
Citation: Acho, L.D.R.; Oliveira,

E.S.C.; Carneiro, S.B.; Melo, F.P.A.;

Mendonça, L.d.S.; Costa, R.A.; Borges,

R.S.; Machado, M.B.; Koolen, H.H.F.;

Magalhães, I.R.d.S.; et al. Antidiabetic

Activities and GC-MS Analysis of

4-Methoxychalcone. AppliedChem

2024, 4, 140–156. https://doi.org/

10.3390/appliedchem4020010

Academic Editor: Jason Love

Received: 16 January 2024

Revised: 4 March 2024

Accepted: 1 April 2024

Published: 10 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Antidiabetic Activities and GC-MS Analysis of
4-Methoxychalcone
Leonard D. R. Acho 1 , Edinilze S. C. Oliveira 2, Simone B. Carneiro 1, Fernanda Paula A. Melo 3,
Leilane de S. Mendonça 1, Renyer A. Costa 2, Rosivaldo S. Borges 3, Marcos B. Machado 2 , Hector H. F. Koolen 4 ,
Igor Rafael dos S. Magalhães 1 and Emersom S. Lima 1,*

1 College of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69077-000, AM, Brazil;
tigrefarma84@hotmail.com (L.D.R.A.); braga.simone.c@gmail.com (S.B.C.);
leilane.smendonca@gmail.com (L.d.S.M.); magalhaes.irs@gmail.com (I.R.d.S.M.)

2 Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas,
Manaus 69077-000, AM, Brazil; edinilzeoliveira@gmail.com (E.S.C.O.); renyer.costa@gmail.com (R.A.C.);
marcosmachado@ufam.edu.br (M.B.M.)

3 Center for Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of
Pará, Belém 66075-110, PA, Brazil; fernandapamelo@gmail.com (F.P.A.M.); rosborg@ufpa.br (R.S.B.)

4 Research Group in Metabolomics and Mass Spectrometry, School of Health Sciences, State University of
Amazonas, Manaus 69005-010, AM, Brazil; hectorkoolen@gmail.com

* Correspondence: eslima@ufam.edu.br

Abstract: Diabetes mellitus is a chronic metabolic disease that is mainly characterized by hyper-
glycemia. Chalcones and their derivatives have demonstrated promising pharmacological potential
for the treatment of diabetes. The aim of the study was to evaluate antidiabetic activities and analyze
4-methoxychalcone (MPP) using GC-MS. The compound was characterized using mass spectroscopy,
nuclear magnetic resonance and headspace with gas chromatography coupled to mass spectrometry
(HS-GC-MS). MPP was evaluated via the inhibition of the alpha-glucosidase enzyme, cell viability
and antiglycation and hemolytic activities in vitro. The study of the interaction between the bovine
serum albumin protein and MPP was investigated via molecular docking. Oral sucrose tolerance
and oral glucose tolerance tests were performed in streptozotocin (STZ)-induced diabetic mice. The
HS-GC-MS method was able to accurately detect and characterize the compound, and the interaction
between MPP and BSA revealed the remarkable affinity for the two main binding sites of BSA. This
was confirmed by the in vitro antiglycation test, since MPP showed activity through both oxidative
and non-oxidative stress. MPP significantly attenuated the increase in glycemia after glucose loading
in STZ-induced diabetic mice. These results confirm that MPP has antihyperglycemic activity and
may be an alternative for the treatment of diabetes mellitus.

Keywords: 4-methoxychalcone; diabetes; antiglycant; antihyperglycemic

1. Introduction

Diabetes mellitus (DM) is a set of metabolic disorders that is characterized by increased
blood glucose, and it has been considered to be one of the biggest current health problems
in the world [1]. In all countries, there has been a significant increase in diabetes in
recent years [1]. The overall prevalence of DM in adults increases with age, and there is a
higher prevalence in men than in women [2]. In 2021 alone, excluding the mortality risks
associated with the COVID-19 pandemic, an estimated 6.7 million adults between the ages
of 20 and 79 died from the consequences of diabetes [3]. Future projections suggest that
783 million people will have diabetes by 2045 [2].

The development of sequelae as a result of DM has been associated with the accumula-
tion of advanced glycation end products (AGEs), which are proteins or glycated lipids that
form as a result of chronic hyperglycemia [4,5]. AGEs are related to the multiple complica-
tions of diabetes [4], such as retinopathy, renal failure and amputation [6], in addition to
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hypertension [7], decreased muscle mass and performance [8], decreased bone density and
strength [8,9] and the activation of inflammatory cytokines [10]. Some existing therapies for
the treatment of DM make use of inhibitors of the enzyme α-glucosidase, such as acarbose
and voglibose, which are commonly prescribed to lower postprandial glucose. However,
this does not prevent the long-term complications of diabetes, in addition to being able to
cause unwanted side effects such as nausea, vomiting and abdominal discomfort [11,12].
Although metformin, which is an oral hypoglycemic agent, has become an option for the
treatment of type 2 DM, some patients cannot receive it due to the risk of lactic acidosis [13].
These effects, added to low adherence to diabetic treatment, contribute to the substantial
aggravation of this disease, thus increasing treatment costs and sometimes leading to
death [14].

Given this context, in order to enable the emergence of new classes of more effective
drugs, new alternatives with fewer side effects and lower cost have been developed [15,16].
Chalcones, which belong to the class of flavonoids, have attracted the attention of re-
searchers not only from a synthetic and biosynthetic point of view but also from a pharma-
cological point of view [17]. Claisen–Schmidt condensation is typically used to synthesize
chalcones in the presence of basic catalysts [18,19]. These substances have already revealed
biological properties for the treatment of diabetes [18,20–22] and other actions that in-
clude antimutagenic [23], anti-inflammatory [24,25], antimicrobial [26], antifungal [27] and
antiproliferative [28] activities.

