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Abstract: Methylated indoles could be potentially interesting components for hydrogen (H2) storage
based on the Liquid Organic Hydrogen Carrier (LOHC) approach. It is likely that the methylated
forms will preserve the beneficial thermochemical characteristics of indole compared to homocyclic
LOHCs. At the same time, 1-methyl-indole is expected to have a higher stability than indole in the re-
active cycle of hydrogenation and dehydrogenation. This study investigates whether the expectations
regarding reaction thermodynamics and stability are justified. To this end, the chemical equilib-
ria of the hydrogenation (+H2)/dehydrogenation (−H2) reactions of the indole/octahydroindole
LOHC system was determined experimentally over a wide range of temperature, pressure, and
hydrogen:feedstock ratio. Reaction thermodynamics were calculated from the relationship between
temperature and equilibrium constant. In addition, the formation enthalpies of the species involved
in the reaction have been determined experimentally utilizing combustion calorimetry. Further
validation has been achieved using high-level quantum chemical methods. The evaluation confirms
both hypotheses: (1) 1-methyl-indole exhibits less decomposition during reaction as is the case for
the indole system. Hence, an improved stability of methylated LOHC molecules can be concluded;
(2) The enthalpy of reaction for H2 release from octahydro-1-methyl-indole is estimated from the equi-
librium experiments and calorimetric measurements to be about +55.6 kJ mol(H2)−1 for reaction in the
liquid phase at standard conditions. This is comparable to the values observed for octahydro-indole.

Keywords: chemical equilibria; reaction enthalpy; reaction entropy n; QC calculations

1. Introduction

Liquid Organic Hydrogen Carriers (LOHCs) enable safe and dense storage of H2 by
reversible hydrogenation of an aromatic substance. It has been demonstrated that the
LOHC system indole/octahydroindole is a promising candidate for the storage of H2 [1–3],
even though there are some restrictions regarding its thermal stability. However, it is
known that tertiary amines are usually more stable compared to secondary amines [4].
Therefore, in this work, we extended our thermochemical studies to the LOHC system
1-methyl-indole/octahydro-1-methyl-indole. Both hydrogenated and dehydrogenated
counterparts have low melting points and high stability [5,6]. Such properties of the system
make it possible to successfully realize the concept of H2 storage and transport.

This investigation focuses on the study of equilibrium analysis of thermodynamics of
the hydrogenation (+H2)/dehydrogenation (−H2) reactions in the LOHC system 1-methyl-
indole/octahydro-1-methyl-indole. Various partially and fully dehydrogenated species are
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present in the reaction mixture (see Figure 1). Hence, knowledge of the interconversion of
these intermediates and their thermodynamic stability is essential for the optimization of
LOHC-based technologies.
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Figure 1. The intermediates identified in the equilibrium mixture of the hydrogenation in the LOHC
system 1-methyl-indole/octahydro-1-methyl-indole.

2. Methods
2.1. Materials

The sample of 1-methylindole (CAS: 603-76-9) was of commercial origin (Alfa Aesar,
98+%). The liquid sample of 1-methylindoline (CAS: 88475-55-2) was prepared and purified
in laboratories of the University of Alabama according to the established method described
in [7]. Additional details of the synthetic methods are provided as Supporting Information.
Before the combustion and transpiration experiments, the samples were further purified
by fractional distillation. No impurities (mass fraction greater than 0.0003) were detected
in the samples used for the thermochemical measurements. The degree of purity was
determined using a GC equipped with an FID. A capillary column HP-5 with a column
length of 30 m, an inner diameter of 0.32 mm, and a film thickness of 0.25 µm was used.
Water mass fraction in the samples (see Table S2) was determined using a Mettler Toledo
DL38 Karl Fischer titrator using the HYDRANAL™ as the reagent.

2.2. Chemical Equilibrium Study

The equilibria of the hydrogenation reactions in the 1-methyl-indole/octahydro-1-
methyl-indole system were investigated in the range of T = 413–493 K. The experiments
were performed in a 300 mL autoclave R-201 constructed from Hastelloy C-276 (origin
Korea). About 2 g of 1-methylindole (substrate) was dissolved in 150 mL of n-hexane. This
mixture and 6–20 g of catalyst (Pt, Pd and Ni catalyst supported on SiO2) were loaded
into the reactor. The reactor was sealed and purged several times with H2 to remove any
residual air from the system. After that, the reactor was heated to the desired temperature
and brought to the desired pressure. When varying the H2 pressure from 0.1 to 2.6 MPa,
the ratio of H2 to feed was scaled from 0 to 10. Our calculations show that for the typical
volumes (50 or 150 mL) of the initial mixture in the total volume of 300 mL, the reactions
actually proceed in the liquid phase at all temperature and pressure conditions.

The samples of the reaction mixture were withdrawn periodically and analyzed using
the GC (Kristall-2000M, at Samara State University) equipped with FID and capillary
column ZB-35 (30 m × 0.25 mm × 0.25 µm). Chemical equilibrium in the reaction system
was considered to be reached when the ratios of the reactants were constant over a long
period of time and were independent of the variation in the compositions of substrates
and catalysts.

2.3. Identification of Reaction Species Present at Equilibrium

Gas chromatography–mass spectrometer (GC-MS) QP2010Ultra (Shimadzu, Japan)
was used to identify products. The chromatography column had a length of 100 m and the
mass detector range was 1.5 to 1090 m/Z. The sensitivities were 1 PG of octafluoroaphtha-
lene S/N 500 for m/Z = 272 (SCAN mode) and 100 FG of octafluoroaphthalene S/N 500 for
m/Z = 272 (SIM mode). The maximum data processing rate was 100 scans/s (i.e., 100 Hz),



AppliedChem 2023, 3 47

whereas the maximum scanning speed was 20,000 amu/s, and the minimum scan interval
was 10 ms.

Mass spectra for 1-methylindole and 1-methyl-dihydroindole are available in the
literature and the data obtained are in complete agreement with them, namely: for 1-
methyl-indole we recorded the spectrum 130, 103, 89, 77, 65, 51, 39, 27 and for and 1-methyl-
dihydroindole 132, 117, 103, 91, 77, 65, 51, 36.

The NIST database [8] does not have a spectrum for the 1-methyl-octahydroindole.
Nevertheless, the available spectrum for 3-methyloctahydroindole (m/z) 139, 124, 96, 82,
68, 56, 41, 30 with similar characteristics of ions was used to resolve the structure of 1-
methyl-octahydroindole from the following experimental spectrum (m/z): 139, 122, 96, 82,
67, 41. Obviously, for the main characteristic ions, the data are consistent, suggesting that
the identification is correct.

The following spectrum was measured for 4,5,6,7-tetrahydro-1-methylindole (m/z):
135, 117, 107, 92, 77, 65, 36. In the absence of spectra for comparison, it was assumed
that the fragmentation of this molecule follows two mechanisms. The first mechanism is
characterized by the release of a radical, which leads to the formation of the indole 117 ion.
The second one is caused by the elimination of the HCN molecule, with the formation of
the 107 ion.

