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Abstract: Epistemology and technology have been working in synergy throughout his-
tory. This relationship has culminated in large language models (LLMs). LLMs are rapidly 
becoming integral parts of our daily lives through smartphones and personal computers, 
and we are coming to accept the functionality of LLMs as a given. As LLMs become more 
entrenched in societal functioning, questions have begun to emerge: Are LLMs capable of 
real understanding? What is knowledge in LLMs? Can knowledge exist independently of 
a conscious observer? While these questions cannot be answered definitively, we can ar-
gue that modern LLMs are more than mere symbol-manipulators and that LLMs in deep 
neural networks should be considered capable of a form of knowledge, though it may not 
qualify as justified true belief (JTB) in the traditional definition. This deep neural network 
design may have endowed LLMs with the capacity for internal representations, basic rea-
soning, and the performance of seemingly cognitive tasks, possible only through a com-
pressive but generative form of representation that can be best termed as knowledge. In 
addition, the non-symbolic nature of LLMs renders them incompatible with the criticism 
posed by Searle’s “Chinese room” argument. These insights encourage us to revisit fun-
damental questions of epistemology in the age of LLMs, which we believe can advance 
the field. 
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1. Introduction 
Epistemology is the theory of knowledge. The ancient Greeks had specific terms for 

various kinds of knowledge. Some of these terms survive in our age: Historia refers to 
witnessed facts or knowledge gained through investigation, and it remains in the word 
history. Techne, the crafty knowledge remembered by the hands for practical skills, is re-
lated to technique. Gnosis, which refers to mystical knowledge of the divine, is related to 
cognition, and in neurology, agnosia means the inability to recognize. Doxa is an opinion 
or belief that is not scientifically justified or validated as truth. Plato uses this term to 
contrast with the true knowledge, episteme. 

Episteme occupies a unique position in the theory of knowledge, signifying a system-
atic and theoretical understanding akin to scientific knowledge. While natural philosophy 
evolved into the science of physics, epistemology remained a philosophical inquiry into 
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how knowledge is defined, acquired, and justified. With the rise of computing, the bound-
aries of human knowledge have been increasingly challenged. From early contributions 
of computer simulations in physics to advancements in pattern recognition using percep-
trons, and later, breakthroughs in games like chess and Go, machines have repeatedly 
shown that capabilities once thought uniquely human can be replicated or even sur-
passed. Today, large language models (LLMs) challenge our very understanding of 
knowledge, seemingly capable of understanding and generating human-like language. 
This raises a key question: do LLMs truly possess knowledge, or are they merely executing 
sophisticated statistical pattern matching? 

Immanuel Kant (1724–1804) made a profound contribution to epistemology by dis-
tinguishing between a priori and a posteriori knowledge, in which the former is inde-
pendent of experience, like mathematical truths, and the latter relies on empirical evi-
dence, such as sensory observations [1]. This distinction has shaped our understanding of 
how knowledge evolves, leading to the concept in computer science and artificial intelli-
gence in which knowledge is modeled as probabilistic beliefs that are updated as new 
evidence emerges, rather than as a priori truths or justified true beliefs [2]. 

The advent of information theory transformed cognition into a quantitative disci-
pline. Information was no longer an abstract concept, as its size became measurable using 
entropy, which denotes the average amount of information needed to describe the possi-
ble outcomes of a random variable or the uncertainty in predicting these outcomes. This 
ability to quantify information enabled the development of cybernetics, which, along with 
concepts from control theory, led to the formalism of a computational view of the brain. 
This framework conceptualizes the brain as an information-processing system, in which 
neural activities are interpreted in terms of information transmission and signal pro-
cessing through networked feedback. In this tradition of thought, an interpretation of vis-
ual sensory processing was proposed by Horace Barlow through the efficient coding hy-
pothesis, in which the brain minimizes redundancy and maximizes information about the 
sensory environment [3]. Here, knowledge can be seen as an optimized, compressed rep-
resentation of sensory inputs that retains essential information while discarding redun-
dancies. 

In the brain, the physical substrate for this information processing consists of neural 
networks. A hierarchical, layer-by-layer structure is a fundamental motif shared across 
many implementations of cognitive processing [4,5]. This same principle underlies con-
volutional neural networks (CNNs), where layered connections allow machines to per-
form complex tasks like pattern recognition and feature extraction [6,7]. This multi-lay-
ered architecture, common to both biological and artificial systems, reflects a general 
framework for organizing cognitive information processing [8]. A more recent paradigm, 
the information bottleneck, provides further insight into this �anatomical’ structure, in that 
information flows through layers by the compression and retention of only the relevant 
information at each stage [9]. In deep neural networks, input data are encoded and then 
decoded for output; in between there is an information bottleneck, which has to extract 
the relevant parts of a random variable about another random variable using a minimal 
amount of information. Knowledge, in this model, is the distillation of input data into 
their most informative features, ones that are essentially relevant for predicting a particu-
lar output. According to Naftali Tishby [9], its main proponent, a more pertinent process 
for knowledge formation is not remembering the information per se but forgetting unim-
portant elements of it. 

This principle of knowledge as a compressed representation of information can be 
found in large language models (LLMs), highly successful artificial intelligence systems 
that are rapidly becoming integrated into our everyday lives. In the context of LLMs, 



Knowledge 2025, 5, 3 3 of 19 
 

 

knowledge is encapsulated in the embedded vectors of complex patterns and relation-
ships derived from learning vast amounts of text data. These compressed data represen-
tations allow LLMs to generate contextually appropriate and semantically rich text out-
puts, reflecting the generative aspect of knowledge. This modern perspective on 
knowledge aligns with the insight that its formation is not merely about logging infor-
mation but involves a process of compressing information, which poses a question of what 
’understanding’ might resemble in machine intelligence. 

Previous computational models, including early attempts at artificial intelligence, fell 
short of even simulating natural human language, much less demonstrating something 
akin to human-like understanding. For instance, Newell’s test [10] highlights the chal-
lenges in creating machines that can genuinely understand language, as it emphasizes the 
complexity of cognitive processes that go beyond mere computation. Many early models 
relied on rigid, hand-engineered rules that failed to replicate the flexibility of human 
thought and language, and faced justifiable criticism as to their potential to truly under-
stand. John R. Searle’s [11] “Chinese room” argument was one of the most notable criti-
cisms, arguing that as long as the computer program was defined in terms of computa-
tional operations and formally specified elements, it could not come close to any mean-
ingful understanding. Given the limitations of past models, we argue that a more feasible 
approach is to adopt a top-down, data-driven methodology, as seen in the development 
of LLMs. Unlike traditional models that attempt to mimic human cognition through fixed 
algorithms, LLMs learn from a vast corpora of text data. This approach allows for the 
extraction of patterns and semantics drawn directly from real-world human language use, 
resulting in more dynamic outputs with greater linguistic and contextual subtleties. LLMs 
have achieved the ability to replicate and simulate human linguistic behavior, but is this 
performance sufficient to conclude that human-level knowledge is attained? 