Therefore, this study addresses the anti-diabetic potential was analyzed in in vitro
and in vivo experimental models of the 4-methoxychalcone. For the evaluation of its
antiglycation activity in vitro and its ability to interact with bovine serum albumin, in silico
and chemical characterization using the headspace technique with gas chromatography
coupled to mass spectrometry were performed.

2. Materials and Methods
2.1. Materials

Intestinal acetone powders from rat, α-glucosidase of Saccharomyces cerevisiae, acarbose,
4-nitrophenyl α-D-glucopyranoside, resazurin sodium salt, penicillin-streptomycin, strep-
tozotocin (STZ), glyoxal, phosphate-buffered saline (PBS), bovine serum albumin (BSA),
aminoguanidine and fructose were purchased from Sigma-Aldrich (St Louis, MO, USA).
The MRC-5 cell line (human lung fibroblast culture) was obtained from the Cell Bank
of Rio de Janeiro (Brazil). Methanol and dimethyl sulfoxide (DMSO) were purchased
from Tedia (Fairfield, OH, USA). The deuterated solvent dimethylsulfoxide with tetram-
ethylsilane (TMS, D, 98.0%) was purchased from Cambridge Isotope Laboratories Inc.
(Andover, MA, USA). The reaction was monitored using thin layer chromatography (TLC)
and an F-254 silica gel glass plate (20 cm × 20 cm). The melting point measurement was
determined in an electrothermal melting point apparatus (MQAPF-302, Microquímica
Equipamentos Ltd.a, Palhoça, SC, Brazil).

2.2. Synthesis

The synthesis of 4-methoxychalcone or [(E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-
1-one] was carried out using the Claisen-Schmidt condensation reaction. A mixture of
6.0 mL of acetophenone (50.0 mmol) and 6.56 mL of p-methoxy-benzaldehyde (55.0 mmol)
was dissolved in 15 mL of ethanol, which was cooled in an ice bath in order to add 25 mL of
an aqueous solution of sodium hydroxide (63.0 mmol). Subsequently, the reaction mixture
was kept under constant magnetic stirring for 2 h, at a temperature between 25–30 ◦C, and
then kept for 24 h under refrigeration. The crystals were separated after washing with
chilled distilled water and vacuum filtration. The crude product was recrystallized using
hot ethanol, and a yield of 92.0% of 4-methoxychalcone was obtained.
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2.3. Characterization by NMR and ESI-MS/MS

The NMR analyses (1H, 13C, DEPT135, 1H-1H COSY, HSQC and HMBC) of the MPP
were performed using an NMR spectrometer [(Bruker®® Avance III HD) at 500.13 MHz
for protons and 125.8 MHz for 13C, BBFO Plus SmartProbeTM (New York, NY, USA)]
at 298.0 K. The 1H NMR spectra were acquired using the ZGPR (residual water signal
suppression) pulse sequence. The chemical displacements are presented in ppm and have
the TMS (0.0 ppm) as the internal reference. For the characterization of the chemical
structure using NMR, the following abbreviations are used: s = simplet, d = doublet,
m = multiplet and J (coupling constant in Hz). To acquire the mass spectra, a quadrupole
triple mass spectrometer (TSQ Quantum Access, Thermo ScientificTM, San Jose, CA, USA)
was used. The sample was solubilized in chloroform (1 mg mL−1) and subsequently
diluted to 5 µg mL−1. The electrospray ionization source (ESI) was used in positive mode
for the ESI-MS and ESI-MS/MS analyses by direct infusion (5 µL). The analytical conditions
were as follows: acquisition range m/z 100–1000 Da, capillary potential of 40 V; spray
voltage of 8 kV; capillary temperature 247 ◦C; drag gas N2, flow of 11 arbitrary units (arb).
Fragmentation was performed with collision energy between 35 to 45 eV. The XcaliburTM

software version 2.2 (Thermo ScientificTM) was used during the acquisition and processing
of the spectra.

(E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (MPP): yellow powder, yield: 92%,
mp: 108.4–110.1 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 7.86 (2H, d, J = 8.7 Hz, H-2; H-6);
δ 7.03 (2H, d, J = 8.7 Hz, H-3; H-5); δ 7.73 (1H, d, J = 15.5, H-β); δ 7.80 (1H, d, J = 15.5, H-β);
δ 7.57 (2H, d, J = 7.3 Hz, H-2′; H-6′); δ 8.14 (2H, m, H-3′; H-5′); δ 7.66 (1H, d, J = 7.3 Hz,
H-4′); δ 3.83 (3H, s, p-OCH3); 13C NMR (125.8 MHz, DMSO-d6): 55.8 (p-OCH3); 114.8 (C-3;
C-5); 120.1 (C-δ); 127.6 (C-1); 128.9 (C-3′; C-5′); 129.1 (C-2′; C-6′); 131.3 (C-2; C-6); 133.4
(C-4′); 138.2 (C-1); 144.5 (C-δ); 161.7 (C-4); 189.6 (C=O). ESI-MS: m/z 239.0 [M+H]+. MS/MS
[M+H]+: 105.2 (100%), 133.1 (69.4%), 161.0 (74.2%). Molecular formula: C16H14O2.

