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Abstract: This paper introduces a parameter-efficient transformer-based model designed for scientific
literature classification. By optimizing the transformer architecture, the proposed model significantly
reduces memory usage, training time, inference time, and the carbon footprint associated with large
language models. The proposed approach is evaluated against various deep learning models and
demonstrates superior performance in classifying scientific literature. Comprehensive experiments
conducted on datasets from Web of Science, ArXiv, Nature, Springer, and Wiley reveal that the
proposed model’s multi-headed attention mechanism and enhanced embeddings contribute to its
high accuracy and efficiency, making it a robust solution for text classification tasks.
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1. Introduction

The scientific community has witnessed an unprecedented surge in the volume of
published literature, with millions of articles disseminated annually across myriad plat-
forms. As of recent estimates, over 2.5 million scientific articles are published each year
across more than 30,000 peer-reviewed journals globally [1,2]. In addition to journal ar-
ticles, the proliferation of scientific conferences contributes significantly to the literature
pool, with thousands of conferences generating substantial numbers of proceedings and
papers annually. The academic sector also plays a crucial role, with universities around
the world producing a vast number of theses and dissertations each year. For instance,
in 2018 alone, the United States saw the publication of approximately 60,000 doctoral dis-
sertations [3]. This exponential growth in scientific publications is facilitated by advances
in digital technology and open access initiatives, further underscoring the dynamic and
expansive nature of modern scientific research. The usefulness of such a large amount
of information depends on how it is automatically organized and grouped into various
subjects, domains, and themes. Text classification is a crucial tool for organizing, managing,
and retrieving textual data repositories.

Classic machine learning-based classification algorithms have been used in the task of
text classification. The problems inherent to such algorithms, such as the need for feature
engineering, have limited their application. To address this, deep learning algorithms
including models based on convolutional neural networks (CNN) [4–8] and recurrent
neural networks (RNNs) [9,10] have been proposed.

Transformer-based models [11–16] have recently been used. When it comes to text
categorization tasks, these models perform better than the other simpler models. However,
the performance gains are accompanied by a larger and more complex model. Requiring
such complex models is necessary to achieve satisfactory outcomes in sequence-to-sequence
tasks. However, these models are not the best to utilize for relatively easy tasks such as
text classification.
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1.1. Research Questions Addressed in This Paper

• How do different text classification models compare in terms of performance for
scientific literature classification (SLC)

– This paper evaluates the performance of various text classification models, includ-
ing CNN, RNN, and transformer-based models across multiple datasets, such as
WOS, ArXiv, Nature, Springer, and Wiley.

– Detailed performance metrics are provided, which highlight the strengths and
weaknesses of each model.

– The results indicate that sBERT (small BERT) outperforms other models in accu-
racy and robustness across diverse datasets.

• What are the limitations of existing CNN and RNN models in handling text classifica-
tion tasks?

– The Introduction (Section 1) and Related Work (Section 2) discuss the repre-
sentational limitations of CNN and RNN models, particularly the challenge of
detecting long-range dependencies in the input.

– This sets the stage for introducing transformer-based models that address these
limitations through mechanisms such as self-attention.

• How can parameter efficiency be achieved while maintaining high performance?

– The proposed sBERT model is designed to utilize a multi-headed attention mech-
anism and hybrid embeddings to capture global context efficiently.

– The paper details the architecture of sBERT, emphasizing its parameter efficiency
compared to other transformer-based models.

– It requires only 15.7 MB of memory and achieves rapid inference times, demon-
strating a significant reduction in computational resources without compromising
performance.

1.2. Paper Outline

In Section 2 of this paper, we include the relevant literature review. Section 3 intro-
duces the proposed approach, while Section 4 provides a detailed account of the datasets
employed and the experiments carried out. Section 5 is devoted to the presentation and
discussion of the study’s findings.

2. Related Work

In this section, we summarize the relevant literature on various approaches to text
classification. The review covers works published between 2015 and 2022 to provide a
comprehensive overview of recent advances in this field.

2.1. Convolutional Neural Networks for Sentence Classification

The foundational work of Kim [4] demonstrated the effectiveness of convolutional
neural networks (CNNs) for sentence classification, illustrating significant improvements
in text classification tasks by employing simple yet powerful CNN architectures. Building
upon this, Zhang et al. [17] introduced the Multi-Group Norm Constraint CNN (MGNC-
CNN), which leveraged multiple word embeddings to enhance sentence classification
performance. The utility of CNNs in combining contextual information was further ex-
plored by Wu et al. [18], who integrated self-attention mechanisms with CNNs to improve
text classification accuracy.

2.2. Advances in CNN Architectures

Several studies have proposed advancements in CNN architectures for text classifi-
cation. Zhang et al. [19] introduced character-level convolutional networks, highlighting
their ability to handle texts at a granular level and outperforming traditional word-level
models. Similarly, Conneau and Schwenk [20] developed very deep convolutional net-
works, emphasizing the importance of depth in CNNs for capturing intricate text patterns.
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Johnson and Zhang [21] compared shallow word-level CNNs and deep character-level
CNNs, demonstrating that deep character-level models achieve superior performance in
text categorization tasks. More recently, Wang et al. [22] combined n-gram techniques with
CNNs to enhance short text classification, while Soni et al. [23] introduced TextConvoNet,
a robust CNN-based architecture specifically designed for text classification.

2.3. Word Embeddings and Contextual Information

The role of word embeddings in enhancing sentence classification has been a focal
point in many studies. Mandelbaum and Shalev [24] explored various word embeddings
and their effectiveness in sentence classification tasks. Senarath and Thayasivam [25]
further advanced this by employing multiple word-embedding models for implicit emo-
tion classification in tweets. Additionally, the combination of recurrent neural networks
(RNNs) and CNNs with attention mechanisms, as proposed by Liu et al. [9], demonstrated
significant improvements in sentence representation and classification.