What it means to know and what it means to understand are key questions in epis-
temology. In the tradition of analytic philosophy, language was thought to be based on 
meta-language, which is logic. This approach is reductionist and seeks universality. The 
syntactic analysis of language by Noam Chomsky [12] postulates an innate structure, re-
ferred to as a language acquisition device (LAD), which supports this universality. The 
LLM, on the other hand, does not assume such a structure, while performing language 
processing and translation with unprecedented proficiency. The LLM is somewhat remi-
niscent of what W.V.O. Quine [13] proposed as a holistic approach, the “web of belief,” in 
that it does not assume innateness. The methodology of holism has been vague, but with 
the advancements in computational capability and data availability, generating natural 
language has become possible. The epistemological implications of the LLM could be pro-
found—it may turn out to be naturalized epistemology, a status psychology has failed to 
attain. 

2. Large Language Models (LLMs) 
Natural Language Processing (NLP) marked a significant departure from rule-based 

syntactic systems when statistical methods and machine learning (ML) were introduced. 
The adoption of neural networks, such as Recurrent Neural Networks (RNNs), and word 
embeddings represents an important paradigm shift, as it moved away from the symbol-
manipulations that philosophers have debated. Neural networks are a class of machine 
learning algorithms inspired by the human brain and were rooted in early concepts like 
the McCulloch–Pitts neuron [14] and the perceptron [15]. These networks of neurons were 
designed in a specific way (known as neural architecture) that defined how information 
flowed through the network—how inputs (like text or images) are transformed as they 
pass through various layers to produce an output (such as a prediction or a decision). 
Different neural architectures are suited to different types of tasks. For example, some 
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architectures are better for recognizing patterns in images, while others excel at processing 
sequences of words in text. By adjusting the structure of these neural networks, we can 
design AI systems that perform specific tasks more efficiently, such as identifying objects 
in pictures, or �understanding’ languages. Neural networks are designed to recognize pat-
terns in data through a process called training, in which the network adjusts its internal 
parameters based on the input data and the desired output. One prominent type is the 
RNN designed to handle sequential data by maintaining a memory of previous inputs by 
feeding their output back into themselves as input for the next step. Because memory can-
not be stored for an extended duration in RNNs, long short-term memory (LSTM) net-
works have been introduced with memory units for long-term storage [16]. On the other 
hand, word embeddings are a technique in NLP in which words are represented as dense 
vectors in a continuous space. These vectors capture semantic relationships between 
words, allowing attributes of words (e.g., a queen being a sovereign, female, and/or a 
chess piece) to converge in a common context. Word embeddings, such as Word2Vec 
[17,18] or GloVe [19], have been instrumental in improving the performance of NLP mod-
els by reducing dimensions in the representation space. RNNs that implement word em-
beddings, despite their initial success, face limitations in maintaining context over long 
sequences of text. This is because RNNs process words sequentially, making it difficult to 
capture dependencies that span long distances. 

In addressing these limitations, the introduction of the Transformer model marked a 
significant advancement in NLP. Unlike RNNs, Transformers use a mechanism called “at-
tention” to process all words in a sequence simultaneously, rather than sequentially [20]. 
Intuitively, attention determines the importance of each word in a sentence relative to 
every other word, which allows the model to focus on relevant words when processing or 
generating text, effectively taking into account long-range dependencies in language. 
Transformers have dramatically extended the length of text they can handle, enabling the 
models to perform tasks such as summarizing text, generating texts by correctly predict-
ing the next word in large documents, and more. This development has given rise to what 
we now refer to as large language models (LLMs), which are widely associated with �ar-
tificial intelligence’ (AI) in the public mind (see Figure 1 for a historical timeline). 

 

Figure 1. Historical development of LLMs and their relation to knowledge. This timeline highlights 
key developments in the history of artificial intelligence, from Symbolic systems (1950–1980) to 
Transformer-based LLMs (2018). (Source: The figure for the Transformer architecture was simplified 
and re-drawn from Figure 1 of [20].). 

Since the introduction of the Transformer architecture, LLMs have undergone rapid 
and unprecedented development. In 2020, GPT-3 built on this architecture by stacking 
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multiple decoders, which enabled massive scaling of the model, and demonstrating emer-
gent capabilities beyond merely generating the most likely next word [21]. Following this, 
in 2022, instruction tuning was implemented in ChatGPT, in which the model was fine-
tuned on data that included instructions (e.g., “answer this question,”, “implement this 
function”, etc.). This makes interactions with humans more natural and gives the impres-
sion that the model can follow human instructions. The tuning process involves various 
methods, including reinforcement learning, but not all LLMs use reinforcement learning 
from human feedback (RLHF) [22]. Consequently, LLMs have revolutionized how we re-
trieve and interact with information. They have moved beyond simple question-and-an-
swer (QA) tasks to sophisticated responses based on probabilistic analysis of their exten-
sive training datasets, which include natural language, mathematics, logic symbols, and 
computer code [23]. Due to this, multiple professional fields (e.g., medicine and law) and 
over 100 million users have begun using LLMs like ChatGPT [23,24]. With this in mind, 
we will provide an overview of epistemology and the question of whether or not LLMs 
understand and can provide any advancement in or become a form of naturalized episte-
mology. 

3. Epistemology 
One of the main purposes of epistemologists is to define knowledge. As with most 

abstract constructs, there has been ongoing debate throughout the centuries among epis-
temologists about what knowledge is, how it is formed, and when it occurs. The im-
portance of each of these questions varied depending on when or by whom it was being 
asked. Traditional epistemology has focused on belief, justification, and truth, or justified 
true belief (JTB). A more recent branch called naturalized epistemology is concerned with 
how we learn and adapt to new information [24]. Quine (1908–2000), as you may have 
surmised, was a naturalized epistemologist (see Figure 2 for the historical milestones). 
There were many revisions between the times of traditional and naturalized epistemol-
ogy. One of the first concerns of early epistemologists was logic and how to determine 
whether something is true or false. For example, in Theaetetus, Plato discusses how 
knowledge combines true belief with logos. During the Enlightenment, there was a divi-
sion in epistemology as to the correct way to make that determination. The empiricists 
(e.g., Hume) thought that the source of knowledge (truth) was the senses, while the ra-
tionalists (following Descartes), believed that knowledge can only be discovered through 
reason. The rationalists thought that the empiricists′ use of both inductive and deductive 
reasoning was �problematic,’ as inductive reasoning utilizes multiple observations to 
make a conclusion. The problem is that at any point, one can make an observation that 
refutes the previous observations. Neither division won or lost the argument; induction 
and empiricism are still in use today in probabilistic research and programming, and 
many researchers and philosophers embrace the ideas of rationalists like Descartes [25]. 
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Figure 2. Milestones of traditional Epistemology. This timeline presents key milestones in tradi-
tional epistemology from Ancient Philosophy (369 BC) to the proposing of Naturalized Epistemol-
ogy (1969). Sources: Clipart images that are free to use for non-commercial purposes. Sketches of 
Rudolf, Quine, and Gettier were created using BeFunky: https://www.befunky.com/cre-
ate/sketcher/; access date: 30 September 2024. 