2.4. Determination of Purity Using 1H qNMR

Using quantitative 1H NMR (qNMR), the purity of the MPP was determined using the
external standard dimethyl terephthalate (DMT) (certified purity 99.988 ± 0.060%, Inmetro,
Rio de Janeiro, Brazil). This standard (n = 3) was prepared in DMSO-d6 (530.0 µL), with
TMS as the internal reference (0.0 ppm). Initially, the 90o pulse calibration was performed
for all samples using the ZG pulse sequence. The longitudinal relaxation constant (T1)
was estimated for the hydrogens at δ 8.08 (s, 4 H) using the inversion-recovery experiment
(t1ir1d) (Figures S8–S10). The 1H spectra were acquired using the ZGPR pulse sequence
(residual water signal suppression), without sample rotation. The measured acquisitions
of the standard (AQ) were 3.27 s, relaxation interval (d1) of 22 s (7 × T1 + AQ), 64k time
domain points (TD) and a spectral window (SW) of 19.99 ppm.

MPP (4.80 ± 0.02 mg, n = 3) was dissolved in 530.0 µL of DMSO-d6 containing
TMS (≥99.0% purity) as the internal reference (0.0 ppm). These solutions remained in an
ultrasound bath for 5 min (25.0 ◦C) and were then transferred to 5 mm-diameter NMR
tubes [29]. The 1H NMR acquisition parameters of MPP were standardized for the signal at
7.03 ppm (d, 2 H). The constant T1 was estimated by the inversion-recovery experiment
(t1ir1d). The optimized acquisition parameters were as follows: P1 10.2 µs, AQ of 3.27 s,
d1 of 15 s (7 × T1 + AQ), TD of 64 K, SW of 19.99 ppm, number of transients of 4, dummy
scans of 2, receiver gain value 90.5. TopSpin software 4.1.3 was used for NMR spectra
processing. The purity of the MPP was determined using Equation (1) [30]:

PMMP = (IMPP/ITD) × (NTD/NMPP) × (MMPP/MTD) × (WTD/WMPP) × PTD (1)

where I is the area of the absolute integral, (N) number of nuclei, (M) molar mass, (WTD
and WMPP) weight, (PMPP) purity of the analyte and (PTD) purity of the standard.
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2.5. Analysis of 4-Methoxychalcone Using Headspace and Gas Chromatography Coupled to Mass
Spectrometry (HS-GC-MS)
2.5.1. Extraction Procedure

Solutions containing MPP diluted with methanol were prepared using a range of
concentrations (50 to 1000 mg/mL). The solutions were stored appropriately in vials under
refrigeration until use. The analysis of the MPP was carried out using the headspace
procedure [31] under optimized conditions and with a 1 mL syringe. Extraction was
performed with a 10 mL vial sealed with a septa and screw cap, at 150 ◦C and agitation,
for 10 min, with 100 µL of the reference or sample solution. After extraction, 1 mL of the
vaporized sample inside the vial was aspirated, inserted into the injection port of the GC
and analyzed as described in Section 2.5.2.

2.5.2. Chromatographic and Spectrometric Conditions

In the chromatographic and spectrometric analyses [31,32], diluted MPP (preparation
described in Section 2.5.1) was analyzed using a gas chromatograph (2010 GC, Shimadzu,
Kyoto, Japan) equipped with a mass spectrometer. The injection was carried out in splitless
mode. The GC system was equipped with a DB-5 fused silica capillary column (30 m
0.25 mm–0.25 µm). The carrier gas was ultrapure helium (1.0 mL/min) and the linear
velocity was 36.8 cm/s. The oven temperature was programmed as follows: 60 ◦C for
5 min, from 60 to 300 ◦C at 10 ◦C/min and 300 ◦C for 5 min. The injector and detector
temperatures were set at 60 and 100 ◦C, respectively. In the mass spectrometry, the ion
source temperature was 250 ◦C and the interface temperature was 280 ◦C, the detector was
0.7 kV and the mass/charge was 50 to 550 m/z. The signal was recorded and processed
with LabSolutions GC-Solution software.

2.6. Molecular Docking

Molecular docking calculations were performed with the aid of the AutoDock Vina
program (The Scripps Research Institute, San Diego, CA, USA) [33] in order to evaluate
the interaction of MPP with bovine serum albumin (BSA), which was obtained from the
Protein Data Bank (http://www.rcsb.org/pdb/, (accessed on 12 February 2023) under
the code 4OR0 [34]. The docking protocol consisted of removing water molecules and the
ligand (naproxen), assigning Gasteiger charges and delimiting grid boxes of dimensions
12 Å × 10 Å × 10 Å centered in the active site I (x = 69.671, y = 26.607, z = 86.784) and
14 Å × 16 Å × 14 Å centered in the active site II (x = 69.574, y = 28.575, z = 105.018). To
validate the docking protocol, the ligand naproxen was removed and docked at sites I and
II and then compared to the crystallized structures in each of the sites using the calculation
of RMSD values. The obtained RMSD values were 1.93 and 0.85 for site I and II, respectively.
Values up to 2 Å are considered reliable for a docking validation. The ligand geometry was
optimized using DFT (Density Functional Theory) at B3LYP/6-31G (d) level. The docking
results were visualized using Discovery Studio®® 4.5. (Waltham, MA, USA).