2.4. Hierarchical and Attention-Based Models

The introduction of hierarchical and attention-based models has significantly influ-
enced sentence classification methodologies. Yang et al. [26] proposed Hierarchical Atten-
tion Networks (HANs), which effectively captured the hierarchical structure of documents
for better classification. Zhou et al. [27] extended this approach by using attention-based
LSTM networks for cross-lingual sentiment classification. Furthermore, Bahdanau et al. [28]
introduced the attention mechanism in neural machine translation, which has since been
widely adopted in various text classification models.

2.5. Hybrid Models and Domain-Specific Applications

Hybrid models that combine CNNs with other neural network architectures have
also shown promising results. Hassan and Mahmood [29] developed a deep-learning
convolutional recurrent model that took advantage of the strengths of CNN and RNN
for sentence classification. In domain-specific applications, Gonçalves et al. [30] utilized
deep learning approaches for classifying scientific abstracts, while Jin and Szolovits [31]
proposed hierarchical neural networks for sequential sentence classification in medical
scientific abstracts. Yang and Emmert-Streib [32] introduced a CNN specifically designed
for multi-label text classification of electronic health records.

2.6. Transformer-Based Models

The advent of transformer-based models has revolutionized text classification. De-
vlin et al. [11] introduced BERT, a pre-trained deep bidirectional transformer, which set new
benchmarks in various NLP tasks. Subsequent models, such as RoBERTa by Liu et al. [14],
ALBERT by Lan et al. [15], and XLNet by Yang et al. [13], further optimized the BERT
architecture for improved performance. More recent innovations include ConvBERT by
Jiang et al. [33], which incorporated dynamic convolution into the BERT architecture,
and ELECTRA by Clark et al. [34], which proposed a new pretraining method for text en-
coders. DeBERTa by He et al. [35] and its subsequent versions [36] have continued to push
the boundaries of what is achievable with transformer-based models in text classification.

The reviewed literature illustrates significant progress in text classification method-
ologies and the broader context of scientific publishing (Table 1). This period has seen the
evolution of deep learning techniques, particularly CNNs and transformer-based models,
which have dramatically improved the accuracy and efficiency of text classification systems.
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Table 1. Comparison of different models based on their main features and limitations.

Model Main Features Limitations

Text-CNN [4] - Applies convolutional layers to text to detect features
- Applies pretrained word vectors
- Used for sentiment analysis and question answering

- Increased model size and complexity
- Not optimal for simpler tasks like text classi-
fication

Char-
CNN [19]

- Uses character level representation to make the model language
independent

- Does not utilize meaning associated with
words
- Training is slow because the model needs to
be deeper and perform well

HDLTex-
CNN [7]

- Uses multiple CNN layers with varied filter sizes and max-
pooling layers on text represented as GloVe-embedded words

- It is difficult to determine the optimal filter
sizes for the CNN layers
- Order of n-grams is ignored

Multi-group
Norm
Constraint
CNN [17]

- Employs more than one embedding to improve classification
performance

- Computationally expensive due to multiple
embeddings

VDCNN [20] - Input represented as character sequences is subjected to a net-
work of 30 layers to generate a feature vector

- High computational cost
- Slow training

Two-
Dimensional
Multiscale
CNN [21]

- Detects features within sentences and combines features from
different sentences to represent input text
- Uses 2D multiscale convolutional operations over document
matrices

- Increased complexity and computational re-
quirements

HDLTex-
RNN [7]

- Uses LSTM to reduce the effect of vanishing gradients
- Can capture long-range features within the text

- Slow training of an inference due to sequen-
tial nature of LSTMs

RCNN [37] - Uses an RNN to learn word representations, followed by a max-
pooling layer to generate a feature vector to represent text docu-
ments

- Recurrent structures are inherently sequen-
tial, making them slow to train

BLSTM-
2DCNN [9]

- Combines bidirectional LSTM with two-dimensional max-
pooling

- Complex architecture leading to higher
computational resources and longer training
times

DistilBERT [16] - Distilled version of BERT
- 40% smaller while retaining 97% of BERT’s capabilities
- Efficient for resource-constrained environments

- Slightly reduced performance compared to
full BERT

MobileBERT [38] - Smaller in size, task-independent BERT model
- Optimized for resource-limited environments
- Incorporates bottleneck structures and parameter reduction

- Performance trade-off for reduced size and
efficiency

ALBERT [15] - Lite BERT model
- Reduces model complexity by parameter sharing
- Employs factorized embedding parameterization

- May have lower performance on certain
complex tasks

RoBERTa [14] - Optimized version of BERT
- Trained with more data, longer sequences, and dynamic masking

- Requires significant computational re-
sources for training

ConvBERT [33] - Integrates span-based dynamic convolution
- Enhances local dependency capture in text

- Increased model complexity

ELECTRA [34] - Pre-trains text encoders as discriminators
- Focuses on distinguishing real input tokens from corrupted ones

- Training as discriminators might introduce
complexity

XLNet [13] - Generalized auto-regressive pretraining model
- Captures bidirectional context
- Addresses limitations of BERT’s masked language modeling

- Computationally intensive pretraining

GPT-2 [39] - Unsupervised multitask architecture
- Can perform a variety of NLP tasks without task-specific fine-
tuning

- Prone to generating unsafe or biased content



Knowledge 2024, 4 401

Table 1. Cont.

Model Main Features Limitations

T5 [40] - Integrated text-to-text transformer model
- Frames all tasks as text-to-text problems

- Requires extensive pretraining and task-
specific fine-tuning

DeBERTa [35] - Enhances BERT with disentangled attention
- Improved decoding mechanisms

- Complex architecture

DeBERTaV3 [36] - Integrates pretraining similar to ELECTRA
- Uses gradient-disentangled sharing of embedding

- Computationally intensive

This paper presents sBERT, a multi-headed attention model for text classification,
which optimizes transformer architectures for efficiency, reduces memory use, training and
inference times, and reduces the carbon footprint of large language models. Applied to
classifying scientific literature, sBERT outperforms previous methods and various deep
learning models. Figure 1 illustrates its classification process for an abstract.