3.1. Belief, Truth, and Justification 

Although he has become well known for his statistical approach, Bayes (1702–1761) 
was also an epistemologist. His central idea concerns degrees of belief (also referred to as 
credences). According to Bayes, “beliefs can come in different strengths” [26] (p. 1). This 
means we can assign a probability to an event, representing our certainty that the event 
will occur. This probability can be updated when we receive new information. Specifi-
cally, if we have a hypothesis H (which can be true or false) and new information or evi-
dence E (which can also be true or false), our posterior belief P(H|E) is calculated by mul-
tiplying our prior belief P(H) by the likelihood P(E|H), or the probability of evidence E 
given that hypothesis H is true. Bayes’ theorem provides logos, a rational method for jus-
tification, or for updating the prior probability. The trouble with justified belief in episte-
mology is that it requires a conscious observer to hold a belief. This can perhaps be circum-
vented if we replace belief with the �likelihood of truth’—truth because it is independent 
of an observer. The concepts of truth and justification also came to the forefront of episte-
mology during the Enlightenment. 

However, in Kant’s epistemology, universal truth requires understanding, which in-
herently involves a rational observer. Kant believed that to gain knowledge one must have 
understanding and judgment [1]. Understanding is “the mental capacity to formulate and 
to grasp logical relationships, concepts, theories, and laws [rules]” [27] (p. 246), while 
“judgment is…the power to determine which rules (concepts, theories, and so on) are best 
aligned with concrete situations and problems” [27] (p. 246). These concepts are intui-
tively accepted when the existence of sentient observers other than humans is inconceiv-
able. If an observer implements the principles and rules of knowledge formation based on 
the probability of truth and evidence, then the notion of the observer need not be confined 
to humans. This encourages an epistemological discussion that transcends the anthropo-
centric view. 

Charles Sanders Peirce (1839–1914) went beyond innate understanding and judg-
ment and created an investigative framework to achieve knowledge. He argued that in 
the search for knowledge, a person will have many different beliefs until they reach a final 
temporary belief. This final belief is temporary because learning is a continuous process 
based on justified doubt. Justified doubt has three steps: abduction—doubt is activated by 
trying to explain a new fact or idea, which is a process of forming a hypothesis; deduc-
tion—what is required for the explanation to be true; and induction—using the deductive 
conclusions to verify the explanation. If the explanation is wrong, the process starts over 
with a new abductive assumption [25]. 

Knowledge formation, according to logical positivism, can be achieved by transform-
ing the vagueness of human language into precise logical structures and reducing state-
ments to verifiable atomic facts. Quine, however, rejected some of these views in the Two 
Dogmas of Empiricism [28], where he questioned the analytic/synthetic distinction and chal-
lenged the concept of reductionism. Rudolf Carnap’s (1891–1970) Principle of Tolerance re-
quired separation between analytic truths—truths that are grounded in logical semantics 
and the theoretical value that we place upon the words that are used; and synthetic 
truths—truths based on experience or observation [28,29]. Bertrand Russell (1872–1970) 
thought that analysis should break down complex problems into simple ideas. He stated 
that truth consists of �atomic facts,’ which are a “fundamental level of reality to which all 
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other aspects of reality are ultimately reducible” [30]. Quine [28] felt that the analytic/syn-
thetic distinction was unnecessary, as there was no hierarchical or epistemological differ-
ence between analytic and synthetic truths, as both can be accepted or rejected for the 
same reason [29]. 

3.2. Naturalized Epistemology 

Reductionism is the idea “that each meaningful statement is equivalent to some log-
ical construct upon terms which refer to immediate experience” [28] (p. 20), and each 
statement is a �direct report’ that validates or invalidates the experience. Quine [28] states 
that these two dogmas are intertwined, and both are �ill-founded.’ His concept of holism—
individual statements or pieces of evidence cannot confirm or deny a theory [28], in that 
it can only be accomplished through a set of statements or evidence as a whole—is, in 
essence, an argument against the two dogmas [29]. 

In Epistemology Naturalized, Quine [13] identified two tenets of empiricism: (1) science 
is based on sensory evidence, and (2) we understand the meanings of words through sen-
sory evidence. He explained that our understanding of language may be based on internal 
factors, but communication, being able to use language and understand the meaning of 
words, is absorbed empirically. We learn our first words through external stimuli, watch-
ing the actions of others, and connecting those actions to the words they use. This practice 
of gaining meaning by observing external stimuli remains throughout our lives. The prac-
tice of science is much the same. Although it seems like circular logic, science is deduced 
using the available information; this information is generally acquired through current 
observation and researching past scientific experimentation, which was also obtained 
through observation [13]. Belief tends to follow observation; this requires the ability to 
distinguish between the meaning of a sentence and “knowing whether it is true” [13] (p. 
88). He explained that observation sentences must be simple to understand, based on fun-
damental knowledge, and contain accurate evidence that is independent of past or other/s’ 
observations [13]. 

One of the principles of epistemological holism is the “web of belief.” Quine stated 
that knowledge is interconnected in a web. Our core beliefs—these are facts/logic or things 
we are convinced of—are at the center; at the periphery are things that we learn from 
experience. Since our core beliefs are connected to all of our other beliefs, our belief sys-
tem/web would essentially be destroyed if they are �wrong;’ therefore, we are protective 
of them. When confronted with new facts, we prefer to amend the knowledge associated 
with a core belief rather than the belief itself (e.g., when Newton’s theory of gravity was 
challenged, rather than give up the theory, its followers found a way to confirm it and 
discovered Neptune). Challenges to our beliefs will either confirm our knowledge, thus 
strengthening the web, or deny it, temporarily weakening the web until our beliefs (and 
the web) are modified [24,31]. The question is, how does one figure out whether that belief 
is justified? Some epistemologists claim that for a statement to be true, it must be coherent 
and provide an accurate description of an event [32]. 