2.7. In Vitro Assays
2.7.1. Bovine Serum Albumin (BSA) Glycation Assay

The in vitro glycation assay was performed using two methods: model BSA/GO
(bovine serum albumin and glyoxal) and model BSA/fructose, as previously described
by [35] and adapted by [36]. For the BSA/GO model, the solutions of glyoxal (30 mM) and
BSA (8 mg mL−1) were prepared in phosphate buffer (200 mM, pH 7.4) containing sodium
azide (3.0 mM, pH 7.4) as an antimicrobial agent. To determine the antiglycation activity,
30 µL of MPP (1 mg mL−1 in DMSO), BSA (135 µL) and glyoxal (135 µL) were added
to a microplate, and the initial fluorescence reading was performed (F1). After 24 h of
incubation at 37 ◦C, the final fluorescence reading (F2) was performed. Quercetin was used
as a positive standard (100.0 µg mL−1) and DMSO as a negative control. The BSA/fructose
model was performed as previously described, with the exception of glyoxal, which was
replaced by fructose (100 mM). To determine antiglycation activity via this pathway, the

http://www.rcsb.org/pdb/
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microplate was incubated for 120 h at 37 ◦C. Aminoguanidine was used as a positive
standard (100.0 µg mL−1). Fluorescence readings were performed on a microplate reader
(excitation at 330 nm and emission at 420 nm) (DTX 800, Beckman Coulter, CA, USA). The
50% inhibitory concentration (IC50) of MPP and the standard was determined via serial
dilutions in DMSO (0.2–100.0 µg mL−1). The experiments were carried out in triplicate.
The inhibition percentage was calculated according to Equation (2):

[% inhibition = 100 − (F2 (MMP/standard) − F1 (MMP/standard)/F2 (Negative control) − F2 (Negative control)] × 100 (2)

2.7.2. In Vitro α-Glucosidase Inhibitory Assay

The inhibitory activity of the enzyme α-glucosidase was based on the measurement of
the release of 4-nitrophenol from the 4-nitrophenyl-α-D-glucopyranoside (4-NPGP). The
experiments were carried out using the α-glucosidase enzymes, which were extracted
from rat intestinal acetone powders, and α-glucosidase from S. cerevisiae. The substrate
4-nitrophenyl-α-D-glucopyranoside (4-NPGP) and the two enzymes were diluted in phos-
phate buffer (10 mM, pH 6.9), separately. Each experiment was carried out independently,
following the same experimental protocol [37]. In a microplate, 30 µL of MPP (1 mg mL−1,
in DMSO) and 170 µL of the enzyme (0.08 µg mL−1) were incubated for 5 min at 37 ◦C
under light protection, and the first reading was performed (R1). Subsequently, 100 µL of
the 4-NPGP (5 mg mL−1) was added and, after 20 min of incubation, the second reading
was performed at 405 nm (R2). DMSO was used as a negative control and the acarbose
standard was used as a positive control. The experiments were carried out in triplicate. The
readings were performed on a microplate reader (DTX 800, Beckman Coulter, CA, USA).
To calculate the inhibition percentage, Equation (3) was used:

[% inhibition = 100 − (R2sample/standard − R1sample/standard/R2negative control − R1negative control) × 100] (3)

2.7.3. Hemolytic Test

The hemolytic potential assay was performed according to [38]. Blood from a Swiss
mouse was collected via the intracardiac route for preparation of the 2% erythrocyte
suspension (ES). On a microplate, 100 µL of MPP (420 µM) and 100 µL of ES were added.
Subsequently, the microplate was incubated for 1 h under constant stirring at 37 ◦C. After
this period, the samples were centrifuged (1500 rpm/10 min) and the supernatant was
transferred to another microplate, and the absorbance reading was performed on the
spectrophotometer (DTX 800, Beckman Coulter, CA, USA) at 540 nm. As the positive
control, Triton X-100 (0.5%) was used, and for the negative control, DMSO was used. The
assay was performed in triplicate. The results were interpreted based on the % of hemolysis,
where below 10% is considered non-hemolytic and above 25% is considered hemolytic
activity of the compound [39].

2.7.4. Cell Viability Assay

The cytotoxicity of MPP in human lung fibroblast cells (MRC-5) was determined
according to [40], with adaptations. The method is based on the enzymatic reduction of
MTT (methylthiazolyldiphenyl-tetrazolium bromide) for formation of formazan crystals.
The MRC-5 cells were plated (5 × 103 cells/well) and treated with 100 µL of MPP at
different concentrations (0.6–20.0 µM). The microplate was incubated for 72 h (37 ◦C, 5% de
CO2). After this period, the wells were washed with PBS (pH 7.2) and then 100 µL of MTT
(0.5 mg mL−1) was added. The microplate was incubated for another 4 h at 37 ◦C, under
protection from light. Viable cells metabolize MTT into purple-colored formazan crystals.
Subsequently, 100 µL of DMSO was added to solubilize the formazan crystals and, after
5 min at room temperature, the reading was performed at 560 nm. Doxorubicin (20 µM)
was used as a positive control and PBS as a negative control of cell death. The experiment
was conducted in triplicate. The results were expressed as a percentage and the viability
was calculated using Equation (4):

[% viability = (Abs sample/Abs control) × 100] (4)
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2.8. In Vivo Assays
2.8.1. Animals

The experimental protocols followed the guidelines of the Brazilian National Council
for Control of Animal Experimentation (CONCEA) and were approved by the Ethics
Commission on the Use of Animals (CEUA) at the Federal University of Amazonas (UFAM)
(No. 004/2019). For this study, Swiss albino mice (Unib:SW), males, 6 weeks of age,
weighing 18–20 g, were used, which were obtained from the central vivarium at UFAM,
Manaus, Brazil. The animals were kept under standard laboratory conditions (light-dark
cycle of 12 h, temperature of 22 ± 2 ◦C and relative humidity of 50 ± 10%) and fed with
standardized rodent feed.