Light-weight Encoder Block

machine learning has enabled the development of powerful ...

Classification Block

Embedding Block

Input Abstract

0.93 0.05 0.02

C
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Figure 1. Example showing how the proposed model is used to classify a single input abstract.

3. Proposed Model
3.1. Overview

The motivation for the proposed model is the successful application of transformer-
based models such as BERT [11] for tasks that require understanding of natural language.
However, these models have large parameter spaces. Additionally, in our experiments,
we found that simpler models can perform well on the task of text classification. For
example, BERT [11] uses an embedding size of 768 to represent each input token in the
text. It also uses 12 transformer blocks, and each block in turn uses 12 attention heads.
These design choices are suboptimal and result in parameter inefficiency when applied
to text classification. This also results in a huge model (the BERT base has 108 M param-
eters). Although useful in other more complex NLP tasks, using such a large model is
inefficient when used for text classification. For comparison, the model architectures and
corresponding parameter space sizes are provided in Table 2.

Figure 2 provides an overview of the proposed approach. The input text is subjected
to an embedding block that generates input to a lightweight encoder block. The encoded
input is then used for classification using the classification block. The subsequent sections
provide detailed descriptions of the blocks.
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Table 2. Transformer-based models with their parameter size, layers, attention heads, and hidden size.

Model Parameter Size Layers Attention Heads Hidden Size

DistilBERT [16] 66 M 6 12 768
MobileBERT [38] 25 M 24 4 512

ALBERT [15] 12 M 12 64 4096
BERT [11] 110 M 12 12 768

RoBERTa [14] 125 M 12 12 768
ConvBERT [33] 110 M 12 12 768
ELECTRA [34] 110 M 12 12 768

XLNet [13] 110 M 12 12 768
GPT-2 [39] 117 M 12 12 768

T5 [40] 220 M 12 12 768
DeBERTa [35] 110 M 12 12 768

DeBERTa-v3 [36] 304 M 24 16 1024
sBERT (proposed model) 11.9 M 1 12 100

Feed Forward
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Self Attention
subunits
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eight Encoder Block

Linear

Softmax

Input

Norm

Linear

Word
Embedding

Positional
Embedding

C
lassification Block

Em
bedding Block
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from all attention heads
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embeddings

 : average over all
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Self Attention
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Self Attention

Norm

Self Attention

Norm

Feed Forward
Feed Forward
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self attention
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Figure 2. Proposed model at a conceptual level.
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3.2. Detailed Description

The following subsections provide an in-depth description of the different steps
involved in the proposed approach.

3.2.1. Embedding Block

The embedding block reduces the dimensionality of the input text and encodes the
semantics and positional information of the words. This enriched and compact input
representation serves to reduce computational requirements and improve performance.
sBERT employs a hybrid embedding comprising a word embedding and a positional
embedding. This is depicted in Figure 3.

we consider large scale dataInput Text

Word
Embeddings

Posiitional
Embeddings

...

Embedding
Layer

One-hot
vectors

 : combined
word embeddings

...

...

...

...

Figure 3. Combined word and positional embeddings.

The weights in the word embedding layer are initialized using GloVe [41] and refined
during training. The layer outputs the word vectors as a linear projection of the input
words (Equation (1)).

xword
i = Wword × wi (1)

In Equation (1), xword
i ∈ R denotes the output word vector corresponding to the ith

position in the input, wi ∈ Rvocab_size. Wword ∈ Rvocab_size×embedding_dim denotes the word
embedding matrix. Here, embedding_dim is the dimensionality of word embedding vectors.
The order and position of different input words is encoded by the positional embedding
layer. This layer outputs a vector by transformation using a weight matrix (Equation (2)).

xpos
i

T
= Wpos × wi (2)

Here, xpos
k ∈ Rembedding_dim is the positional embedding vector corresponding to the

kth word in the input, wk ∈ Rvocab_size . Wpos ∈ Rvocab_size× embedding_dim denotes the weight
matrix for the positional embedding layer. This matrix is initialized by weights calculated as
a function of the position of a token in the input. A pair of even and odd positions in a row
of the embedding matrix corresponding to the kth word, i.e., Wpos

k,2i and Wpos
k,2i+1, is calculated

using Equation (3) and Equation (4), respectively. Here, 0 ≤ i ≤ embedding_dim/2.

Wpos
k,2i = sin

(
k

n
2i
d

)
(3)

Wpos
k,2i+1 = cos

(
k

n
2i
d

)
(4)

Here, d is the intended embedding dimensionality, and n in the denominator is used to
manage frequencies across the dimensions of the embeddings. By using a large value such
as 10,000 for n, the frequency spectrum is spread to ensure that the embeddings can capture
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patterns that occur over different sequence lengths. The outputs of the two embeddings are
summed to obtain an output vector. This creates a word embedding enriched with position
information (Equation (5)).

xi = xword
i + xpos

i (5)

Here, xi ∈ Rembedding_dim represents the new hybrid embedded word vector, and
embedding_dim is the dimensionality of the word embedding vector.

3.2.2. Query, Key, and Value Projections

To prepare the word representations for input to the encoder block (Figure 2), we use
three linear transformation layers (query, key, and value) on the combined word vectors.
Equations (6)–(8) depict these. The three projections are shown in Figure 3.

qi = Wq × xi (6)

Here, qi ∈ Rembedding_dim denotes the query vector for the ith input word xi, xi ∈ Rembedding_dim

denotes the hybrid word vector obtained from the embedding block, and Wq represents the
weight matrix associated with generating query vectors. Also, Wq ∈ Rquery_dim×embedding_dim

and query_dim is the dimensionality of the query vector.

ki = Wk × xi (7)

Here, ki ∈ Rembedding_dim denotes the the key vector for the ith input word xi, and
Wk represents the weight matrix associated with generating key vectors. Also, Wk ∈
Rquery_dim×embedding_dim.

vi = Wv × xi (8)

Here, vi ∈ Rembedding_dim denotes the the value vector for the ith input word xi, and
Wv represents the weight matrix associated with generating value vectors. Also, Wv ∈
Rquery_dim×embedding_dim.