The following spectrum was measured for 4,5,6,7-tetrahydro-1-methylindole (m/z):
135, 117, 107, 92, 77, 65, 36. In the absence of comparative spectra, it was assumed that
the fragmentation of this molecule could follow two mechanisms. The first mechanism
is characterized by the release of a radical leading to the formation of the indole-117
ion. The second is caused by the elimination of the HCN molecule to form the 107 ion.
Dong et al. [9] calculated the energetics of the indole derivatives using DFT and they
show that the most stable structure of 1-methyl-tetrahydroindoles is 4,5,6,7-tetrahydro-1-
methylindole. The only peak found by GC-MS in the molecular weight range related to the
tetrahydro-1-methylindoles. Therefore, this peak can be assumed to be 4,5,6,7-tetrahydro-1-
methylindole, which confirms the data obtained by GC-MS. No signals were found in the
molecular weight range of the hexahydro-1-methylindoles by means of GC-MS.

2.4. Experimental and Theoretical Thermochemical Methods

A high-precision static bomb calorimeter was used for measurements of standard
molar combustion energies of 1-methyl-indole and 1-methyl-indoline. The detailed proce-
dure has been described in our earlier works [10,11]. A transpiration method was used to
measure the vapor pressures of 1-methylindole and 1-methylindoline. The detailed proce-
dure was previously reported [12,13]. Measurements of heat capacity of 1-methyl-indoline
were performed with a Perkin Elmer DSC Pyris 1 in the temperature range from liquid
nitrogen to approximately 350 K [14]. Some essential details on the experimental techniques
are provided in Electronic Supporting Information (ESI).

The quantum-chemical (QC) software package, Gaussian 16®, [15] with the G4 [16],
G4MP2 [17], G3MP2 [18], and CBS-APNO [19] methods, was used to calculate enthalpies
(H298) for each compound’s most stable conformer. The H298-values provided in the output
files were converted to the theoretical gas-phase standard molar enthalpies of formation,
∆ f Ho

m(g, 298.15 K)theor, of the reactants in the 1-methyl-indole/octahydro-1-methyl-indole
LOHC system and discussed. Because the G4 and G3MP2 methods are similar in com-
position, their potential systematic errors may be the same or similar. In addition, to
independently confirm the correctness of ∆ f Ho

m(g, 298.15 K)theor values from the Gn meth-
ods, the calculations were performed using the high-level composite method CBS-APNO.
The latter method differs from Gn in a number of computational steps. Details on the calcu-
lation methods have been reported elsewhere [20]. The “rigid rotator-harmonic oscillator”
approach embedded in the Gaussian 16 software was used for these calculations.
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3. Results and Discussion
3.1. Equilibrium in the 1-methyl-indole/octahydro-1-methyl-indole LOHC System

The intermediates identified in the equilibrium mixture of 1-methyl-indole hydrogena-
tion are given in Figure 2. The following stepwise hydrogenation reactions (see Figure 2)
describe the reaction network for this system.
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Figure 2. Equilibria of hydrogenation reactions for the 1-methyl-indole/octahydro-1-methyl-indole
LOHC system.

Like every reaction, the hydrogenation of this LOHC system proceeds under kinetic
control until the reaction approaches equilibrium. The kinetics of the hydrogenation step
were not the focus of this work. Details on the kinetic behavior of this system have been
reported by Stepanenko et al. [3] recently. Figure 3 illustrates the typical profile of the
reaction system composition over time for the hydrogenation of 1-methyl-indole.
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The main product of the hydrogenation of 1-methyl-indole (H0-MI) at 413 K is 1-
methyl-perhydroindole (H8) in an amount of up to 90 mol%. It is noteworthy that the
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amount of the product of the hydrogenation of the double bond in the N-heterocycle,
namely 1-methyl-indoline (H2-MI), does not exceed 1–3 mol%. Additionally, 1-methyl-
hexahydroindoles (H6-MI) cannot be detected in the reaction mixture of hydrogenation of
1-methylindole. The only reaction intermediate observed is 1-methyl-4,5,6,7-tetrahydro-
1H-indole (H4-MI). This product is formed in large quantities at the first moment of
hydrogenation but then is further hydrogenated to the perhydro-compound H8-MI.

The primary (i.e., left) y-axis is the composition (i.e., mol% of given species, excluding
solvent and H2) of the reaction mixture; the secondary (i.e., right) y-axis is the temperature
of the reaction in ◦C. The dotted line illustrates the step change in the reaction mixture
temperature after equilibrium was achieved.

H0-MI: H0-1-methylindole (1-methylindole); H2-MI: H2-1-methylindole (dihydro-
1-methylindole); H4-MI: H4-1-methylindole (4,5,6,7-tetrahydro-1-methylindole); H8-MI:
H8-1-methylindole (octahydro-1-methylindole).

With an increase in the reaction temperature to 493 K, additional H4-MI formation
does not occur; on the contrary, this product is consumed by dehydrogenation to H2-MI.
Additionally, the amount of H8-MI at 493 K begins to decrease sharply. At the same time,
due to the shifted equilibrium, the initial reactants H0-MI and H2-MI are formed again in
significant amounts in the reaction mixture. At this temperature, the intermediate products
H6-MI were not found in the reaction mixture either. Thus, the hydrogenation of H0-MI
occurs exclusively via the hydrocarbon ring in the H4-MI intermediate, in contrast to the
hydrogenation of indoline or indole [1], where some amount of the H6-indole intermediate
was also found in the reaction mixture.

The composition of the reaction mixture found in this study agrees with the results
of the DFT calculation in [9] where the analogous dehydrogenation reaction of H8-1-
ethylindole was evaluated. The calculations support the conclusion that the most likely
dehydrogenation pathway is via H4-1-ethylindole formation and that the pathway via
H6-1-ethylindole formation is energetically less favorable. They also found only one
stable H4-1-ethylindole intermediate by GC-MS, in agreement with our hydrogenation
equilibrium results of the H0-MI/H8-MI system.

3.2. Calculation of Equilibrium Constants

After equilibrium is established, the system runs under thermodynamic control. The
relative quantities of reactants and intermediates are determined by the thermochemical
properties (enthalpy of formation and entropy) of the participating species. In order to
ensure that the “true” state of equilibrium is reached, rationally designed experiments were
performed out wherein the amounts of substrates and catalysts differed across a broad
range. Chemical equilibrium can only be confirmed if the equilibrium constants remain
stable and calculations are reproducible over long time periods, regardless of the catalyst
type or amount, and/or the initial reaction composition.

The thermodynamic liquid phase equilibrium constants, Ka, from the experimental data
are commonly derived using Equation (1) [21]:

Ka =
arp

ain·
( fH2

P+

)νH2
(1)

where ain and arp are the activities of the reactant/intermediate and the product, respec-
tively; fH2 is the fugacity of H2 and νH2 is the absolute value of its stoichiometric coefficient.
P+ is the reference pressure. The activity is equal to the product of the activity coefficient
and the mole fraction of the component Equation (2):

ai = γi·xi (2)

Ka = Kγ·Kx =
γrp

γin·ϕH2

·
xrp

xin·
( PH2

P+

)νH2
(3)
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where xin, and xrp are the respective mole fractions of the reactant and product, respectively;
PH2 is the partial pressure of H2 and ϕH2 is its fugacity coefficient. Kx is the equilibrium
constant calculated from the mole fractions of reaction participants.