2.8.2. Oral Sucrose Tolerance Test (OSTT)

The oral sucrose tolerance test was performed as described by [41], with alterations.
Healthy mice were divided into three groups of six animals. On the eve of the experiment,
the animals were fasted for 12 h, and blood glucose levels were measured with the help
of a portable precision glucometer (Xtra, Abbott Diabetes Care, Amadora, Portugal). One
group was used as an untreated control and received 0.9% saline solution (NTG, Group 1).
Another group received treatment with acarbose at a dose of 100 mg/kg body weight (bw)
(acarbose100, Group 2). One test group was treated with MPP at a dose of 200 mg/kg bw
(MPP200, Group 3). After 20 min, all the groups received a sucrose overload (2 g/kg bw),
and blood samples were collected from the tail vein of the animal. The blood glucose level
was measured at different times using the portable glucometer (30 min, 60 min, 90 min and
120 min). All administrations were performed orally (gavage).

2.8.3. Oral Glucose Tolerance Test (OGTT)

The oral glucose tolerance test was performed as described by [41], with alterations.
The healthy mice were divided into four groups of six animals. One group was used as
an untreated control and received 0.9% saline solution (NTG, Group 1). Another group re-
ceived treatment with metformin at a dose of 200 mg/kg body weight (bw) (metformin200,
Group 2). Two test groups were treated with MPP at doses of 100 mg/kg bw (MPP100,
Group 3) and 200 mg/kg bw (MPP200, Group 4). All groups received a glucose overload
(2 g/kg bw). The OGTT was performed as described in item Section 2.8.4

2.8.4. Oral Glucose Tolerance Test (OGTT) in Diabetic Mice

Type 2 DM induction was performed according to the method described by [42], with
modifications. A group of six healthy animals were separated as a control group (NTG,
Group 1). In the other mice, induction occurred via a single intraperitoneal injection of
nicotinamide solubilized in saline solution (50 mg/kg bw). After 20 min, streptozotocin
(STZ) was administered in a single dose of 150 mg/kg bw (1 M citrate buffer, pH 4.5).
After 96 h, mice with blood glucose greater than 200 mg/dL were considered diabetic. The
diabetic animals were randomized into the following five groups of six animals: untreated
diabetic control group (DNTG, Group 2), standard group treated with metformin at a dose
of 200 mg/kg bw (metformin200, Group 3) and two treatment groups with MPP at doses of
100 mg/kg (MPP100, Group 4) and 200 mg/kg (MPP200, Group 5). The experiment started
with the measurement of the glucose level of all 12 h-fasting animals. Then, the treatment
was carried out according to each group. After 20 min, all the groups received a glucose
overload (2 g/kg bw). Blood glucose levels were measured at 30 min, 60 min, 90 min and
120 min. The metformin, MPP and glucose standard were solubilized in distilled water at
the established doses and administered via gavage.

2.9. Statistical Analysis

The calculation of MPP purity, IC50 and the analytical curve using a linear regression
model was carried out using Excel®® 2013 and GraphPad Prism 6.0 (San Diego, CA, USA).
The results of the in vitro and in vivo experiments were analyzed using the GraphPad Prism



AppliedChem 2024, 4 146

6.0 program (San Diego, CA, USA) using ANOVA (one-way and two-way). The results
were expressed as means (standard deviation). All p-values of < 0.05 were considered
statistically significant.

3. Results
3.1. Chemical Analysis

The structural confirmation of chalcone (E)-3-(4-methoxyphenyl)-1-phenylprop-2-
en-1-one (MPP) was performed based on the interpretation of 1H NMR data (Figure 1),
13C, DEPT135, HSQC, HMBC and ESI-MS/MS (Figures S1–S5), and conformed to those
described in the literature [19]. To obtain the level of purity of MPP, absolute quantification
by 1H quantitative NMR was used, using the PULCON method [43]. Since it is a primary
ratio method, it is not necessary to construct a calibration curve, nor employ standards
that are identical to the analyte of interest [30,44]. In this study, dimethyl terephthalate
(δ8.08, s, 4H) was used as an external standard to calibrate the NMR measurements, since
the displacement is in the same chemical environment as the signal of interest of the
analyte at δ7.03 (d, 2H). Based on the processed spectral data, the calculated average purity
was 96.32% (RSD of 0.73%, n = 3), which indicates a high yield by the method employed
(Table S1) [30].
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3.2. Identification and Characterization of 4-Methoxychalcone via HS-GC-MS

The headspace technique was suitable for the extraction and transfer of 4-methoxycha-
lcone from a liquid sample to a gaseous sample and analyzed by GC-MS. The 4-methoxycha-
lcone peak was identified with the retention time at 40.833 min and the calibration curve
used in the quantification of the substance where the linearity of the responses were
acceptable (R2 = 0.9998), and the molecule was confirmed with the mass spectrum showing
the masses of the ions characteristic of MPP (Figure 2).

The work of [32] involved the study of the differentiation of isomeric methoxychal-
cones via electrospray ionization mass spectrometry and detected ions 133 m/z, 161 m/z
and 239 m/z, which are ions that are compatible with the mass spectrum obtained from
the 4-methoxychalcone in this study. Ions 77, 108, 133, 161, 223, 237, 238 and 239 were the
majority ions detected in the MPP spectrum obtained in this work; the same majority ions
were found in the MPP mass spectrum in searches on the site ChemicalBook [45].
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3.3. Glycation Inhibition Effect

The accumulation of advanced glycation end products (AGEs) is accelerated in hy-
perglycemic conditions, and AGEs have been associated with the various pathological
disorders of diabetic complications [46]. Therefore, the literature reports methodologies
for investigating the formation of AGEs and which analyze both synthetic and natural
agents [36,46].