3.2.3. Self-Attention

The purpose of the self-attention mechanism is to obtain a context-aware representa-
tion of the input words. This helps detect long-range dependencies within the input, which
in turn improves model performance. The following subsections describe the self-attention
mechanism employed by the proposed model to enhance word representation and hence
the overall model performance.

Overview

To represent a sequence of words, self-attention connects various positions of the
sequence. If the same word is surrounded, in two different instances, by different words,
humans understand it differently. By self-attention, we mean attending to other words in
the context when interpreting each word in a text sample.

Regularities within a natural language such as sentence structure, grammar, and se-
mantics associated with each word (word embedding vectors) cause a model with an
attention mechanism built into its architecture to learn to attend to important words within
the text. Attention is learned because it is rewarding for the task that the model is trained
on. Training the model on a task that requires language understanding such as text classifi-
cation improves this attention mechanism. This is because training improves contextual
representation (one that attends to other areas of the text). Since the contextual repre-
sentation is calculated using self-attention, the representation can only be improved by
improving the attention mechanism itself.

Self-Attention Mechanism

The encoder block generates an attention-based representation that can focus on spe-
cific information from a large context. The attention score for a keyword when generating a
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representation for a given query word is calculated by scaling the dot product aij of the
query vector qi and key vector k j (of dimensionality dk). This is represented in Equation (9).

aij = q⊤i k j (9)

score(qi, k j) =
aij√
dk

(10)

In Equation (10), qi denotes the query vector, and k j is a key vector whose attention score
against qi is being determined, while dk is the dimensionality of key vectors. The three
projections (query, key, and value) corresponding to each input word are calculated by
using three linear transformations. To obtain the attention scores for each token (query
word) in the input, its dot product with all the words (key words) in the input is calculated.
The dot product is calculated between the query vector representation of the query word
and the key vector representation of the keyword. Scaling of the dot product aij is achieved
by dividing it by the square root of the dimensionality of the key vectors (dk) to obtain a
score(qi, k j) (attention score for qi against each ki, as shown in Equation (10)). Scores for
each query qi are subjected to a soft-max normalization to obtain the attention vector αi, as
shown in Equation (11).

αij =
escore(qi ,kj)

∑j escore(qi ,kj)
(11)

Here, αij denotes the attention score for the ith word against the jth word. The above
operations can be combined into a single matrix operation that calculates an attention
matrix A, in which each row αi represents the attention score vector for the word at the ith
position in the input (Equation (12)).

A =
Q × KT
√

dk
(12)

Here, Q is the matrix, in which each row qi denotes the ith query word; similarly, K denotes
the key matrix, in which each row ki denotes the ith key word. The ith row (ai) in the
matrix A in Equation (12) denotes the scaled dot product of the query word qi with every
key word k j. Each row ai of A is subjected to soft-max to calculate αi, which makes the sum
of all attention weights equal to one, i.e., αi = so f tmax(ai), ∑j αi,j = 1. To reduce the effect
of dot products growing in values, which in turn pushes the soft-max function into flat
regions, the dot products are scaled by the fraction 1√

dk
, where dk is the dimensionality of

the key vector. The above steps are shown in Figure 4. Next, each value vector vj is scaled
by the attention weight αi,j. To obtain the attention-enriched word representation for the ith
position in the input (zi), we scale the value vectors and sum them (Equation (13)). Figure 4
shows this diagrammatically. Here, ⊗ represents the scaling operation.

zi = ∑
j
(αi,j ⊗ vj) (13)
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Figure 4. Applying the self-attention sub-unit of the encoder block to an embedded input position i
(Figure 3). A single attention head has been shown for simplicity.
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3.2.4. Residual Connections

Residual connections [42] in the proposed model improve model performance by
addressing the problem of vanishing gradients, facilitating easier optimization, encouraging
feature reuse, and leveraging the residual learning principle to focus on learning challenging
parts of the mapping. Nonlinear activation functions cause the gradients to expand or
disappear (depending on the weights). Skip connections theoretically provide a path that
travels through the network, and gradients may also travel backward along it.

The outputs calculated by attention mechanism (zi) are added to the outputs from the
encoder block (xi) to obtain (ni ∈ Rembeddingdim), vectors that are used in the subsequent
layer normalization step (Equation (14)).

ni = zi + xi (14)

3.2.5. Layer Normalization

sBERT employs layer normalization to improve model performance by stabilizing
training, reducing sensitivity to initialization, improving generalization, and facilitating
faster convergence, thereby reducing the training time [43]. We first calculate µi, the mean,
and σ2

i , the variance of each input word vector (ni), as shown in Equations (15) and (16).

µi =
1
K

K

∑
k=1

ni,k (15)

Here, K represents the dimensionality of the input which, in our case, is equal to the
embedding_dim.

σ2
i =

1
K

K

∑
k=1

(ni,k − µi)
2 (16)

Each of the K features of the word is subtracted by the mean, and the difference is divided
by the square root of the standard deviation calculated above. A very small number ϵ is
added to the standard deviation for numerical stability. In our experiments, we use a value
of 0.001 for ϵ. This is shown in Equation (17).

n̂i,k =
ni,k − µi√

σ2
i + ϵ

(17)

As the final step in layer normalization, we scale the normalized vector n̂ by a factor of γ1
and shift its value by β1, as shown in Equation (18) and depicted in Figure 5.

pi = γ1n̂i + β1 (18)

All of the above four steps in layer normalization can be represented as shown in Equation (19).

pi = LNγ1,β1(ni) (19)
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Figure 5. Applying an FCNN (fully connected neural network) sub-unit of the encoder block to the
outputs of the self-attention sub-unit (Figure 4). The superscript of the m0 output vectors denotes the
attention head index (0).