3.3. Justified True Belief (JTB) and Knowledge Formation in LLM 

Kim argues that there are two questions about justification that have plagued modern 
epistemology: “What conditions must a belief meet if we are justified in accepting it as 
true” [33] (p. 381), and “What beliefs are we in fact justified in accepting” [33] (p. 381). We 
will not be able to provide the answers to these questions in this section, but we can pro-
vide some of Kim’s [33] criteria. A justified belief is formed through descriptive terms—
using sensory information or observation to evaluate or explain an object; or naturalistic 
terms—using deductive reasoning and cognitive processes, and without engaging in 
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qualifiers such as “�adequate evidence’, �sufficient ground’, �good reason’, �beyond a rea-
sonable doubt’” [33] (p. 382). A justified belief is one where not having it is more illogical 
than having it. Justification can be verified through the foundationalist strategy: (1) justi-
fied beliefs do not require secondary beliefs to validate them, and (2) other beliefs gain 
credibility when they are associated with a justified belief. (3) Justification and evidence 
are inseparable; one is the other. (4) “If justification drops out of epistemology, knowledge 
itself drops out of epistemology. For our concept of knowledge is inseparably tied to that 
of justification” [33] (p. 389). The JTB theory adheres to the older definition of knowledge 
in epistemology, as initially discussed by Plato. Knowledge may not consist of separate 
pieces; instead, it can be context-dependent, as proposed by Wittgenstein, and holistic, as 
suggested by Quine. 

Edmund Gettier (1927–2021) and other contemporary epistemologists acquiesce that 
justice, truth, and belief are necessary for knowledge, but they are not sufficient. In other 
words, you may have all three and still be incorrect. Gettier reasoned that a belief that 
turns out to be true can arise from a false belief [34]. For example, you see someone who 
looks like your friend in a store. Therefore, you believe your friend is shopping at that 
store. You look closer and realize it is not your friend. However, you later find out that 
your friend was actually shopping at that store at that time. Your belief was correct by 
coincidence or luck, not factual knowledge [35]. These JTBs have become known as the 
Gettier Problem. Epistemologists have come up with two solutions to this problem: make 
the condition(s) to justify the belief more stringent, and/or create a fourth condition to 
avoid the JTB altogether [34]. The conditions for accepting, denying, or avoiding a belief 
are similar to those currently being used for knowledge formation in LLMs, and much 
like epistemology, the process involved is complex and ongoing. 

4. Information Bottleneck and Knowledge Formation in the Deep Neu-
ral Network 

In artificial neural networks, adding a depth of hidden layers can increase perfor-
mance relative to, for example, feature identification; such networks with multiple hidden 
layers are called deep neural networks (DNNs) [16]. However, increasing the size of each 
layer can also boost performance. It is unclear whether the size of the layer or the number 
of hidden layers contributes more to this performance boost. In the LLM literature, it is 
believed that increasing the size of a layer enhances the eloquence of expression, allowing 
a concept to be explained using a variety of expressions, while increasing the layers ena-
bles deeper abstraction of concepts. In a figurative explanation of the special class of net-
works that Naftali Tishby et al. [9] consider, the network can be anatomized into an en-
coder–decoder structure, with an input layer X for encoding and an output layer Y for 
decoding. Information from the input layer must pass through the encoding structure, 
which essentially compresses the input; this is analogous to a bottleneck between input 
and output. The encoding process is compressive (while allowing for the correct predic-
tion of Y through decoding, which can be a generative process) and finds a simpler repre-
sentation, T, of complex input patterns. DNNs �learn to extract efficient representations’ 
but the relation is not linear and its behavior can exhibit phase transition [36]. Learning 
can be understood as a process of finding T—which is not just a simple tabulation like a 
look-up table, but a process that is dynamic and contextual. In this sense, T closely resem-
bles knowledge in human cognition. Although the exact formal algorithm can be different, 
LLMs also operate on deep structures. The surprising emulation of seemingly cognitive 
tasks performed by the LLMs may in part be explained by the internal formation of 
knowledge, which emerges only after scaling up the training data to a very large set. 

Prediction of simple behavior, no matter how proficiently accomplished, is seldom 
considered cognitive; however, predictions based on knowledge are often complex and 
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perceived to be based on cognitive thought processes. This �knowledge’ has sometimes 
been referred to as internal models or representations; given the seemingly cognitive tasks 
that LLMs are capable of, �knowledge’ could indeed be an appropriate term. However, as 
we have discussed in the previous sections, knowledge, in the traditional definition of 
JTB, requires understanding. This leads to two questions: First, do LLMs understand? Sec-
ond, can knowledge exist without understanding? Or rather, can knowledge be handled 
independently of humans and entirely without human intervention? 

5. Can LLMs ‘Understand’? 
Understanding requires that the agent, in this case, the LLM, possesses a representa-

tion of the object in question, holds a belief in their understanding of the object, and can 
explain what they understand [37]. LLMs appear to have “internal representations of the 
world” [38] (p. 4) that enable them to think or reason beyond the prompt they have been 
tasked with. Although their ability to reason is currently at a basic level, it is expected to 
improve with further scaling. This challenges the mainstream view that LLMs are merely 
�next-word predictors’ incapable of independent thinking. While this critique holds to 
some extent, LLMs’ “interactive training methods, integration with imaging processing 
systems, or integration with other software tools” [38] (p. 4) allows them to connect di-
verse information from their training data, going beyond prediction to creating a form of 
inductive reasoning [39]. Inductive reasoning is a key component of cognition, which is 
essential for understanding. One interesting idea that Marcel Binz and Eric Schulz [40] 
had was to treat LLMs as human subjects and use tools from cognitive psychology to help 
us understand LLMs’ advantages and limitations. Their results show that GPT-3 could 
achieve performance similar to or even better than human subjects in vignette-based tasks, 
but these results may be questionable, as minor changes to the vignettes resulted in dif-
ferent answers from the model, suggesting that some of the vignettes might have been 
included in the training data [40]. 

It is thought that subjects have internal understanding if they can reflect on what they 
believe they know and can defend that knowledge, even if the knowledge that they un-
derstand is unreliable [37]. GPT-3 is capable of �few-shot learning’—it can learn a new 
ability with a few examples in one conversation; and �chain-of-thought reasoning’—it can 
clarify why it answered the way it did [38]. This could explain why it performed fairly 
well and behaved similarly to humans in decision-making during gambling tasks [40]. Its 
ability to reason and make decisions is a new development, as it did not have these capa-
bilities during training, which suggests that it learned how to perform them through in-
teraction with users [38]. 