Since serum albumin plays a dominant role in bioavailability for drug transport, the
efficiency of compounds as pharmaceutical agents depends on their ability to interact
with this protein [47]. As there is no scientific information on the antiglycation effect
in serum albumin models of MPP, the present study evaluated the antiglycation effect
of MPP through oxidative (BSA/GO) and non-oxidative (BSA/fructose) pathways. The
analysis of the results shows that MPP inhibits the glycation of BSA both via the oxidative
pathway (IC50 of 8.8 ± 0.4 µg mL−1 or 37.4 ± 0.8 µM) and via the non-oxidative pathway
(IC50 = 16.2 ± 0.4 µg mL−1 or 65.6 ± 1.7 µM). MPP showed a significant response in rela-
tion to the positive standards quercetin (IC50 = 35.6 ± 0.9 µg mL−1 or 117.8 ± 3 µM) and
aminoguanidine (IC50 = 28.6 ± 1.4 µg mL−1 or 258.6 ± 12.7 µM, respectively (p < 0.05)
(Figure S6). Therefore, these data suggest that MPP can be considered a potent antiglycation
agent that can act in both the early and advanced stages of glycation in diabetic patients.
This statement is justified when comparing these results with other research conducted with
chalcone derivatives for antiglycation, such as the study conducted with oxindole-based
chalcones and their activity against protein glycation (showing an IC50 = 155.22 ± 2.98 µM
to IC50 = 289.47 ± 2.47 µM), presenting inhibitory activity against glycation compared to
the reference standard rutin (IC50 = 294.5 ± 1.5 µM) [48]. This demonstrates that MPP
showed superior antiglycation activity and reinforces the potential that MPP and chalcones
present as antiglycants agents.
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3.4. Molecular Docking for BSA

Understanding the structural aspects of ligand binding by albumins is important for
drug delivery due to the fact that the protein enables drug solubilization, thus allowing
transport by blood. Serum albumin (SA) shows a variety of binding sites; however, two
major regions in albumin are responsible for reversible binding of many drugs [49,50].
Site 1, also named Drug Site 1, is a binding pocket located in the core of subdomain IIA
and comprises all six helices of the subdomain residues 148–154 of subdomain IB. The
interior of the pocket is predominantly non-polar, though it contains two regions of polar
residues [50]. This site binds bulky heterocyclic compounds without a carboxyl group, for
example, warfarin or phenylbutazone. Site 2, also named Drug Site 2, is composed of all
six helices of subdomain IIIA and is similar to site 1 (subdomain IIA), though it is smaller.
This site is best allocated by compounds that have an aromatic ring and carboxylate groups
that show extended conformation, e.g., ibuprofen and suprofen [50]. It is noteworthy
that both BSA and human serum albumin (HSA) are homologous in structure and, due
to the low acquisition cost of BSA, it is common to substitute HSA for BSA to represent
serum albumins in experimental albumin–ligand interaction studies [51,52]. In this context,
docking calculations of the molecule under study were performed with BSA, focusing
on interactions at Drug Sites 1 and 2 (Figure 3), with the aim of supporting the obtained
experimental data.

AppliedChem 2024, 4, FOR PEER REVIEW  10 
 

 

spectroscopic methods. This protein affinity is directly linked to the distribution and 
half-life of chalcones [52,53].  

 
Figure 3. Docking calculations of MPP in the BSA active sites: (a) 3D and 2D representations of in-
teractions at Drug Site 1; (b) 3D and 2D representations of interactions at Drug Site 2. 

To predict the pharmacokinetics of MPP, the web tool SwissADME was used 
(hĴp://www.swissadme.ch, accessed on 12 February 2023). MPP demonstrated compli-
ance with Lipinski’s Rule of Five and Veber’s Rule, which enables its oral use [54,55]. 
Additionally, the compound showed a moderate-to-high tendency to dissolve in organic 
solvents, with moderate solubility in water (Table S2). These properties suggest the po-
tential of MPP to cross the blood–brain barrier, but they may also influence its bioavaila-
bility, estimated at 55%, due to gastrointestinal absorption and protein binding (Figure 
3). However, the compound’s lipophilicity may reduce its oral absorption. To overcome 
this challenge, future studies will seek to develop a nanoparticle formulation, aiming to 
enhance its effects without increasing the risk of toxicity. 

3.5. Hemolytic Activity and Cytotoxic Effect in MRC-5 Cells 
The cytotoxic effect of MPP was evaluated in human lung fibroblast cells (MRC-5) at 

the concentrations of 0.6 µM to 20.0 µM during 24 h, 48 h and 72 h of incubation (Figure 
4A). MPP presented cell viability of 108.4 ± 8.1% (24 h), 110.3 ± 9.1% (48 h) and 85.5 ± 1.5% 
(72 h) at a concentration of 20 µM. Therefore, an IC50 > 20.0 µM means that the concentra-
tion that causes 50% of cell death is above this value. The positive control doxorubicin (20 
µM) significantly reduced cell viability by approximately 90.0% after 72 h. However, 
compared to the control group of untreated cells, MPP showed no significant difference 
in either the tested concentrations and in the different incubation periods (p > 0.05).  

Figure 3. Docking calculations of MPP in the BSA active sites: (a) 3D and 2D representations of
interactions at Drug Site 1; (b) 3D and 2D representations of interactions at Drug Site 2.