3.2.6. FCNN (Fully Connected Neural Network)

Two linear transformation layers are applied to the normalized output (Equations (20)
and (21)). The fully connected layers in the model help capture and model intricate
relationships within the data, leading to improved performance. Additionally, the model
can extract features at different levels of granularity.

ri = W2 × pi (20)

si = relu(W1 × ri) (21)

Figure 5 shows the application of the FCNN to the layer normalized outputs obtained
by adding scaled value projections according to the attention vector corresponding to
the position.

3.2.7. Concatenating Outputs from Multiple Attention Heads

To generate a consolidated representation from multiple attention heads for each word,
we concatenate the vectors obtained from all attention heads (Figure 5).

3.2.8. Residual Connections

To skip the transformations shown in Equations (20) and (21), a residual connection is
employed. So, pi (the output of Equation (18) is added to si (the output of Equation (21)).
This addition gives mi, the combined output (Equation (22)).

mi = pi + si (22)

3.2.9. Combining the Representations Obtained from All Attention Heads

Outputs from multiple attention heads are consolidated by employing a linear trans-
formation layer on the concatenated token representations obtained from all heads. This is
shown in Equation (23) and illustrated in Figure 6.

oi = W0 × mi (23)
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The vectors oi are subjected to layer normalization and can be represented as shown
in Equation (24). This is illustrated in Figure 6.

ti = LNγ2,β2(oi) (24)

 : concatenated outputs from multiple
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Layer Normalization
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Figure 6. Obtaining a single vector representation for each position by transforming the concate-
nated attention outputs (mi) from 12 attention heads (Figure 5) using a fully connected layer. This
representation is then used for classification after normalization and averaging over positions.

3.2.10. Classification

Finally, we average all (n) positions (ti) to compute the vector (u) that represents
the entire text, as shown in Equation (25). Averaging over all positions helps improve
classification performance by capturing global context, reducing positional bias, enhancing
robustness to input variations, and enhancing semantic understanding.

u =
∑n

i ti

n
(25)

A soft-max-activated dense layer of neurons is used to output classification probabilities
(Equations (26) and (27)).

y = Wout × u (26)
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Here, Wout represents the weight matrix of the output layer, and

outi = so f t − max(yi) =
eyi

∑nClasses
j=1 eyj

, (27)

where outi ∈ RnClasses. Figure 6 depicts the soft-max classification step.

4. Datasets and Experiments

The proposed model was applied to eight different datasets summarized in Table 3.
For comparison, seven other deep-learning-based text classification models were also
tested on the task. We ran a grid search to find the best-performing combination of
hyperparameters. The grid search was run on eight datasets, and five-fold cross-validation
was used to determine the best configuration for each dataset. The configuration described
above showed the best performance for most datasets. The following subsections describe
the datasets and the experimental setup used in the study.

4.1. Datasets

Ten different datasets comprising abstracts of research papers were used in the study.
In addition to the three Web of Science (WOS) datasets [7], we created seven new SLC
datasets for the experiments. The following subsections describe the datasets.

4.1.1. WOS

The WOS datasets [7] consist of 46,958 paper abstracts from 134 categories and
7 subcategories.

4.1.2. ArXiv

The dataset was gathered from ArXiv [44], an online preprint repository. It includes works
in mathematical finance, electrical engineering, math, quantitative biology, physics, statistics,
economics, astronomy, and computer science. There are 7 categories and 146 subcategories.

4.1.3. Nature

The dataset contains 49,782 abstracts from [45], and it is divided into 8 categories and
102 subcategories.

4.1.4. Springer

This dataset contains 116,230 abstracts from Springer [46], which are divided into
24 categories and 117 subcategories. A subset (SPR-50317) consisting of the largest 6 cate-
gories was also created.

4.1.5. Wiley

The dataset contains 179,953 samples and was obtained from Wiley [47]. It contains
494 categories and 74 subcategories. A subset (WIL-30628) consisting of the largest 6 cate-
gories was also created.

4.1.6. COR233962

COR233962 has 233,962 abstracts divided into 6 categories. It was obtained from the
repository made available by Cornell University [48].

The datasets differ in domains, sample sizes for training and testing, average words
and characters per sample, and vocabulary size. These factors can affect the performance
of text classification models. Generally, larger and more diverse datasets enhance model
performance. Table 3 outlines the datasets used in this study.
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Table 3. Summary of datasets used.

Dataset Domains Samples Train Test WPS CPS Voc

WOS-5376 3 5736 4588 1148 209.03 1386.13 42,306
WOS-11967 7 11,967 8017 3950 201.43 1340.19 57,875
WOS-46985 7 46,985 31,479 15,506 205.27 1375.76 125,968

ArXiv 7 40,060 32,048 8012 148.21 978.67 112,452
Nature 8 49,782 24,891 24,891 175.20 1206.56 84,228

Springer 24 116,230 92,984 23,246 167.92 1128.41 22,254
Wiley 74 179,953 143,962 35,991 170.26 1150.62 113,534

COR233962 6 233,962 187,169 46,793 148.26 971.3 172,954
WIL-30628 6 30,628 24,502 6126 183.52 1230.28 43,714
SPR-50317 10 50,317 40,253 10,064 165.89 1103.97 12,531

Notes: Domains: Number of classes, Samples: Number of samples, Train: Number of training samples, Test:
Number of testing samples, WPS: Words per sample (mean), CPS: Characters per sample (mean), Voc: Size of
the vocabulary.

4.2. Experimental Setup

Experiments for the study were performed on a hardware configuration that uses
an Intel® Xeon® CPU @ 2.30 GHz, 12 GB of RAM, and approximately 358 GB of free
disk space (Table 4). It also uses an NVIDIA Tesla T4 GPU. Table 5 lists the training
times of different models. Code for the proposed model can be found online (Code:
https://github.com/munziratcoding/sBERT, accessed on 11 July 2024). The following
subsections present a detailed account of the experimental setup.