In our previous work [1], the reactants’ activity coefficients in the indole/octahydroindole
system were calculated using UNIFAC methods [22]. However, it was found that under the
autoclave reaction conditions applied in this work, the activity coefficients of the reactants
(see Equation (3)) are not very different at a given temperature; likewise, the temperature
dependence of the activity coefficients was not strong. The corresponding Kγ-products
were calculated and used to derive Ka from the experimental Kx-values [1]. However, due to
the similarity of the γi-values, the differences between Ka and the experimental Kx-values
were insignificant. This observation facilitates the treatment of the equilibrium data, and
in this work, it was assumed that Ka = Kx and the Kx-values were used to calculate the
thermodynamic functions of reactions R-I to R-IV.

For reactions R-I to R-IV, the equilibrium concentrations of participating species were
measured and their associated Kx constants were derived. The results of the chemical
equilibrium study of the reactions given in Figure 2 are summarized in Table 1.

Table 1. Reaction parameters and calculated values of the liquid phase reactions R-I to R-IV.

Reaction a Pav/atm b T/K c Ka
d ±2σ e ln Ka Feed f

R-I

9.3 413.15 0.89 0.25 −0.1165 c
17.9 433.15 0.50 0.07 −0.6931 a
39.4 443.15 0.39 0.39 −0.9416 d
17.2 453.15 0.30 0.24 −1.2040 a, b
40.6 463.15 0.24 0.61 −1.4271 d
18.5 473.15 0.19 0.04 −1.6607 b

R-II

9.5 413.15 3.24 0.22 1.1756 c
19.2 423.15 1.50 0.02 0.4055 f
17.7 433.15 0.47 0.04 −0.7550 a
39.3 443.15 0.33 0.01 −1.1087 d
15.7 453.15 0.23 0.02 −1.4697 b
18.4 473.15 0.08 0.01 −2.5257 b
21.2 483.15 0.03 0.002 −3.5066 e

R-III

9.0 413.15 335.5 121.6 5.8156 c
19.5 423.15 96.35 35.2 4.5680 f
17.8 433.15 29.31 1.38 3.3779 a
19.5 453.15 3.18 0.72 1.1569 a
21.5 483.15 0.16 0.05 −1.8326 e

R-IV

8.6 413.15 18.00 1.71 2.8904 c
19.1 423.15 5.79 1.05 1.7561 f
17.7 433.15 4.30 1.15 1.4586 a
39.0 443.15 1.24 0.06 0.2151 d
15.8 453.15 0.70 0.49 −0.3567 b
40.6 463.15 0.37 0.01 −0.9943 d

a Reaction species are shown in Figure 2; b average system pressure at equilibrium; c equilibrium temperature;
d equilibrium constant; e all uncertainties provided in this table are presented as expanded uncertainties (0.95
confidence level, k = 2); f feed compositions are presented in Table S1.

An analysis of the dependencies of the equilibrium constants (and their logarithms) for
the reaction R-I to R-IV (Figure 4) on temperature corresponds to the enthalpy of the reaction.
Equilibrium constants are decreasing with increasing temperature, as can be expected for
an exothermal reaction (Figure 4). Reaction R-IV (H4-MI to H8-MI) is thermodynamically
comparatively unfavorable within the complete temperature range. In this reaction step,
an aromatic, five-membered N-heterocycle (i.e., a pyrrole-like structure) is hydrogenated.
This type of reaction is known to have a rather low thermodynamic driving force. Reaction
R-II (H0-MI to H4-MI) and R-III (M2-MI to H8-MI) both involve hydrogenation in a
homocyclic, aromatic ring. However, as R-III means complete hydrogenation of this ring,
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R-II only covers its partial hydrogenation. This is thermodynamically less favorable as
the aromatic system is destroyed in both systems, but the last reaction step (the highly
favorable hydrogenation of a non-aromatic double bond) is only included in R-III. This fact
is reflected in the lower equilibrium constants for R-II compared to R-III.

AppliedChem 2023, 3, FOR PEER REVIEW  7 
 

 

17.7 433.15 0.47 0.04 −0.7550 a 
39.3 443.15 0.33 0.01 −1.1087 d 
15.7 453.15 0.23 0.02 −1.4697 b 
18.4 473.15 0.08 0.01 −2.5257 b 
21.2 483.15 0.03 0.002 −3.5066 e 

R-III 

9.0 413.15 335.5 121.6 5.8156 c 
19.5 423.15 96.35 35.2 4.5680 f 
17.8 433.15 29.31 1.38 3.3779 a 
19.5 453.15 3.18 0.72 1.1569 a 
21.5 483.15 0.16 0.05 −1.8326 e 

R-IV 

8.6 413.15 18.00 1.71 2.8904 c 
19.1 423.15 5.79 1.05 1.7561 f 
17.7 433.15 4.30 1.15 1.4586 a 
39.0 443.15 1.24 0.06 0.2151 d 
15.8 453.15 0.70 0.49 −0.3567 b 
40.6 463.15 0.37 0.01 −0.9943 d 

a Reaction species are shown in Figure 2; b average system pressure at equilibrium; c equilibrium 
temperature; d equilibrium constant; e all uncertainties provided in this table are presented as 
expanded uncertainties (0.95 confidence level, k = 2); f feed compositions are presented in Table S1. 

An analysis of the dependencies of the equilibrium constants (and their logarithms) 
for the reaction R-I to R-IV (Figure 4) on temperature corresponds to the enthalpy of the 
reaction. Equilibrium constants are decreasing with increasing temperature, as can be 
expected for an exothermal reaction (Figure 4). Reaction R-IV (H4-MI to H8-MI) is 
thermodynamically comparatively unfavorable within the complete temperature range. 
In this reaction step, an aromatic, five-membered N-heterocycle (i.e., a pyrrole-like 
structure) is hydrogenated. This type of reaction is known to have a rather low 
thermodynamic driving force. Reaction R-II (H0-MI to H4-MI) and R-III (M2-MI to H8-MI) 
both involve hydrogenation in a homocyclic, aromatic ring. However, as R-III means 
complete hydrogenation of this ring, R-II only covers its partial hydrogenation. This is 
thermodynamically less favorable as the aromatic system is destroyed in both systems, 
but the last reaction step (the highly favorable hydrogenation of a non-aromatic double 
bond) is only included in R-III. This fact is reflected in the lower equilibrium constants for 
R-II compared to R-III. 

 
Figure 4. Relationships between equilibrium constant and temperature for reactions R-I to R-IV (see 
Figure 2). 

Figure 4. Relationships between equilibrium constant and temperature for reactions R-I to R-IV (see
Figure 2).