Natural language may underlie all thought processes. The question has always been 
what constitutes natural language. A recent research study referred the idea of natural 
language to context. Zhu et al. believe that “understanding context is key to understand-
ing human language” [41] (p. 1). They found that larger LLMs were able to effectively 
respond to �simple’ tasks, but their performance reduced with complexity. They believe 
that larger LLMs can understand the meaning of “limited contexts and mentions” [41] (p. 
5). They also noticed that there is a significant gap between the abilities of small and large 
LLMs to rewrite the last user statement without context or reference. Small models were 
also incapable of “following the instructions or learning patterns from the few-shot exam-
ples” [41] (p. 6). These errors decreased as the model size increased. Understanding con-
text in language meaning and extracting information from conversations also increased 
with structure, regardless of model size. They concluded that “LLMs under in-context 
learning struggle with nuanced linguistic features” [41] (p. 9). 
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Although there is a debate about whether coherence is a requirement for understand-
ing, being able to “see the way things fit together” [37] (p. 11) and have a supply of con-
sistent information would, at the very least, assist in both comprehending and relaying 
information. We consider humans to be epistemically reliable when they are well in-
formed about the topic they are relaying and the information they provide remains coher-
ent. In a study, de Araujo, de Almeida, and Nunes [32] assert that we should expect the 
same of AI and LLMs. We can verify the truth of a statement by assessing how consistent 
(or coherent) it is with statements that are known to be true. An LLM can be considered 
epistemically reliable if its responses are consistently coherent. Although consistency is a 
good indicator of epistemic reliability, if the consistency is repetition of the same correct 
or incorrect answer, the information does not have any epistemic value. Users would be 
better served by an LLM that not only maintains consistency but also provides responses 
that add new, accurate, and interdependent information with each interaction. GPT-3 con-
sistently has single-input–single-output coherence, with responses of average quality (an 
average grade of 4.29 on a 5-point scale). However, the quality of responses is reduced 
with single-input–multiple-outputs coherence. The responses are either repetitive and ac-
curate or less repetitive but more inaccurate. However, the set with the lowest score still 
received a 3.78 out of 5, which suggests “that GPT-3 excels in a wide set of topics, which 
we now know includes epistemology—at least at an undergraduate level” [32] (p. 15). 
These findings are similar to those of Binz and Shultz [40], in which GPT-3 was more suc-
cessful than humans in searching for information on the multi-armed bandit task, but it 
was unable to perform directed exploration. One possible reason for this is that it ap-
peared to rely on model-based reinforcement during the deliberation of the two-step task, 
and it was unable to use causal reasoning [40]. Another well-known argument against 
AI’s ability to reason or understand was made by John R. Searle. 

6. LLMs in the Chinese Room 
First proposed in 1980, Searle′s Chinese room thought experiment remains a promi-

nent critique of the concept of true understanding in machines, referred to as �strong AI’. 
In this thought experiment, an individual who does not understand Chinese is placed 
inside a room. This individual follows a set of rules (in English) to manipulate Chinese 
characters and generate appropriate responses to Chinese questions. An observer outside 
the room might be convinced that the individual inside understands Chinese, but in real-
ity, the person does not understand the meaning of the questions or the answers [11]. 

The Chinese room was devised to challenge the computational theory of mind, 
demonstrating that the appearance of understanding does not equate to actual under-
standing. Searle [11] argued that a computer program, which operates through syntactic 
manipulation of input and output, cannot be said to possess a �mind’ or �understand’ in 
the human sense. This thought experiment is particularly relevant in the context of con-
temporary LLMs—but is it still applicable? When Searle first proposed it in 1980, the dom-
inant view of artificial intelligence was based on formal rule-based symbol manipulation, 
which correctly encapsulated the bulk of AI research in that era. However, today′s LLMs 
no longer conform to this definition. 

Searle did anticipate this counterargument about future advances, but he maintained 
that the particular stage of technology development was irrelevant, because our base con-
cept of a digital computer will remain the same: a machine whose operations are specified 
purely formally with abstract symbols [11]. This notion persists today among critics of 
LLMs: no matter how complex, it is still �symbols in, symbols out,’ and LLMs simply have 
a larger and more complex set of rules on faster hardware. Following this line of thinking, 
true knowledge or understanding is not achievable in machines because all they have is 
an infinite regress of syntactic relations of concepts. 
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However, as mentioned previously, modern-day LLMs actually do not follow a set 
of hard-coded rules to guide their prediction of the next word; instead, they are built on 
artificial neural networks that find correlations in high-dimensional word vectors. Rather 
than merely flipping around symbols, LLMs recognize patterns and dynamically restruc-
ture themselves by adapting weights in the neural network in order to associate those 
symbols in statistically meaningful contexts. Instead of relying on explicit rules that spec-
ify how data are correlated, LLMs predict the next word based on self-assembled correla-
tions and self-extracted patterns in data. This exhibits a specific type of relational syntactic 
capability—a sense of how words fit together from text data, although it lacks a personal, 
embodied grasp of how those words relate to objects and ideas in the real physical world. 
If we put an LLM in the Chinese room, it would be as if it did not have a rulebook but had 
been fed numerous pairs of questions and answers, had learned associations between con-
cepts or words, and had eventually constructed its own internal dictionary. Can this entity 
be said to possess any type of understanding? 

Building on the embodied cognition concept, Searle [42] stated that the fundamental 
reason computer programs could never operate like the human mind is their lack of se-
mantic content. The human mind consists not just of formal syntactic relations, but also 
contents grounded in perceptual sensory experience directed towards the external world, 
and which underlie �meaning’ [42]. This perspective is rooted in the skepticism that tex-
tual data, without any embodiment or perceptual experience, can result in an adequate 
model of the external world, which is a necessary precursor of true knowledge or under-
standing. 

But just as the black box nature of LLMs makes it difficult to examine whether these 
models track world states, it also makes it difficult to declare conclusively that LLMs do 
not. Toshniwal et al. [43] proposed that with enough training data (limited to textual move 
sequences in chess notation), Transformer LLMs can learn to track the locations of pieces 
and the overall state of the board to predict legal moves with high accuracy. Although 
chess may be a limited testbed given its simplicity and controlled domain, this study in-
dicates that LLMs might indeed be capable of building some form of internal model of the 
world (with spatial representations) based solely on textual data and patterns. This aligns 
with Bowman′s [38] earlier remarks that LLMs do appear to have “internal representa-
tions of the world,” and can use them for reasoning. In this sense, it is intriguing to spec-
ulate about the semantic contents in the LLMs, although their �meaning’ remains inacces-
sible to us. Just as the compressive encoding process in DNNs resembles knowledge in 
human cognition, LLMs might also be capable of forming representations of the external 
world akin to semantic contents. The difference may not lie in the nature of the knowledge 
itself, but only in the technical specifics of the algorithms used to construct these models 
of the world. 