Table 4. System configuration.

Property Value

Operating System Linux-6.1.85+-x86_64-with-glibc2.35
Python Version 3.10.12
CPU Count 2
CPU Model Intel® Xeon® CPU @ 2.30 GHz
GPU Count 1
GPU Model 1 x Tesla T4
Longitude −79.9746
Latitude 32.8608
RAM 12.7 GB

Table 5. Training times for sBERT on different datasets.

Dataset WOS-5736 WOS-11967 WOS-46985 Nature Springer ArXiv Wiley COR-233962 WIL-30628 SPR-50317

Time (s) 157.2688 286.5306 713.4463 361.6975 721.5509 500.1951 4233.135 2299.827 460.3575 287.246

4.2.1. Data Acquisition

To acquire some of the datasets, an HTTP request was sent to retrieve the required data,
and the HTML content was retrieved using the HTTP library. The lxml library was then
used to parse the HTML content and extract the abstracts and categories. The BeautifulSoup
library was used to transform the data into a Pandas dataframe that was stored as a CSV
file for further processing and analysis.

The datasets were sourced from individual repositories, ensuring consistency in class
distribution between samples and their respective sources. In instances where certain
classes contained an insufficient number of samples, exacerbating class imbalance, such
classes were omitted from the datasets. Additionally, the variation in the number of classes
within the created datasets aimed to enhance diversity.

https://github.com/munziratcoding/sBERT
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4.2.2. Data Cleaning and Preprocessing

Special characters were filtered out from the abstracts, and tokenization (vocabulary
size of 20,000) was performed. The input was restricted to the length of 250 tokens. This
was achieved by padding and truncation.

4.2.3. Data Splitting for Training, Validation, and Testing

The datasets were randomly shuffled to remove ordering bias and then split into
training and testing subsets using an 80:20 ratio. The training subsets were used for model
training, while the test subsets were used for performance evaluation.

4.2.4. Hyperparameter Selection

For hyperparameter selection for sBERT, we ran a grid search over the ranges of
hyperparameters, such as the number of attention heads [1–12], number of encoder blocks
[1–12], embedding size [100–300], and the size of the fully connected and neural network
layers [32–512]. The configuration discussed in the proposed model showed optimal
performance across most datasets.

4.2.5. Training Details

The Adam optimizer with a learning rate of 0.01 was employed to train sBERT. A batch
size of 16 and 100 epochs with early stopping was used. Figures 7 and 8 show the training
graphs obtained during training sBERT on the WOS-46985 and COR-233962 datasets.
Training times on different datasets for sBERT are listed in Table 5.
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Figure 7. Training graphs for sBERT on the WIL-30628 dataset.

4.2.6. Performance Metric

Classification accuracy percentage, a measure of the percentage of correctly classified
instances in a dataset, was employed. It is defined as the ratio of the number of correctly
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classified instances to the total number of instances in the dataset, multiplied by 100.
Classification accuracy can be described mathematically as shown in Equation (28):

Classification Accuracy =
No. of correct predictions
Total No. of predictions

× 100%. (28)
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Figure 8. Training graphs for sBERT on the WOS-46985 dataset.

5. Results and Discussion

We evaluate the performance of sBERT against several other deep-learning text clas-
sification techniques using classification accuracy percentages. Section 5.1 contrasts the
parameter space sizes of different transformer-based models with the proposed model.
In Section 5.2, we compare different models based on their carbon emissions. Section 5.3
explores the classification accuracy outcomes for various datasets. Finally, in Section 5.4,
we present the results of hypothesis testing.

5.1. Parameter Space Comparison

Table 2 shows a comparison of various language models based on their parameter
space size, which is an important consideration when selecting a model for a specific task.

As described in Table 2, BERT base, XLNet, and RoBERTa base all have 12 transformer
layers, with varying hidden sizes, attention heads, and number of parameters. Models such
as BERT large have 24 encoder layers, with larger hidden sizes and attention heads than
their base counterparts, resulting in significantly larger parameter spaces. BERT large has
340 million parameters, while RoBERTa large has 355 million parameters. DistilBERT and
ALBERT are both designed to be smaller and more efficient versions of BERT. DistilBERT has
only six transformer layers, resulting in a smaller parameter space of 66 million parameters.
ALBERT has 24 transformer layers like BERT large, but with a smaller hidden size and fewer
attention heads, resulting in a much smaller parameter space of only 18 million parameters.

sBERT uses a single lightweight encoder block, a hidden size of 100, and 12 attention
heads. This ensures a very small parameter space of 11.9 million. sBERT’s parameter
efficiency makes it optimal for applications involving text classification tasks. This also
makes sBERT more suitable for low-resource applications and reduces the carbon footprint
associated with training and fine-tuning more complex models (Table 6).
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Table 6. Energy consumption and carbon emission of various models.

Model Duration Energy Consumption (kWh) Carbon Emission (kg CO2)

ALBERT [15] 844.3437219 0.018017887 0.008806693
BERT [11] 828.3376598 0.019312801 0.009439614
ELECTRA [34] 5381.362884 0.15103994 0.043122468
DistilBERT [16] 8414.990516 0.247839145 0.034387638
RoBERTa [14] 1647.26625 0.038005353 0.005273236
sBERT 84.86049414 0.001797255 0.000878453

5.2. Carbon Emissions Comparison

The carbon emissions for training a deep learning model largely depend on the
model’s complexity and size, including the number of parameters and layers, which directly
influence computational demands. Larger, more intricate models require more processing
power and memory, leading to higher energy consumption. Additionally, the duration
of training, dictated by the number of epochs and iterations, significantly impacts overall
energy use. Efficient software implementation and optimization algorithms can mitigate
some of these demands, but ultimately, more complex and sizable models inherently
consume more energy, contributing to greater carbon emissions. Table 6 compares different
models in terms of their carbon emissions. Measurements have been taken for training the
models for 20 epochs in a training environment with the specifications in Table 4.