3.3. Experimental Reaction Thermodynamics in the methyl-indole/octahydro-1-methyl-indole
System

The equilibrium constants of reactions R-I to R-IV relating to the 1-methyl-indole/
octahydro-1-methyl-indole system at different temperatures were used to derive the reac-
tion enthalpy (see Table 2) using the Van ’t Hoff equation:

d lnKa

dT
=

∆r Ho
m

RT2 (4)

ln Ka (T) = a · 1000
T + b

with a = −∆r Ho
m(T)
R and b = ∆rSo

m(T)
R

(5)

where Ka is the liquid phase equilibrium constant; T is the reaction temperature, in K; ∆rHo
m(T)

is the standard (p◦ = 0.1 MPa) molar reaction enthalpy, in kJ·mol−1; ∆rSo
m(T) is the standard

(p◦ = 0.1 MPa) molar reaction entropy change, in J·K−1·mol−1; R = 8.31446 J.K−1·mol−1 is the
gas constant. The thermodynamic properties of reactions R-I to R-IV (i.e., hydrogenation
reactions) were calculated using Equation (5) and the results are given in Table 2.

As can be seen from Table 2, the ∆rHo
m(T) values for reactions R-I to R-IV are referenced to

the average temperatures, Tav, of the equilibrium studies, which are in the range of 440–450 K.
Already in our previous work [1], it was found for the indole/octahydroindole LOHC system
that these reaction enthalpies are indistinguishable (within the experimental uncertainties)
from the reaction enthalpies calculated from the thermochemical data using Hess’s Law and
ascribed to the reference temperature T = 298.15 K. In addition, for the reaction R-I given in
Table 2, the value ∆rHo

m(443.5 K) = −41.7 ± 1.2 kJ·mol−1 derived from the equilibrium study
is very close to the thermochemical value ∆rHo

m(g, 298.15 K) = −45.0 ± 2.8 kJ·mol−1 calcu-
lated with the reliable data on ∆ f Ho

m(g, 298.15 K) for 1-methylindole and 1-methylindoline,
measured by combustion calorimetry in this work (see Table 3).
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Table 2. Thermodynamic values of the liquid-phase hydrogenation reactions R-I to R-IV in the
1-methyl-indole/octahydro-1-methy-indole system, as derived from data provided in Table 1 a.

Reaction Method b T/K ∆rHo
m/kJ·mol−1 ∆rSo

m/J·mol−1·K−1

R-I E 443.5 −41.7 ± 1.2 −101.9 ± 2.4
TC 298.15 −45.0 ± 2.8
QC 298.15 −43.8 ± 3.5

R-II E 442.0 −103.4 ± 6.7 −242 ± 15
QC 298.15 −108.0 ± 3.5

R-III E 445.4 −181.3 ± 1.0 −390.5 ± 2.1
QC 298.15 −183.3 ± 3.5

R-IV E 450.7 −123 ± 15 −274 ± 35
QC 298.15 −119.1 ± 3.5

a Reaction species are shown in Figure 2. Uncertainties are expressed as expanded uncertainty (0.95 confi-
dence level, k = 2); b method descriptions: E = temperature dependencies of equilibrium constants (Table 1);
TC = thermochemistry (i.e., Hess’s Law); QC = reaction enthalpy from quantum-chemical calculations.

Table 3. Thermochemical data at T = 298.15 K (p◦ = 0.1 MPa) for indole derivatives (in kJ·mol−1).

Compound ∆cHo
m(liq) a ∆fHo

m(liq) ∆
g
l Ho

m
b ∆fHo

m(g)exp ∆fHo
m(g)theor

c

1 2 3 4 5 6

1-methyl-indole −4921.4 ± 2.0 [23] 93.6 ± 2.3
−4915.8 ± 1.4 [this work] 87.9 ± 1.8

90.1 ± 1.4 d 62.0 ± 0.3 152.1 ± 1.4 150.7 ± 2.0

1-methyl-indoline −5157.7 ± 1.3 [this work] 43.4 ± 1.8 57.4 ± 0.5 100.8 ± 1.9 100.5 ± 2.0
a Uncertainties related to the combustion experiments were estimated according to the procedure recommended in
the literature [24–26]; b from Table 4; c from quantum-chemical calculations; d weighted average value (experimental
uncertainty was taken as the weighting factor).

It is interesting to follow the energetics of the subsequent hydrogenation steps,
which are shown in Table 2. A very modest heat effect (−41.7 kJ mol−1 for the R-I
reaction) accompanies the hydrogenation of the double bond in a five-membered N-
heterocycle. The hydrogenation of two double bonds in the benzene ring requires approxi-
mately the same energy per bond (−103.4 kJ mol−1 for the R-II reaction, corresponding to
−51.7 kJ mol(H2)−1). The hydrogenation of H0-MI to H8-MI by reaction R-III is slightly less
exothermal (−181.3 kJ mol−1, corresponding to −60.4 kJ mol(H2)−1) than hydrogenation of
H4-MI by R-IV reaction (−123 kJ mol−1, corresponding to −61.5 kJ mol(H2)−1). However,
the total heat of the reaction for the hydrogenation of H0-MI to H8-MI in the R-I to R-III
direction (see Figure 5) is −223.0 kJ mol−1. Almost the same thermal effect −226.4 kJ mol−1

(see Figure 5) was obtained for the formation of H8-MI in the direction of R-II to R-IV.
The thermodynamic data obtained in this work and given in Tables 1 and 2 are

deemed to be reliable based on the mutual agreement of the values obtained by the
different methods.
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3.4. Thermodynamic Analysis of Hydrogenation Reactions

The equilibrium constants (Table 1) and the thermochemical characteristics derived in
Table 2 help to perform the thermodynamic analysis of interconversions from the initial
substrate over intermediates to the final fully hydrogenated product. The analysis is based
on the Gibbs–Helmholtz equation:s

∆rGo
m= −RT × ln K (T)= ∆r Ho

m × ∆rSo
m (6)

Using the enthalpies and entropies of reactions R-I to R-IV from Table 2, the change
of Gibbs energies for these reactions were calculated according to Equation (6) and they
are given in Figure 5. These ∆rGo

m-values help to understand why the concentrations of
both intermediates H2-MI and H4-MI are very low in the equilibrium mixture. Indeed, the
slightly positive ∆rGo

m-values for reactions R-I and R-II indicate that both these reactions
are thermodynamically less favorable than reaction R-III with the negative ∆rGo

m-value and
reaction R-IV with ∆rGo

m-value close to zero as shown in Figure 5. Following, the H2-MI
and H4-MI are disappearing from the reaction mixture immediately after their formation
and their amounts are limited to equilibrium concentrations.

Another advantage of the thermodynamic analysis is that it helps to assess the degree
of H2 release in the individual reactions, which is important for the optimization of the
LOHC system. Since the dehydrogenation of perhydro-1-methylindole is a complex system
of series-parallel transformations, in order to avoid incorrect interpretation of the results of
the analysis, it is necessary to study not only the system as a whole but also each reaction
and direction of transformations. In order to quantify the completeness of dehydrogenation,
the degree of H2 release (relative to the maximum possible) was determined according to
the following methods.