7. Context-Dependence of LLMs and the Language Game 
Drawing upon ideas of Frege, Ludwig Wittgenstein (1889–1951) initially proposed 

that language functions as a logical picture of reality, corresponding to a fact in the world 
[44]. This view aligned with the notion that language could be reduced to a formal system 
of logical propositions, aiming for an unambiguous representation of reality. The �later 
Wittgenstein’ fundamentally reconsiders the notion of atomic sentences by emphasizing 
the importance of understanding language models within their specific contexts [45]. For-
mal systems and LLMs differ significantly in their ability to handle the fluidity and dy-
namic nature of natural language. The limitations of formal systems in natural language 
are based on the fixed syntactic and semantic rules that do not easily adapt to new contexts 
or changes in usage. 
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Wittgenstein finds that our thoughts are deeply intertwined with language. His fa-
mous statement, “the meaning of a word is its use in the language” [45] (PI 43), encapsu-
lates the idea that meaning arises from the context of language use. This perspective aligns 
surprisingly well with the capabilities of LLMs, which can process texts in contextual 
ways. 

Language games, as described by Wittgenstein [44,45], involve an interplay of words 
used within specific �forms of life’ that are shaped by historical, cultural, and social con-
texts. The ability of LLMs to respond to user prompts with contextually appropriate re-
sponses—following the patterns and conventions on which they were trained—may im-
ply that LLMs can engage in language games. The interaction between users and LLMs, 
through prompts and responses, implicitly or explicitly defines the rules of the game, in-
cluding the content-related expectations from the LLMs. While LLMs can recognize and 
respond to patterns in the user prompts, their ability to truly adapt to the evolving dy-
namics of a language game in the same way humans do can be limited by their conspicu-
ous lack of direct sensory inputs and intentionality. 

Human understanding involves intentionality, which is, in addition to context, 
awareness of purpose and nuanced meanings. Humans interpret language with a sense 
of purpose, considering not just the words in superficial form but the intentions behind 
them. LLMs generate responses through pattern recognition by predicting the next word 
or phrase based on the context provided by previous text, not internally driven by pur-
poseful supervision; therefore, whether they possess any genuine understanding or inten-
tionality is debatable. Their responses, though often contextually relevant, are generated 
without understanding, as they do not possess consciousness for underlying intentions or 
meanings, giving us an impression of superficial comprehension. Wittgenstein [44,45] in-
troduced the concept of language games to emphasize that the meaning of words is deeply 
rooted in their uses within specific social practices. Understanding language requires par-
ticipation in these practices, in which context and intention are essential, which highlights 
a limitation of LLMs. 

LLMs are trained to extract key words and associations present within the dynamic 
context in human language. However, the biased responses sometimes produced by 
LLMs reflect the nature of the corpora through which they were trained, and not the in-
ternal motivations or directedness we identify in conscious beings. This limitation raises 
the following question: regardless of whether LLMs have true understanding, are they 
still viable epistemological tools? 

8. Can LLMs Advance Epistemology? 
The performance of LLMs, in terms of depth and accuracy of knowledge, is improv-

ing at an impressive pace. However, it does not increase as rapidly as the growth in cor-
pora size, computing power, and the number of parameters (e.g., model size). This is be-
cause performance scales within these three factors are following the power law [46]. 
Simply put, a larger number of parameters increases a model’s capacity to store and rep-
resent knowledge, but this potential is only realized if the model is properly trained with 
sufficient data. An interesting development that occurred with scaling up is that GPT-3 
improved its abilities in “programming, arithmetic, defusing misconceptions, and an-
swering exam questions” [38] (p. 3). Due to their multifaceted capabilities, LLMs have 
already shown epistemic value “in areas such as medical image analysis, patent law, [and] 
biology” [32] (p. 4), but these abilities are, currently, a bit of a double-edge sword. 

Even before LLMs undergo fine-tuning processes like reinforcement learning from 
human feedback, they do not merely echo the values or biases of their training data. In-
stead, they synthesize concepts and solve problems based on a vast corpus of information, 
performing complex tasks like decision-making and reasoning. Fine-tuning processes 
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serve to optimize this performance, aligning it more closely with human-like patterns of 
interaction and making the output more reliable and interpretable to human users [38]. 
The introduction of human feedback refines their behavior, but does not fundamentally 
alter their ability to analyze, synthesize, and respond to diverse inputs. 

Before LLMs become public, their responses generally echo the values of their pro-
grams and the data on which they are trained. After engaging with the public, LLMs learn 
and adapt to the values of the users, which has raised ethical (e.g., bias) and moral (e.g., 
answering prompts on how to make bio-weapons) questions about their uncontrollability. 
Creators have begun to add a constitution—constraints on norms and values—into the 
initial program, and pretrain the LLM to avoid specific behaviors. Unfortunately, the con-
stitution can be amended by adept users [38], and LLMs may or may not act according to 
expectations. 

The primary function of LLMs such as ChatGPT or Gemini is to perform cognitive 
tasks in the form of a conversation [32]; they are adept at summarizing text, assisting with 
programming, and answering questions about a wide range of subjects. When users re-
ceive information, regardless of form, an epistemic function is performed [23]. If the users 
have transferred the responsibility of information-gathering to the LLM and have an un-
questioning belief in the LLMs′ responses, the epistemic consequences are positive as long 
as the responses are accurate. However, inaccuracies could lead to profound negative con-
sequences in research and academia. When LLMs are used for data analysis and infor-
mation synthesis, there is a risk of error or fabricated data, which would violate the integ-
rity of scientific publishing. Many prestigious journals, such as The Proceedings of the Na-
tional Academy of Sciences (PNAS) [47], Nature [48], and Science [49], have adopted policies 
restricting the involvement of LLMs, allowing them only for improving readability and 
style. The consensus within the scientific community is that LLMs are not eligible for (co-
)authorship [50]. 

Although LLMs are trained to seem human, their training makes them appear �su-
perhuman’ on many tasks. There are two reasons for this: (1) LLMs have access to the 
entirety of the world-wide web, and the size of their training data exceeds the amount of 
information that any human will see or learn in an entire lifetime; and (2) they are trained 
to provide useful answers from incomplete prompts [38]. As Zhu et al. [41] stated, LLMs′ 
scale and capabilities have expanded faster than the developers’ ability to comprehend 
them. Since LLMs can perform such a diverse set of tasks efficiently and, at times, more 
competently than humans, users are becoming more reliant on them and trust the infor-
mation they provide [23]. 