For Drug Site 1, MPP showed binding energy equal to −8.5 kcal/mol for the higher
score conformation, while naproxen, the co-crystallized ligand, presented binding energy
equal to −9.0 kcal/mol. Binding mode analysis showed that MPP complexed to Drug Site 1
(Figure 3a) by H-bond interaction with Ser 343, π-sigma with Leu 346, π-π (T-Shaped) with
Trp 213 and π-alkyl interactions with Arg 194, Val 342, Leu 480 and Ala 209. For Drug Site
2, MPP showed binding energy equal to −7.5 kcal/mol for the higher score conformation,
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while naproxen presented binding energy equal to −8.9 kcal/mol. Binding mode analysis
revealed that MPP complexed to Drug Site 2 (Figure 3b) by π-cation interaction with
Arg 409, π-sigma with Thr 448 and π-alkyl interactions with Arg 194, Val 342, Leu 480
and Ala 209. Although the molecule showed negative binding values for both sites, Drug
Site 1 seems to better accommodate the molecule under study, as the docking simulations
revealed a more negative value for MPP at this site (−8.5 kcal/mol). Furthermore, despite
the interactions being predominantly non-polar in both sites, in Drug Site 1, a strong
H-bond is formed, followed by π-π (T-Shaped) interaction, indicating more stability for
the BSA-MPP complex when MPP binds to Drug Site 1. Moreover, the size of Drug Site
1 contributes to better allocation of the molecule, as this site is larger than Drug Site 2
and thus favors better interactions. The binding mechanism of chalcone to bovine serum
albumin (BSA) has been widely explored by computational and spectroscopic methods.
This protein affinity is directly linked to the distribution and half-life of chalcones [52,53].

To predict the pharmacokinetics of MPP, the web tool SwissADME was used (http://
www.swissadme.ch, accessed on 12 February 2023). MPP demonstrated compliance with
Lipinski’s Rule of Five and Veber’s Rule, which enables its oral use [54,55]. Additionally,
the compound showed a moderate-to-high tendency to dissolve in organic solvents, with
moderate solubility in water (Table S2). These properties suggest the potential of MPP
to cross the blood–brain barrier, but they may also influence its bioavailability, estimated
at 55%, due to gastrointestinal absorption and protein binding (Figure 3). However, the
compound’s lipophilicity may reduce its oral absorption. To overcome this challenge,
future studies will seek to develop a nanoparticle formulation, aiming to enhance its effects
without increasing the risk of toxicity.

3.5. Hemolytic Activity and Cytotoxic Effect in MRC-5 Cells

The cytotoxic effect of MPP was evaluated in human lung fibroblast cells (MRC-5) at
the concentrations of 0.6 µM to 20.0 µM during 24 h, 48 h and 72 h of incubation (Figure 4A).
MPP presented cell viability of 108.4 ± 8.1% (24 h), 110.3 ± 9.1% (48 h) and 85.5 ± 1.5%
(72 h) at a concentration of 20 µM. Therefore, an IC50 > 20.0 µM means that the concentration
that causes 50% of cell death is above this value. The positive control doxorubicin (20 µM)
significantly reduced cell viability by approximately 90.0% after 72 h. However, compared
to the control group of untreated cells, MPP showed no significant difference in either the
tested concentrations and in the different incubation periods (p > 0.05).

AppliedChem 2024, 4, FOR PEER REVIEW  11 
 

 

 
Figure 4. (A) Cell viability of the untreated control group, positive control doxorubicin at 20 µM 
(doxo) and MPP at different concentrations per period of 24, 48 and 72 h in MRC-5 cell line; (B) he-
molytic activity of MPP at the concentration of 20 µM compared to the standard triton X-100. Results 
are shown as the mean ± standard deviation (n = 3). **** p < 0.0001. ns = not significant (p > 0.05) vs. 
untreated control group; ** p < 0.01 (ANOVA followed by Dunnett’s multiple comparisons test). 

In addition, as shown in Figure 4B, MPP showed low hemolytic activity (4.1 ± 0.6%) 
(20 µM) compared to the triton X-100 standard (99.1 ± 2.9%). This result is below 10%, 
which is interpreted as non-hemolytic [39]. In comparison with the negative control 
(DMSO), no significant difference was found (p > 0.05). Therefore, these results reveal to 
us that MPP does not present hemolytic toxicity in the concentrations and experimental 
models tested. 

3.6. α-Glucosidase Inhibition 
Inhibition of the catalytic activity of the enzyme α-glucosidase leads to a delay in 

glucose absorption and a reduction in postprandial glycemia [56]. In view of the an-
ti-diabetic potential of chalcone derivatives [22,57]. MPP was initially evaluated for the 
inhibitory potential of the enzyme α-glucosidase extracted from Saccharomyces cerevisiae 
and rat intestinal acetone powders. This constituent exhibited high inhibitory activity of 
the enzyme from S. cerevisiae (93.2 ± 1.5%), with an IC50 of 24.5 ± 0.8 µg mL−1, when com-
pared to standard acarbose (24.1 ± 1.5%). This result differs from a previously described 
study, in which the inactivity of this chalcone against α-glucosidase from yeast was 
demonstrated [56]. The positive control quercetin showed inhibition of 99.6 ± 0.3% (Fig-
ure 5) with an IC50 of 5.9 ± 0.2 µg mL−1 (p < 0.05), corroborating the suggestion that this 
flavonoid is a competitive-type inhibitor and that the positions at C = O and 3-OH (C 
ring) and the conjugations of the B ring play an important role in the inhibition of the 
enzyme [58].  