Carbon Emissions Calculation

• Power Consumption (Watts)
Power consumption is the total power used by the hardware resources (CPU, GPU,
and RAM) during model training. It can be calculated using Equation (29):

Ptotal = PCPU + PGPU + PRAM, (29)

where PCPU, PGPU, and PRAM represent the power consumption of the CPU, GPU,
and RAM, respectively.

• Energy Consumption (kWh)
Energy consumption is the total amount of power consumed over a period of time. It
is given by Equation (30),

Etotal = Ptotal × t, (30)

where t is the duration of the model training in hours.
• Carbon Emission (kg CO2 per kWh)

The carbon emission is calculated by multiplying the energy consumption by the
carbon intensity of the electricity grid. The carbon emission can be calculated using
Equation (31),

Carbon Emission = Etotal × CI, (31)

where CI is the carbon intensity factor.

5.3. Performance Comparison

In this section, we report evaluation results for various models on the WOS datasets
and the other seven datasets.

5.3.1. WOS Datasets

Table 7 lists the classification accuracy percentage measurements of different models
across the three WOS datasets. Figure 9 presents the results graphically. Figure 10 shows
the confusion matrix of the proposed model on the largest of the WOS datasets, WOS-46985.
Tables 8 and 9 list the Precision, Recall, and F1 scores corresponding to the seven classes
corresponding to the two confusion matrices.
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Table 7. Results (classification accuracy %) on the WOS datasets.

Model WOS-5736 WOS-11967 WOS-46985

TextCNN [4] 49.46 16.55 31.13
MGN-CNN [17] 98.41 92.94 89.33
CharCNN [19] 88.48 25.45 76.59
RCNN [37] 97.07 92.94 88.2
VDCNN [20] 82.9 67.64 75.76
HDLTEX-CNN [7] 98.47 93.52 88.67
HDLTEX-RNN [7] 97.82 93.98 90.45
DistilBERT [16] 96.08 92.4 -
ALBERT [15] 95.38 91.65 -
RoBERTa [14] 95.56 93.82 90.32
ELECTRA [34] 93.55 73.1 81.05
ConvBERT [33] 92.94 65.75 -
sBERT 99.21 95.85 92.36

Table 8. Precision, Recall, and F1 scores for RCNN on WOS-46985 (Figure 10).

CS ECE Psych MAE Civil Med Biochem

Precision 0.903837 0.916994 0.87562 0.776646 0.86635 0.890251 0.890887
Recall 0.995567 0.993842 0.996837 0.997282 0.995622 0.998372 0.995129
F1 score 0.947487 0.953873 0.932305 0.873243 0.926498 0.941217 0.940127

Notes: CS: Computer science, ECE: Electronics and communication engineering, Psych: Psychology, MAE:
Mechanical and Aerospace Engineering, Civil: Civil Engineering, Med: Medicine, Biochem: Biochemistry.

Table 9. Precision, Recall, and F1 scores for sBERT on WOS-46985 (Figure 10).

CS ECE Psych MAE Civil Med Biochem

Precision 0.919893 0.932343 0.89906 0.9287 0.96131 0.961392 0.923961
Recall 0.994915 0.992477 0.996373 0.988381 0.981849 0.994745 0.993397
F1 score 0.955935 0.961471 0.945219 0.957612 0.971471 0.977784 0.957421

Notes: CS: Computer science, ECE: Electronics and communication engineering, Psych: Psychology, MAE:
Mechanical and Aerospace Engineering, Civil: Civil Engineering, Med: Medicine, Biochem: Biochemistry.

5.3.2. Discussion

The experimental results offer insights into the performance of various text classifi-
cation models across the three datasets: WOS-5736, WOS-11967, and WOS-46985. Each
model’s classification accuracy percentages were evaluated on these datasets. Among the
models assessed, TextCNN exhibited relatively modest performance, achieving the highest
accuracy on WOS-5736 at 49.46%. However, its overall performance across datasets was
less than satisfactory, implying limitations in capturing intricate relationships within the
data. Conversely, the Multi-Group Norm Constraint CNN (MGN-CNN) demonstrated
better performance across the datasets, most notably on WOS-5736, with an accuracy of
98.41%.
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The Character-level CNN (CharCNN) displayed moderate performance, with the
highest accuracy on WOS-5736 at 88.48%. Its performance may be attributed to its ability to
exploit character-level information, making it suitable for datasets where such details are
pivotal. In contrast, the Recurrent CNN (RCNN) showcased robust performance across the
three datasets, suggesting its competence in capturing both local and sequential patterns in
the data.
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Figure 10. Confusion matrices for sBERT on the dataset WOS-46985 and RCNN on WOS-46985 for
comparison. For analysis, see Tables 8 and 9.

The Very Deep CNN (VDCNN) showed the highest accuracy on WOS-5736 at 82.9%.
However, deep models like VDCNN often entail higher computational requirements.
The hybrid models, HDLTEX-CNN and HDLTEX-RNN, demonstrated strong performance,
particularly on WOS-5736 and WOS-11967.

Most notably, the proposed model, sBERT, consistently outperformed other models
across the datasets, achieving the highest accuracy on WOS-5736 at 99.21%. This superior
performance is achieved by the incorporation of a multi-headed attention mechanism that
enables sBERT to focus on the most salient portions of the text. Moreover, the utilization of
word embeddings enriched by position information contributes to its success by effectively
capturing semantic relationships and context—a vital aspect of text classification tasks.

5.3.3. Other Datasets

Table 10 lists the classification accuracy percentage measurements across the Nature,
Springer, ArXiv, Wiley, and CornellArXiv datasets. Figure 10 shows confusion matrices for
sBERT and RCNN on the WOS-46985 dataset. Figure 11 presents the results graphically.

Table 10. Classification accuracy (%) comparison on other datasets.

