with minimal impact
on accuracy. Additionally, the inference speed of this model is comparable to the base
model when executed on devices with limited resources, as seen in Table 6. The lightweight
2 Quantization-Aware model can be used as an alternative for the base model, as it has an
advantage in terms of memory utilization and model size but comparable accuracy, with a
compromise on slower inference speed compared to the base model.

Finally, Table 6 also presents a comparison of the proposed CNN-LSTM model with
other existing works focusing on FSL gesture recognition. Our model outperforms pre-
vious approaches, achieving an accuracy improvement of 11.3% and 3.0% compared
to [11,12], respectively.
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Table 6. Performance summary of the models in different setups and other works.

Setup 1 (Laptop with x86 CPU)

Descr Classification Metrics Average
Inference
Time (s)

Average
Memory
Utilization (KB)

Model Size
(KB)Accuracy Precision Recall F1-Score

Base CNN-LSTM 0.980 0.982 0.980 0.980 0.161 255.102 9843.883
LW 1 PQ 0.980 0.982 0.980 0.980 46.992 0.063 842.102
LW 2 QAT 0.980 0.982 0.980 0.980 0.401 0.063 3278.391

Setup 2 (Raspberry Pi with ARM CPU)

Model Descr Classification Metrics Average
Inference
Time (s)

Average
Memory
Utilization (KB)

Model Size
(KB)Accuracy Precision Recall F1-Score

Base CNN-LSTM 0.990 0.991 0.990 0.990 1.450 25.141 9843.883
LW 1 PQ 0.970 0.972 0.970 0.970 1.615 0.063 842.102
LW 2 QAT 0.990 0.992 0.990 0.990 2.631 0.063 3278.391

Comparison with Other Works

Ref # Descr Classification Metrics Average
Inference
Time (s)

Average
Memory
Utilization (KB)

Model Size
(KB)Accuracy Precision Recall F1-Score

[11] ResNet 0.867 — — — — — —
[12] CNN 0.950 — — — — — —

5. Conclusions

This work proposed a gesture recognition system for Filipino Sign Language using
Convolutional and Long Short-Term Memory Neural Networks. Based on the metrics and
test results, the CNN-LSTM model was able to recognize the given FSL signs involving
movements with relatively high precision. Accuracy, precision, recall, and F1-score were
used to evaluate the performance of the suggested model. The model was able to obtain
98% in the classification metrics. Additionally, the accuracy and loss of the model were
comparable for the validation and test sets of data: 97.62% accuracy and 0.0839 loss for the
validation set, and 97.29% accuracy and 0.0827 loss for the test set, implying it is well-fit
with its features successfully generalized. The model underwent the Post-Quantization
process and Quantization-Aware training to develop lightweight models meant for resource-
constrained devices.

In addition to the classification metrics, the average inference time and memory utilization
of the three models were also tested in ARM-based and x86-based setups. The base model
showed the largest size at 9843.88 KB, while lightweight model 1 had the lowest at 842.11 KB,
which is 92% less than the base model. Across the two setups, the base model was consistently
the most accurate and fastest in inference time but also had the largest model size and memory
utilization. In Setup 1, results showed identical classification metrics across the three models;
however, lightweight model 1 had a significantly higher inference time that could be attributed to
the whole model and all its layers becoming quantized after training. In Setup 2, the same reason
also reduced the classification metrics for lightweight model 1, albeit only by an insignificant
margin. However, inference time improved for lightweight model 1, only bested by the base
model. Lightweight model 2 in the ARM-based setup had the longest inference time, roughly
1 s more than the other models.

Based on the results, all three models demonstrated high accuracy levels and low
loss levels, making them capable of converting FSL gestures in real-time and usable for
digital applications and dedicated hardware such as in government service centers and
banks. However, the data also showed that different models of the proposed CNN-LSTM
implementation are more appropriate to be deployed and used than others, depending
on the environment and devices available. As part of future work aimed at enhancing the
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robustness and applicability of the proposed model in diverse real-world scenarios, we will
conduct a comprehensive ablation study to systematically analyze the impact of various
model components.
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