For the individual dehydrogenation reactions in the LOHC system 1-methylindole/
octahydro-1-methylindole a thermodynamic analysis was performed for H8-MI in the
temperature range of 433–483 K at 1 atm in the hypothetical (solvent-free) gas phase.
Separate analyses were performed for each reaction R-I, R-II, R-III, and R-IV (see Figure 6).
As an example, if for R-III the quantity H0-MI at equilibrium is defined as x moles, then the
quantity of H8-MI in that mixture is (1 − x) moles and thus the quantity of H2 released is
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3x. By this logic, the total moles in the mixture is (1 + 3x), which leads to Equation (7) from
which the equilibrium constant can be calculated:

Kx =
x·(3x)3

1 − x
· Ptot

3

(1 + x)3 = Ka (7)
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By using the value of the experimental equilibrium constant (Table 1) for this reaction
and solving Equation (7) for x, the equilibrium composition is obtained for the dehydro-
genation reaction of H8-MI to H2-MI. Similarly, calculations for reactions R-I through R-IV
(Figure 2) were performed in this manner. Figure 6 presents the results of the dehydrogena-
tion of this LOHC system.

As a result of the thermodynamic analysis of the dehydrogenation in the system with
H0-MI, it was found (Figure 6) that the highest degrees of H2 release at a temperature of
210 ◦C for the dehydrogenation reactions of H4-MI and H2-MI are equal to about 99% and
90%, respectively. For the two remaining transformations in this system, the degree of H2
release cannot exceed 70% (Figure 6). Therefore, when evaluating the possibility of using
an organic molecule as a LOHC, the thermodynamic properties of all reactions taking place
in the system must be taken into account, since the thermodynamics of the formation of
intermediates make a significant contribution to the composition of the reaction mixture
at equilibrium.

3.5. The Stability of the Substrates under the Conditions of Hydrogenation–Dehydrogenation

Thermal stability of the reactants in potential LOHC systems is a key criterion as
they are supposed to undergo cyclical hydrogenation–dehydrogenation reactions. To
understand this behavior in the system of interest, the selectivity was investigated in the
1-methylindole/octahydro-1-methylindole system (T = 140–210 ◦C) and compared against
the indole/octahydroindole system (T = 150–220 ◦C). The contact time was sufficient to
reach chemical equilibrium in the system. The results are shown in Figure 7. The selectivity
was determined by a GC analysis of the reaction mixture and was defined as the ratio
between the goal reactants remaining after equilibration and the amount of non-identified
decomposition products detected in the GC chart.
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methylindole (b). Selectivity for 1-methyl-indole and its non-decomposed (i.e., partially hydrogenated
derivatives) in cyclical hydrogenation–dehydrogenation reactions.

It is obvious in Figure 7 that the system based on 1-methylindole is more stable than
indoline. For example, at 200 ◦C for 1-methylindole, the selectivity for hydrogenation
reactions decreased from 99.8% to 95% for 100 min of contact, and for indoline from
99.5% to 12% for the same time of contact. As shown in Figure 7, the indole system
maintains its stability at temperatures up to a range of 150–180 ◦C, however, above this
range, rapid decomposition of all species in the reaction mixture occurs. Therefore, the
maximum operating temperatures of 200 ◦C and 170–180 ◦C for 1-methylindole and indole,
respectively, are recommended for practical H2 storage with this LOHC system.

3.6. Thermochemical Measurements on 1-methyl-indole and 1-methyl-indoline
3.6.1. Combustion Calorimetry

The thermodynamic functions of indole derivatives obtained experimentally from
equilibrium studies (see Table 2) can be derived independently from the standard molar
enthalpies of formation of the reactants, if these data are available and reliable. We found
only one thermochemical study related to the compound of interest in this work. The
enthalpy of vaporization and the enthalpy of formation of 1-methylindole were determined
by Ribeiro da Silva et al. [23]. In order to validate these results and to provide the missing
thermochemical data, the complementary combustion experiments and vapor pressure
measurements on 1-methyl-indole and 1-methyl-indoline were carried out in this work.

The standard specific energies of combustion ∆cuo(liq) = −37,432.5 ± 3.2 J·g−1 for
1-methyl-indole and ∆cuo(liq) = −38,677.8 ± 2.3 J·g−1 for 1-methyl-indoline were measured
from five experiments for each compound. Primary results from combustion experiments
are given in the electronic supporting information in Tables S2 and S3. The experimental
standard molar enthalpies of combustion, ∆cHo

m, were used to derive the standard molar
enthalpies of formation in the liquid state ∆ f Ho

m(liq), given in Table 3. Values of ∆cHo
m refer

to the reactions:

1-methyl-indole: C9H9N (cr) + 11.25 O2(g) = 9 CO2 (g) + 4.5 H2O (liq) + 0.5 N2 (g) (8)

1-methyl-indoline: C9H11N (cr) + 11.75 O2(g) = 9 CO2 (g) + 5.5 H2O (liq) + 0.5 N2 (g) (9)
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Enthalpies of formation ∆ f Ho
m(liq) of 1-methyl-indole and 1-methyl-indoline were

calculated from the enthalpic balance according to Equations (8) and (9) using standard
molar enthalpies of formation of H2O (liq) and CO2 (g), recommended by CODATA [24].
For converting the energy of the actual bomb process to that of the isothermal process, and
reducing to standard states, the conventional procedure was applied [25]. Uncertainties
related to combustion experiments, were calculated according to guidelines presented
in [26].

Our results from combustion calorimetry on 1-methyl-indole are in fair agreement
(within the combined uncertainties) with those published by Ribeiro da Silva et al. [23] (see
Table 3). Thermochemical experiments were carried out with 1-methyl-indoline for the
first time.

From our experience, validation of experimental thermochemical data is of paramount
importance, especially when a “fair” fit of experimental data is found or only a single experi-
mental result is available. In this century, quantum chemical (QC) calculations are becoming
a valuable validation tool for thermochemical data, but since the QC results refer to the
gas phase, the enthalpies of vaporization are required to obtain the liquid phase enthalpy
of formation, ∆ f Ho

m(liq), which is finally relevant to the energetics of H2 storage. In this
work, the high-level QC methods were applied to calculate the gas-phase standard molar
enthalpies of formation, ∆ f Ho

m(g, 298.15 K), and determined the vaporization enthalpies,
∆g

l Ho
m(298.15 K), of 1-methyl-indole and 1-methyl-indoline using the transpiration method,

so that the ∆ f Ho
m(liq)-values can be validated with the basic equation:

∆ f Ho
m(liq, 298.15 K) = ∆ f Ho

m(g, 298.15 K)− ∆g
l Ho

m(298.15 K) (10)

The development of both contributions to Equation (10) is shown in the
following sections.