This reliance touches on a deeper epistemological question: whose understanding 
matters when LLMs are employed? Even if LLMs can handle knowledge beyond human 
comprehension due to the scale of their training data, extracting human insights from 
their outputs remains essential [23]. While human �values’ represent a normative aspect 
of how LLMs should function, the primary concern here is epistemic—how much human 
knowledge and understanding can be derived from these systems? Despite their immense 
capabilities, we cannot simply cede the responsibility for understanding to LLMs. As is-
sues related to bias have existed since the early days of neural networks, the challenge 
remains to ensure that LLMs provide epistemically reliable, accurate, and meaningful in-
formation to humans. 

Kim and Thorne [24] developed an experiment to discover if LLMs will change their 
own core beliefs—their pretraining data—when prompted with new information. This 
experiment contained an abduction—will the LLM respond with the false scientific state-
ment or the statement that explains the new condition without altering the scientific fact; 
revision—will the LLM modify the scientific fact, or will it provide an answer that protects 
the scientific fact; and an argument-generation task—the LLM is given a hypothesis, s (a 
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scientific fact), and an observation, c, that challenges s. The LLM can answer with a state-
ment that accepts c and denies the truth of s, or protect s and answer with a statement that 
explains c and s. The hypothesis is that LLMs do not have �epistemological holism’ if they 
alter their core belief in any of these tasks. In the abduction task, the models generally 
protect the core belief and use peripheral statements to explain the new condition—GPT-
4 had an 80% Peripheral Response Ratio (PRR). LLMs did not perform as well in the revi-
sion task, with the majority of models altering core beliefs when prompted with new in-
formation—GPT-4 had a 15.6% PRR. In the argument-generation task, as long as the LLM 
did not contradict the core belief/hypothesis, the answer was accepted as a peripheral re-
sponse—LLaMA2-7b-chat had a 51.8% PRR, LLaMA2-13b-chat had a 31.8% PRR, GPT-
3.5-turbo had a 15.0% PRR, and GPT-4 had a 32.5% PRR [24]. At this point, LLMs appear 
to retain epistemological holism in abduction, but not the other tasks. Similarly, Binz and 
Schulz [40] tested GPT-3′s ability to answer 12 well-known vignette problems in cognitive 
psychology and found that GPT-3 either provided the correct answer or provided a hu-
man-like wrong answer. However, when they slightly changed the wording or order of 
the options (what they call the �adversarial’ vignettes), the model performance suffers 
greatly. Moreover, it has been shown that even the currently most capable model (GPT-4) 
repeatedly fails at deductive reasoning and very basic tasks such as multiplying two four-
digit numbers [39]. These results suggest that LLMs can solve the tasks that they are fa-
miliar with in their training data, as these problems are taught in textbooks, yet are unable 
to achieve robust abstraction and reasoning at human-like levels. 

This problem of shifting values and core beliefs is compounded due to instruction-
following not being a feature of LLMs; it is a tool added to the model. As such, the behav-
ior of LLMs is unreliable. An LLM may initially fail at a task, and then answer it correctly 
after the prompt has been rephrased (e.g., prompt engineering). LLMs may give biased 
answers, mislead, or hallucinate [23,38], or they might either not be consistent in their 
responses or continuously repeat the same answer [32]. They are also becoming both eas-
ier and more difficult to control. Control is easier because LLMs are learning how to use 
and understand human language and concepts. As they learn, they are becoming more 
adept at answering in ways that meet their users’ expectations. This is also why it is be-
coming more difficult. LLMs′ responses can be very unpredictable when they �know’ what 
is expected of them. Models have already begun engaging in sycophancy—providing an-
swers that �flatter’ or agree with the user, and sandbagging—spreading mis- or disinfor-
mation—if they think the user is ignorant about the issue [38]. Yin et al. [51] indirectly 
address this issue. In their study, they questioned whether LLMs �know what they don’t 
know.’ They created the SelfAware dataset, which has 1032 questions that cannot be an-
swered and 2337 that can. They tested two human subjects and 20 LLMs—including GPT-
3, GPT-4, the davinci series, and the LLaMA series. Humans had the greatest self-
knowledge, with a score of 84.93%; GPT-4 was the highest-scoring LLM, with 75.47%. The 
authors noted that self-knowledge increased with model size (i.e., GPT 3.5 turbo: 54.12%; 
davinci: 45.67%; and davinci-003: 51.43%); they speculated that this is due to scaling. They 
also found that adding instruction and in-context learning (ICL) increased self-
knowledge—GPT-3′s score increased approximately 4% with instruction and the davinci 
model’s score increased 27.96% with ICL [51]. 

Many users are unaware of these negative actions due to the appearance of having 
an in-depth conversation with the LLM. LLMs are programmed to mimic human speech 
patterns and behaviors, such as pauses before answering (e.g., taking time to think), using 
emojis, asking follow-up questions, and occasionally correcting users’ prompts or chal-
lenging inappropriate questions. Even though users understand that they are using AI, 
these reciprocal �seeming conversations’ can lead the user to think that the LLMs “(a) un-
derstand your questions, prompts, and commands, and (b) understand the information 
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they generate” [23] (p. 6), and to begin to anthropomorphize them, thus granting the LLMs 
human qualities like emotions, intelligence, and consciousness. Heersmink et al. [23] state 
that the more human-like LLMs seem, the more humanity we grant it. 

With anthropomorphization (or granting humanity) comes trust. For LLMs, that trust 
is in the answers users receive from them. The more trust we have in LLMs, the more 
responsibility and �computational labor’ users remove from themselves and place on the 
LLMs. The more we rely on AI or an LLM “to revise our system of beliefs and increase 
our body of knowledge” [32] (p. 3), the less capable we become of verifying facts and 
performing independent thinking. This transfer of agency onto LLMs has cognitive and 
epistemic consequences. 

There are some ways that users and LLMs can overcome some of these epistemolog-
ical issues. First, until LLMs become more reliable, users can take a �trust, but verify’ atti-
tude when using LLMs. For example, the user can use the LLM for ideas, and then conduct 
a more thorough search on a verified source. LLMs also behave fairly consistently once 
users learn to write prompts that the LLM can follow—for example, prompting reasoning 
questions with “think step by step” [38] (p. 7). This suggestion echoes Yin et al.’s [51] 
findings that LLMs’ self-knowledge increases with instruction and ICL. It is thought that 
hallucinations will be resolved as LLMs track correct answers over time; accuracy will 
increase as correct answers increase [23]. Second, the companies that release LLMs could 
improve the trustworthiness of their product through transparency. It is, understandably, 
a security risk to release the algorithm to the public, but companies could still provide the 
sources of the data used for training and detail how the information is prioritized (e.g., is 
Wikipedia higher in priority than academic textbooks). They can also train the LLM to 
inform the user about how certain it is about its response accuracy. Third, the developers 
can make the LLM less �human.’ Heersmink et al. [23] remark that this can be accom-
plished without the LLM losing its ease of use. 