Model Nature Springer ArXiv Wiley COR233962 SPR-50317 WIL-30628

TextCNN [4] 33.79 27.7 26.26 8.15 88.74% 90.06% 75.69
MGN-CNN [17] 57.23 100 85.35 52.04 95.93 98.5 93.2
CharCNN [19] 51.23 61.6 80.53 7.82 53.22 94.09 91.62

RCNN [37] 52.21 85 83.32 62.1 93.81 99.0 94.63
VDCNN [20] 53.44 63 66.11 49.5 54.91 30.3 20.66

HDLTEX-CNN [7] 60.12 99.98 85.84 50.81 91.6 100 94.79
HDLTEX-RNN [7] 61.83 100 84.26 43.39 92.15 80.85 85.11

sBERT 63.2 100 85.94 70.54 93.17 100 94.6
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Figure 11. Graph showing classification accuracy (percentage) of different models on the
other datasets.

5.3.4. Discussion

The experimental results present a comprehensive evaluation of various text classi-
fication models applied across the five distinct datasets: Nature, Springer, ArXiv, Wiley,
and CornellArXiv.

TextCNN, the first model considered, demonstrates variable performance across
datasets, achieving relatively lower accuracy percentages. It notably struggles on the Wiley
dataset, attaining an accuracy of 8.15%. However, it exhibits more robust performance on
the COR233962 dataset, reaching an accuracy of 85.06%. These variations in performance
suggest that TextCNN may face challenges in datasets with diverse characteristics.

Conversely, the Multi-Group Norm Constraint CNN (MGN-CNN) showcases consis-
tent and robust performance across all datasets, with notable accuracy percentages of 100%
on Springer and 85.35% on ArXiv.

The Character-level CNN (CharCNN) exhibits moderate performance, with its highest
accuracy observed on the ArXiv dataset at 80.53%. However, it faces challenges in the
Wiley dataset, where it attains an accuracy of 7.82%. These results may be attributed
to CharCNN’s reliance on character-level information, which may be less relevant or
informative in certain datasets.

The Recurrent CNN (RCNN) achieves competitive accuracy percentages across datasets,
notably reaching 85% on Springer and 83.32% on ArXiv. Its recurrent architecture enables it
to effectively capture sequential patterns in the data, which contributes to its adaptability.

The Very Deep CNN (VDCNN) demonstrates its highest accuracy on Springer at 63%.
Nevertheless, it encounters challenges in the ArXiv dataset, where it achieves an accuracy
of 66.11%. These variations in performance suggest that the depth of the model may not
universally benefit all datasets.

The models HDLTEX-CNN and HDLTEX-RNN perform well across most datasets,
with notable accuracy percentages. These models effectively leverage CNN and RNN archi-
tectures, showcasing their adaptability and utility in various text classification scenarios.

The proposed model, sBERT, performs well in all datasets, achieving the highest
accuracy on Springer at 100% and on ArXiv at 85.94%. sBERT’s exceptional performance
underscores its versatility, which can be attributed to its multi-headed attention-based
architecture and utilization of hybrid word and positional embeddings. These qualities
enable sBERT to excel in various domains and dataset characteristics. The exceptional
performance of sBERT across different datasets underscores its robustness and generaliz-
ability, suggesting its effectiveness in handling diverse domains and dataset sizes. sBERT’s
parameter efficiency is particularly crucial in mitigating the computational resources and
carbon footprint associated with large-scale language models. The proposed model requires
just 15.7 MB of memory and takes 0.06 s (average over inference times for 100 samples) to
predict in the training environment (described in Section 4.2).
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5.4. Hypothesis Testing

Hypothesis testing was performed to compare sBERT with other models using the
2 × 5 cross-validation method. For example, comparison with the RCNN model on the
WOS-5736 dataset yielded the following results.

5.4.1. Accuracy Measurements of Compared Models

The accuracy measurements of the two models for the 10 splits in 2× 5 cross-validation
are presented in Table 11.

Table 11. Accuracy measurements of RCNN and sBERT for the 10 splits in 2 × 5 cross-validation.

Model Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7 Split 8 Split 9 Split 10

RCNN 0.8434 0.6172 0.8978 0.7528 0.6688 0.7298 0.8016 0.7402 0.6492 0.7720
sBERT 0.9477 0.9390 0.9571 0.9386 0.9460 0.9467 0.9383 0.9529 0.9456 0.9550

5.4.2. Paired t-Test

• t-statistic: −7.48
• p-value: 3.78 × 10−5

The paired t-test statistic is obtained using Equation (32):

t =
d̄

sd/
√

n
, (32)

where:
d̄ denotes the average difference between paired observations;
sd denotes the standard deviation of the differences;
n is the number of pairs.

5.4.3. Interpretation of the Results

The paired t-test is used to decide if there is a statistically significant difference between
the means of two related groups (in this case, the classification accuracy of sBERT and
RCNN across the different splits).

• t-statistic: The t-statistic of −7.48 is a measure of the difference between the two
groups relative to the variability observed within the groups. The large negative value
shows that the accuracy of sBERT is significantly different from that of RCNN.

• p-value: The p-value of 3.78 × 10−5 is much lower than the significance level threshold
(0.05), suggesting that the difference in classification accuracy between sBERT and
RCNN is statistically significant. This indicates that there is strong evidence to reject
the null hypothesis (there is no difference in performance between the two models).

The low p-value in the test provides strong evidence against the null hypothesis,
indicating that the observed difference in classification accuracy is highly unlikely to be
due to random chance.

6. Conclusions and Future Work

In this study, we proposed sBERT, a parameter-efficient transformer model tailored
for the classification of scientific literature. Through extensive experiments on multiple
datasets, sBERT has been shown to outperform traditional models in both accuracy and
efficiency. Our findings highlight the advantages of the multi-headed attention mechanism
and optimized embeddings used in sBERT. Furthermore, the reductions in memory use,
training and inference times, and carbon footprint emphasize the model’s efficiency and
environmental benefits. Future work will explore the application of sBERT to other text
classification domains and further optimize its architecture for even greater performance.
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