3.6.2. Vapor Pressure Measurements Using the Transpiration Method

Vapor pressures of 1-methyl-indole and 1-methyl-indoline measured using the tran-
spiration method (see Table S4) were approximated using the following equation [12]:

R × ln(pi/pre f ) = a +
b
T
+ ∆g

l Co
p,m × ln

(
T
T0

)
(11)

where R = 8.31446 J.K−1.mol−1 is the universal gas constant, the reference pressure,
pre f = 1 Pa, and a and b are adjustable parameters; the arbitrary temperature T0 ap-
plied in Equation (11) was chosen to be T0 = 298.15 K. ∆g

l Co
p,m is the difference of the molar

heat capacities of the gas and the liquid phases, respectively (see Table S5). Approximation
coefficients of Equation (11) are given in Table S4 and they were used to derive vaporization
enthalpies according to this equation:

∆g
l Ho

m(298.15 K) = −b + ∆g
l Co

p,m × 298.15 (12)

The combined uncertainties of vaporization enthalpies were calculated as described
elsewhere [27,28]. They include uncertainties from the experimental conditions of transpira-
tion, uncertainties in vapor pressure, and uncertainties due to the temperature adjustment
to T = 298.15 K. The compilation of the ∆g

l Ho
m -values measured in this work using the

transpiration method and those found in the literature is given in Table 4.
As can be seen from Table 4, the ∆g

l Ho
m(298.15 K)-values for 1-methyl-indole as

derived from different techniques agree well and the weighted average value
∆g

l Ho
m(298.15 K) = 62.0 ± 0.3 kJ·mol−1 was recommended for thermochemical calculations.
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Table 4. Compilation of available enthalpies of vaporization, ∆g
l Ho

m, for 1-methyl-indole and 1-
methyl-indoline.

Compound/CAS Method a T-Range (K) ∆
g
l Ho

m(Tav) (kJ·mol−1) ∆
g
l Ho

m(298.15 K) b (kJ·mol−1) Ref.

1-methyl-indole (liq) DC 334.3 67.1 ± 0.3 62.2 ± 1.6 [23]
CGC 61.1 ± 3.1 [29]
S 268.6–341.9 61.6 ± 0.1 61.9 ± 0.3 [30]
SC 61.1 ± 2.0 [31]
T 294.2–354.2 60.7 ± 0.4 62.3 ± 0.5 Table S4

62.0 ± 0.3 c average

1-methyl-indoline (liq) T 278.4–333.2 57.1 ± 0.4 57.4 ± 0.5 Table 1
a Methods: DC = drop calorimetry; T = transpiration method; CGC = from correlation gas-chromatography;
SC = method based on solution calorimetry; S = static method; b adjustment to T = 298.15 K using heat capacity
differences from Table S5; c weighted mean value (the uncertainties were taken as the weighing factor).

3.6.3. Heat Capacity Measurements

The ∆g
l Co

p,m-values are involved in the vapor pressure approximation according to
Equation (11). These values are usually estimated based on the Co

p,m(liq) of experimental or
empirical origin. As a rule, the liquid-phase heat capacities can be estimated with sufficient
accuracy using a group additivity (GA) method [32,33]. However, the limitations of group
additivity for cyclic molecules are well known. Hence, it was decided to measure the heat
capacity of 1-methylindole to test the reliability of the GA method. Primary experimental
results for the heat capacities measured in this work for 1-methylindole are given in Table S6
in ESI. The data measured in the 228–350 K range were fitted by the following equation:

Co
p,m(liq)/R = 27.07 + 3.139 × 10−2(T − 298.15/K) (13)

with R = 8.314462 J·mol−1·K−1. The experimental heat capacity at the reference temperature
T = 298.15 K, Co

p,m(liq, 298.15 K) = 225.1 J.K−1.mol−1, agrees very well with the GA estimate
Co

p,m(liq, 298.15 K) = 228.7 J.K−1.mol−1 for 1-methyl-indole. Therefore, a value of Co
p,m(liq,

298.15 K) = 228.9 J.K−1.mol−1 was estimated for 1-methyl-indoline. The ∆g
l Co

p,m-values
derived from the heat capacity results are given in Table S5 and they have been used for the
temperature adjustments of experimental vaporization enthalpies of 1-methyl-indole and
1-methyl-indoline (see Table 4).

3.6.4. Theoretical Gas-Phase Formation Enthalpies of Intermediates in the
1-methyl-indole/octahydro-1-methyl-indole LOHC System

The experimental gas-phase enthalpies of formation of 1-methyl-indole and 1-methyl-
indoline were derived from the combustion calorimetry results on ∆ f Ho

m(liq, 298.15 K) and
transpiration method results on ∆g

l Ho
m(298.15 K). These values are given in Table 3, column

5 and they can now be compared with the results from quantum chemical calculations. The
high-level methods G4, G4MP2, G3MP2, and CBS-APNO methods were used to get the
theoretical ∆ f Ho

m(g, 298.15 K)-values of reactions R-I to R-IV participants. The UFF method
was used to find the most stable conformers of indole derivatives (see Table 5) [34], which
were then optimized by using G3MP2, with enthalpies H298 for each were calculated by
using and G4, G4MP2, G3MP2, and CBS-APNO methods.

The H298-values have been converted to the standard molar enthalpies of formation
∆ f Ho

m(g, 298.15 K)theor using the atomization (AT), as well as using the “well-balanced
reactions” (WBR) [35]. For the WBR method, three reactions were designed for each in-
dole derivative (they are given in Tables S7–S11 ESI). Using reliable experimental ∆ f Ho

m(g,
298.15 K)exp-values of the reference compounds (see Table S12), the theoretical gas-phase en-
thalpies were calculated using Hess´s Law. The results of QC calculations are summarized
in Table 6.
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Table 5. Most stable conformers (G4 calculations) of reaction intermediates of R-I to R-IV and their
gas phase formation enthalpies.

Indole Structure ∆fHo
m(g)G4/ a

kJ·mol−1
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a Calculated using the atomization procedure. 

The H298-values have been converted to the standard molar enthalpies of formation ∆𝐻m
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298.15 K)exp-values of the reference compounds (see Table S12), the theoretical gas-phase 
enthalpies were calculated using Hess´s Law. The results of QC calculations are 
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Table 6. Theoretical gas-phase enthalpies of formation ∆𝐻m
o (g) at T = 298.15 K (p° = 0.1 MPa) for 

indole derivatives as calculated by different methods (in kJ·mol−1). 

Compound 
G4 

AT a 
G4 

WBR b 
G4MP2 

AT a 
G4MP2 
WBR b 

G3MP2 
AT a 

G3MP2 
WBR b 

CBS-APNO 
WBR b ∆𝐟𝑯m

o (g)theor c 

N-methyl indole 149.9 ± 3.5 151.1 ± 2.0 146.7 ± 3.5 152.7 ± 2.0 148.9 ± 4.1 152.0 ± 2.4 149.1 ± 2.4 150.7 ± 2.0 
N-methyl indoline 106.1 ± 3.5 98.6 ± 2.0 104.3 ± 3.5 100.1 ± 2.0 104.3 ± 4.1 99.2 ± 2.4 99.2 ± 2.4 100.5 ± 2.0 
H4-N-methylindole 41.9 ± 3.5 36.6 ± 2.5 41.4 ± 3.5 37.7 ± 2.5 43.9 ± 4.1 39.4 ± 2.9 41.0 ± 2.9 39.5 ± 2.2 
cis-H8-N-methylindole −74.8 ± 3.5 −83.5 ± 1.8 −73.6 ± 3.5 −82.3 ± 1.8 −72.2 ± 4.1 −82.6 ± 2.1 −84.2 ± 2.1 −81.5 ± 1.8 
trans-H8-N-
methylindole −77.2 ± 3.5 −85.9 ± 1.8 −75.9 ± 3.5 −84.6 ± 1.8 −73.7 ± 4.1 −84.1 ± 2.1 −82.1 ± 2.1 −82.9 ± 1.8 

a Calculated by the G4, G4MP2, or G3MP2 methods according to the standard atomization 
procedure. The expanded uncertainty assessed to be ±3.5 kJ·mol−1 for the G4 [13]. The expanded 
uncertainty assessed to be ±4.1 kJ·mol−1 for the G3MP2 [15] and CBS-APNO methods; b calculated 
by the G4, G4MP2, G3MP2, and CBS-APNO methods with help of well balance reactions (see ESI) 
using the experimental ∆𝐻m

o (g)-values for the reaction participants (see Tables S7–S11); c calculated 
for each compound as the weighted average from columns 2 to 8 from this table. 