9. Discussion 
LLMs are programmed with artificial neural networks. These networks have abilities 

that resemble human neurons (e.g., computing and self-programming abilities), and much 
like the human brain, LLMs utilize a network of artificial neurons with an increasing num-
ber of connections. Developers are aware of the �neuroscience’ relevant to the input of 
LLMs, but they do not understand how to test the output—what they use to produce their 
answers [38]. Although LLMs appear to have something resembling a human brain and 
mental capacity, LLMs in popular implementations are not designed for making the type 
of active decisions that humans can, and it can be argued that they lack the capacity for 
judgment in the Kantian sense. For example, the lack of a known formalized framework 
of how they understand logical relationships and concepts to respond to a prompt goes 
against Kant’s [1] guidance on the rules for gaining knowledge [27]. 

Even though LLMs lack a known formalized network, Bowman [38] remarked that 
they are gaining competence with human language and concepts. Considering that there 
have been instances of sycophancy and sandbagging, his conclusion may be accurate. 
What is not known, at this time, is whether LLMs meet Quine’s [13] two tenets of empiri-
cism. Since they were trained on millions of data, they might meet the qualification for 
understanding the definitions of the language with which they respond. The question is, 
do they absorb the meanings of the words through sensory evidence? To meet this crite-
rion, we would have to definitively know whether or not AI can receive sensory stimuli. 

Without sensory stimuli, can LLMs have true intentionality? Searle [11] argued that 
no purely formal model—anything described as an instantiation of a computer program—
could ever be sufficient for intentionality, because the individual formal components 
themselves don’t have the appropriate causal relations with the external world. Without 
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these causal relations, intentionality could not arise because semantic contents would not 
be directed towards anything. His criticism would be bolstered by the �reversal curse’ re-
cently noticed in LLMs: if an LLM is trained with the sentence “A is B”, it is not necessarily 
able to generalize to “B is A”. Berglund et al. [52] demonstrated this across model sizes 
and families and found that ChatGPT (GPT-3.5 and GPT-4) answered questions like “Who 
is Tom Cruise’s mother?” (Answer: Mary Lee Pfeiffer) correctly 79% of the time, but the 
reverse question “Who is Mary Lee Pfeiffer’s son?” only 33% of the time. If LLMs did 
possess semantic representations of the external world which they used to reason with, 
this failure to generalize should not be observed. As artificial intelligence research cur-
rently stands, it is still too early to make any decisive conclusions about the semantic con-
tents of LLMs. 

Kim and Thorne’s [24] study used constructs from both Peirce (abduction) and Quine 
(web of beliefs). The LLMs performed reasonably well with abduction but not revision. 
Although revision does not go against Pierce’s argument as to the search for knowledge 
being an ongoing process of justified doubt [25], it does go against Quine’s position that 
the general human desire is to protect core beliefs, rather than destroy our belief system. 
There lies the crux of the issue; LLMs are not human, and we cannot assume they have 
core beliefs, because we do not know how they are programmed. 

If they do not have core beliefs, do they have justified beliefs? Although LLMs may 
not have sensory information, they do store information from conversations; this could be 
considered a form of observation [33]. They also appear to have some inductive reasoning 
capacity, as they are very accurate in some areas and have the ability to correct and chal-
lenge users’ prompts [23]. If one were to use the argument that internalized knowledge 
need not be reliable to be believed [37], LLMs may have a form of justified belief, but not 
JTB. 

The search for knowledge has been ongoing since the ancient Greeks. In this article, 
we focused on Episteme. Techne and Episteme have been intertwined throughout history, 
as crafty knowledge and practical skills assist both scientific knowledge and everyday life. 
AI technology is embedded in our phones and homes, and with LLMs, constitutes the 
way we interact with information. We questioned whether LLMs understand and can 
provide any advancement in, or become a form of, naturalized epistemology. LLMs ap-
pear to have some capabilities of internal representation, and they can respond to simple 
tasks, but they only possess basic reasoning and decision-making [38,40]. Their ability to 
perform simple tasks, including extracting information, engaging in conversation, and 
maintaining coherence, appears to improve with model size [41] and the amount of output 
produced [32]. Although LLMs seem to satisfy the rudimentary requirements necessary 
for knowledge, this apparent knowledge may be coincidental. Therefore, their abilities are 
not sufficient for JTB, and they are likely victims of the Gettier Problem. 

Searle [11] argued that computers could never possess human understanding be-
cause they operate with abstract symbols and cannot process semantic contents. We con-
tend that his claim may not apply to LLMs, as they are not mere symbol-manipulators. 
The neural networks underlying LLMs find associations and learn patterns in ways that 
bear similarities to human learning, potentially granting LLMs a form of relational under-
standing of concepts and objects in the physical world. Wittgenstein [44,45] believed that 
language models should be judged by the context in which they are used, such as the 
social, cultural, and historical backgrounds in which they are formed. This is pertinent to 
LLMs as it is becoming increasingly apparent that their training data and the value judge-
ments of their users have introduced biases that manifest in responses to prompts. We 
propose that LLMs do not have intentionality and cannot be responsible for employing 
the values and language with which they have been trained. It is inconsistent to state on 
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one hand that LLMs are incapable of understanding the meaning of words, and then on 
the other claim that they are deliberately using biased language. 

Due to their training, LLMs have already shown almost superhuman capabilities in 
many tasks, oftentimes excelling in programming and retrieving information in distilled 
formats; as such, they already show epistemic value and are being utilized in professions 
such as software development, medicine, and law. While they appear to exhibit some as-
pects of epistemological holism in revision tasks, instances of altering core beliefs and 
producing hallucination statements raise questions of whether their responses are consist-
ently accurate. This becomes an epistemological and ethical problem when users anthro-
pomorphize the LLMs and grant them the majority of computational labor because of un-
deserved and unearned trust. We believe that more empirical research is necessary to 
comprehend the ethical and intellectual impact of LLMs, as their use is becoming en-
trenched in our daily lives and affecting multiple fields, from manufacturing to academia 
[23,24,32,38]. 

The purpose of this review was to act as a thought experiment and provoke a discus-
sion of how LLMs might fit into epistemology. We hope that we have shown that the 
arguments for and against this possibility are compelling. These epistemological ques-
tions are important, and whether these investigations will lead to a form of naturalized 
epistemology remains unanswered, for now. 
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