As can be seen from Table 6, the enthalpies of formation calculated using G4, G4MP2, 
G3MP2, and CBS-APNO are very close, regardless of whether an atomization or a WBR 
method is applied. The quantum-chemical values for each compound were averaged and 
the theoretical values ∆𝐻m

o (g, 298.15 K)theor (see Table 6, last column) were obtained. These 
theoretical values are compared with the experimental values ∆𝐻m

o (g, 298.15 K)exp in Table 
4 and the agreement is within the limits of experimental uncertainties. 

H0-MI, H2-MI, H4-MI, and H8-MI are involved in the reactions R-I to R-IV. Thus, the 
theoretical reaction enthalpies were calculated (see Table 2) using the theoretical enthalpies 
of the formation of reaction participants according to Hess´s Law. The comparison of these 
“theoretical” reaction enthalpies (“QC” in Table 2) with those from chemical equilibrium 
experiments (“E” in Table 2) and the results from thermochemistry (“TC” in Table 2) 
confirms good consistency of results within the experimental errors. Such agreement is a 
necessary indicator by which to validate the assumptions used to treat chemical 
equilibrium results presented in Section 3.2. 

3.6.5. Thermodynamic Analysis of the Dehydrogenation/Hydrogenation of the LOHC 
Systems 

As a last step, both contributors (∆𝐻m
o (g, 298.15 K) and ∆୪𝐻୫୭ (298.15 K)) to Equation 

(10) were validated. Thus, reliable liquid-phase enthalpies of formation for the 

cis-1-methyl-octahydroindole
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cis-H8-N-methylindole −74.8 ± 3.5 −83.5 ± 1.8 −73.6 ± 3.5 −82.3 ± 1.8 −72.2 ± 4.1 −82.6 ± 2.1 −84.2 ± 2.1 −81.5 ± 1.8 
trans-H8-N-
methylindole −77.2 ± 3.5 −85.9 ± 1.8 −75.9 ± 3.5 −84.6 ± 1.8 −73.7 ± 4.1 −84.1 ± 2.1 −82.1 ± 2.1 −82.9 ± 1.8 

a Calculated by the G4, G4MP2, or G3MP2 methods according to the standard atomization 
procedure. The expanded uncertainty assessed to be ±3.5 kJ·mol−1 for the G4 [13]. The expanded 
uncertainty assessed to be ±4.1 kJ·mol−1 for the G3MP2 [15] and CBS-APNO methods; b calculated 
by the G4, G4MP2, G3MP2, and CBS-APNO methods with help of well balance reactions (see ESI) 
using the experimental ∆𝐻m

o (g)-values for the reaction participants (see Tables S7–S11); c calculated 
for each compound as the weighted average from columns 2 to 8 from this table. 

As can be seen from Table 6, the enthalpies of formation calculated using G4, G4MP2, 
G3MP2, and CBS-APNO are very close, regardless of whether an atomization or a WBR 
method is applied. The quantum-chemical values for each compound were averaged and 
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o (g, 298.15 K)exp in Table 
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theoretical reaction enthalpies were calculated (see Table 2) using the theoretical enthalpies 
of the formation of reaction participants according to Hess´s Law. The comparison of these 
“theoretical” reaction enthalpies (“QC” in Table 2) with those from chemical equilibrium 
experiments (“E” in Table 2) and the results from thermochemistry (“TC” in Table 2) 
confirms good consistency of results within the experimental errors. Such agreement is a 
necessary indicator by which to validate the assumptions used to treat chemical 
equilibrium results presented in Section 3.2. 

3.6.5. Thermodynamic Analysis of the Dehydrogenation/Hydrogenation of the LOHC 
Systems 

As a last step, both contributors (∆𝐻m
o (g, 298.15 K) and ∆୪𝐻୫୭ (298.15 K)) to Equation 

(10) were validated. Thus, reliable liquid-phase enthalpies of formation for the 

−74.8

a Calculated using the atomization procedure.

As can be seen from Table 6, the enthalpies of formation calculated using G4, G4MP2,
G3MP2, and CBS-APNO are very close, regardless of whether an atomization or a WBR
method is applied. The quantum-chemical values for each compound were averaged and
the theoretical values ∆ f Ho

m(g, 298.15 K)theor (see Table 6, last column) were obtained. These
theoretical values are compared with the experimental values ∆ f Ho

m(g, 298.15 K)exp in Table 4
and the agreement is within the limits of experimental uncertainties.

H0-MI, H2-MI, H4-MI, and H8-MI are involved in the reactions R-I to R-IV. Thus, the
theoretical reaction enthalpies were calculated (see Table 2) using the theoretical enthalpies of
the formation of reaction participants according to Hess´s Law. The comparison of these
“theoretical” reaction enthalpies (“QC” in Table 2) with those from chemical equilibrium
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experiments (“E” in Table 2) and the results from thermochemistry (“TC” in Table 2)
confirms good consistency of results within the experimental errors. Such agreement is a
necessary indicator by which to validate the assumptions used to treat chemical equilibrium
results presented in Section 3.2.

Table 6. Theoretical gas-phase enthalpies of formation ∆ f Ho
m(g) at T = 298.15 K (p◦ = 0.1 MPa) for

indole derivatives as calculated by different methods (in kJ·mol−1).

Compound G4
AT a

G4
WBR b

G4MP2
AT a

G4MP2
WBR b

G3MP2
AT a

G3MP2
WBR b

CBS-APNO
WBR b ∆fHo

m(g)theor
c

N-methyl indole 149.9 ± 3.5 151.1 ± 2.0 146.7 ± 3.5 152.7 ± 2.0 148.9 ± 4.1 152.0 ± 2.4 149.1 ± 2.4 150.7 ± 2.0
N-methyl indoline 106.1 ± 3.5 98.6 ± 2.0 104.3 ± 3.5 100.1 ± 2.0 104.3 ± 4.1 99.2 ± 2.4 99.2 ± 2.4 100.5 ± 2.0
H4-N-methylindole 41.9 ± 3.5 36.6 ± 2.5 41.4 ± 3.5 37.7 ± 2.5 43.9 ± 4.1 39.4 ± 2.9 41.0 ± 2.9 39.5 ± 2.2
cis-H8-N-methylindole −74.8 ± 3.5 −83.5 ± 1.8 −73.6 ± 3.5 −82.3 ± 1.8 −72.2 ± 4.1 −82.6 ± 2.1 −84.2 ± 2.1 −81.5 ± 1.8
trans-H8-N-methylindole −77.2 ± 3.5 −85.9 ± 1.8 −75.9 ± 3.5 −84.6 ± 1.8 −73.7 ± 4.1 −84.1 ± 2.1 −82.1 ± 2.1 −82.9 ± 1.8

a Calculated by the G4, G4MP2, or G3MP2 methods according to the standard atomization procedure. The
expanded uncertainty assessed to be ±3.5 kJ·mol−1 for the G4 [13]. The expanded uncertainty assessed to be ±4.1
kJ·mol−1 for the G3MP2 [15] and CBS-APNO methods; b calculated by the G4, G4MP2, G3MP2, and CBS-APNO
methods with help of well balance reactions (see ESI) using the experimental ∆ f Ho

m(g)-values for the reaction
participants (see Tables S7–S11); c calculated for each compound as the weighted average from columns 2 to 8
from this table.

3.6.5. Thermodynamic Analysis of the Dehydrogenation/Hydrogenation of the
LOHC Systems

As a last step, both contributors (∆ f Ho
m(g, 298.15 K) and ∆g

l Ho
m(298.15 K)) to Equation (10)

were validated. Thus, reliable liquid-phase enthalpies of formation for the participants of
hydrogenation/dehydrogenation reaction of 1-methyl-indole (see Figure 8) can be provided
now, as well as reliable hydrogenation/dehydrogenation enthalpy for this reaction in the
liquid phase.
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Thermochemical data required for these calculations are given in Table 7 for the
hydrogen-rich (HR) species.

Table 7. Liquid phase enthalpies of formation, ∆ f Ho
m(liq), of the hydrogen-reach counter-parts, at

T = 298.15 K (p◦ = 0.1 MPa, in kJ·mol−1).

Compound ∆fHo
m(gas)HR ∆

g
l Ho

m ∆fHo
m(liq)HR

a

H8-indole [36] −64.0 ± 1.9 53.5 ± 0.7 −117.5 ± 2.0
H8-MI −82.9 ± 1.8 b 49.2 ± 0.8 c −132.1 ± 2.0

a Calculated according to Equation (10); b from Table 6; c estimated as shown in Figure S4.

Thermochemical data required for these calculations are given in Table 8 for the for
their hydrogen-lean (HL) counter-parts.

The hydrogenation enthalpy of the H0-1-methyl-indole/H8-1-methyl-indole LOHC
system (see Figure 8) was derived according to Hess´s Law, using the standard molar
enthalpies of formation of the reaction participants evaluated in Tables 7 and 8 and listed
in Table 9. The hydrogenation enthalpy of the H0-indole/H8-indole LOHC system is given
in Table 9 for comparison.
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Table 8. Liquid phase enthalpies of formation, ∆ f Ho
m(liq), of the hydrogen-lean counter-parts, at

T = 298.15 K (p◦ = 0.1 MPa, in kJ·mol−1).

Compound ∆fHo
m(gas)HL ∆

g
l Ho

m ∆fHo
m(liq)HL

a

indole [36] 162.5 ± 1.0 65.3 ± 0.6 97.2 ± 1.2
H0-MI [Table 4] 152.1 ± 1.4 62.0 ± 0.3 90.1 ± 1.4

a Calculated according to Equation (10).

Table 9. Liquid phase reaction enthalpies, ∆r Ho
m(liq), of the hydrogenation of perhydro-indoles

(reaction according to Equation (8)), at T = 298.15 K (p◦ = 0.1 MPa, in kJ·mol−1).

Compound ∆fHo
m(liq)HR

a
∆fHo

m(liq)HL
b ∆rHo

m(liq) c ∆rHo
m(liq)/H2

d

H8-indole [36] −117.5 ± 2.0 97.2 ± 1.2 −214.7 ± 2.3 −53.7 ± 0.8
H8-MI −132.1 ± 2.0 90.1 ± 1.4 −222.2 ± 2.4 −55.6 ± 0.8

a From Table 7; b from Table 8; c calculated according to the Hess´s Law applied to Figure 8; d reaction enthalpy
per mole H2.

From a practical point of view, relating the enthalpy of the reaction to the amount of
H2 released (kJ·mol−1/H2) allows a comparison of the enthalpy values of LOHC systems
with different stoichiometries. In these units, the hydrogenation enthalpies of indole and
1-methyl-indole −53.7 and −55.6 kJ·mol−1/H2 (see Table 9) are quite comparable within
their uncertainties. However, the thermal stability of N-methyl-indoles is significantly
higher, giving more advantages for technical applications of the latter series of LOHC.

4. Conclusions

In this work, a thermodynamic study was conducted on 1-methyl-indole as a LOHC
compound. Reaction thermodynamics have been analyzed by two approaches: evaluations of
reaction equilibria and combustion calorimetry, validated by quantum-chemical methods.

The heat demand due to the enthalpy of reaction for H2 release from perhydro-
1-methyl-indole is significantly lower than in the case of homocyclic LOHCs and in a
similar order of magnitude than for perhydro-indole. Hence, it can be concluded that
the dehydrogenation reaction can be performed under similarly mild conditions as for
perhydro-indole. Furthermore, the results support the hypothesis that methylated indole is
more stable in the reactive cycle of hydrogenation and dehydrogenation. The amount of
decomposition products observed for the 1-methyl-indole LOHC system is significantly
lower than for the indole system under the same conditions. The methylation of the carrier
molecule improves the chemical stability in the reactive cycle. This observation might also
be transferable to other LOHC systems. However, a small disadvantage of the methylated
carrier is the slightly higher molar mass, corresponding to a marginally smaller gravimetric
storage density.
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mixtures for the study of chemical equilibrium; Table S2: Formula, density ρ(T = 293 K), and massic
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Table S4: Results of transpiration method for indole derivatives: absolute vapor pressures p, standard
molar vaporization enthalpies and standard molar vaporization entropies; Table S5: Compilation
of data on molar heat capacities Co

p,m(liq) and heat capacity differences; Table S6: Experimental
molar heat capacities Co

p,m(liq) (in J.K−1.mol−1) of 1-methylindole; Table S7: Reactions and reaction
enthalpies calculated by using quantum-chemical methods for 1-methyl-indole; Table S8: Reac-
tions and reaction enthalpies calculated by using quantum-chemical methods for 1-methyl-indoline;
Table S9: Reactions and reaction enthalpies calculated by using quantum-chemical methods for
H4-1-methyl-indole; Table S10: Reactions and reaction enthalpies calculated by using quantum-
chemical methods for cis-H8-1-methyl-indole; Table S11: Reactions and reaction enthalpies cal-
culated by using quantum-chemical methods for trans-H8-1-methyl-indole; Table S12: Reference
values for ∆ f Ho

m(g, 298.15 K) used for calculation reaction enthalpies in Tables S7–S11 with help of
quantum-chemical methods. Figure S1: Reaction scheme employed to produce 1-methylindoline;
Figure S2: NMR spectra of 1-methylindoline; Figure S3: Comparison of vapor pressures for1-methyl-
indole; Figure S4: Calculation enthalpy of vaporization, ∆g

l Ho
m(298.15 K), of H8-1-methyl-indole based

on the vaporization enthalpy of H8-indole. References [37–46] are cited in the supplementary materials.
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