Figure 4. (A) Cell viability of the untreated control group, positive control doxorubicin at 20 µM (doxo)
and MPP at different concentrations per period of 24, 48 and 72 h in MRC-5 cell line; (B) hemolytic
activity of MPP at the concentration of 20 µM compared to the standard triton X-100. Results are
shown as the mean ± standard deviation (n = 3). **** p < 0.0001. ns = not significant (p > 0.05) vs.
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In addition, as shown in Figure 4B, MPP showed low hemolytic activity (4.1 ± 0.6%)
(20 µM) compared to the triton X-100 standard (99.1 ± 2.9%). This result is below 10%,
which is interpreted as non-hemolytic [39]. In comparison with the negative control
(DMSO), no significant difference was found (p > 0.05). Therefore, these results reveal to
us that MPP does not present hemolytic toxicity in the concentrations and experimental
models tested.

3.6. α-Glucosidase Inhibition

Inhibition of the catalytic activity of the enzyme α-glucosidase leads to a delay in
glucose absorption and a reduction in postprandial glycemia [56]. In view of the anti-
diabetic potential of chalcone derivatives [22,57]. MPP was initially evaluated for the
inhibitory potential of the enzyme α-glucosidase extracted from Saccharomyces cerevisiae
and rat intestinal acetone powders. This constituent exhibited high inhibitory activity of
the enzyme from S. cerevisiae (93.2 ± 1.5%), with an IC50 of 24.5 ± 0.8 µg mL−1, when
compared to standard acarbose (24.1 ± 1.5%). This result differs from a previously de-
scribed study, in which the inactivity of this chalcone against α-glucosidase from yeast
was demonstrated [56]. The positive control quercetin showed inhibition of 99.6 ± 0.3%
(Figure 5) with an IC50 of 5.9 ± 0.2 µg mL−1 (p < 0.05), corroborating the suggestion that
this flavonoid is a competitive-type inhibitor and that the positions at C = O and 3-OH
(C ring) and the conjugations of the B ring play an important role in the inhibition of the
enzyme [58].
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Figure 5. Inhibitory activity of acarbose, quercetin and MPP at the concentration 100 µg mL−1 on
the enzymes of α-glucosidase extracted from Saccharomyces cerevisiae and α -glucosidase extracted
from rat intestinal acetone powders. The results are expressed as mean ± SD, n = 3. **** p < 0.0001
(ANOVA followed by Dunnett’s multiple comparisons test).

Regarding the inhibitory evaluation in α-glucosidase from rat intestine, MPP was
inactive (1.1 ± 0.2%) compared to standard acarbose (65.5 ± 0.4%) (p < 0.05). Our data
prove that, with different enzymes, the in vitro model used can compromise a reliable
comparison between studies, which led us to investigate the mechanism of action of MPP
in an in vivo experimental model.

3.7. Anti-Hyperglycemic Effect

MPP was evaluated in the oral sucrose tolerance test (OSTT) at a concentration of
200 mg/kg bw. Initially, healthy mice were subjected to a sucrose overload of 2 g/kg bw,
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causing high blood glucose levels over 200 mg/dL during the 120 min experiment (NTG)
(Figure 6A). Acarbose was used as a positive control and administered at a dose of
100 mg/kg bw (Acarbose100). In this group, a reduction in the glucose level of 47.1%
was observed over 90 min and was significantly different from the NTG Group (p < 0.0001).
In contrast, MPP at a dose of 200 mg/kg bw (MPP200) did not reduce glucose levels
and there was no significant difference in relation to this group (p > 0.05). Therefore,
these results corroborate the enzymatic inhibition study carried out with rat intestine
α-glucosidase in vitro (previously described) and suggest that MPP does not inhibit the
intestinal α-glucosidase enzyme.
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Figure 6. (A) Effects of the oral administration of MPP and acarbose on blood glucose concentration
in sucrose-loaded mice. Values are expressed as mean ± SD, n = 6. * p = 0.03; **** p < 0.0001 com-
pared to untreated control group. Acarbose100: acarbose 100 mg/kg bw (positive control); MPP200:
4-methoxychalcone (200 mg/kg bw). (B) Effects of the oral administration of MPP and metformin
on blood glucose concentration in glucose-loaded mice. Metformin200: metformin 200 mg/kg bw
(positive control); MPP100 and MPP200: 4-methoxychalcone (100 mg/kg and 200 mg/kg bw, re-
spectively). NTG: untreated healthy mice control group. Values are expressed as mean ± SD, n = 6.
ns = not significant (p > 0.05), **** p < 0.0001 vs. untreated control group (ANOVA followed by
Dunnett’s multiple comparisons test).

Given this result, MPP was submitted to the oral glucose tolerance test (OGTT) in
healthy mice. In this experiment, the animals received a glucose overload of 2 g/kg bw, with
an induced increase occurring in glucose levels (DNTG), which remained elevated at over
140 mg/dL for 90 min of the experiment (Figure 6B). In the hyperglycemic animals treated
with MPP at a dosage of 200 mg/kg bw (MPP200), significant reductions in glucose levels
were observed after 30 min (p < 0.0001). Similarly, blood glucose levels were continuously
reduced to 61.1% and 53.4% (90 and 120 min, respectively), after 60 min; whereas the group
treated with metformin at a dose of 200 mg/kg bw (Metformin200) caused a reduction
to 58.0 and 54.4% (90 and 120 min, respectively), and there was no significant difference
in relation to the group treated with MPP200 (p > 0.05). For the group of animals treated
with MPP at a dosage of 100 mg/kg bw (MPP100), compared to NTG, the reduction in
glycemic levels seen with MPP200 did not show a significant difference compared to the
group of animals treated with metformin at the same dosage (p > 0.05). These data suggest
that MPP200 significantly inhibits the increase in blood glucose.

To evaluate the hypoglycemic potential of MPP, animals with streptozotocin-induced
(STZ-induced) type 2 diabetes were treated with MPP at dosages of 100 and 200 mg/kg bw
(MPP100 and MPP200, respectively). After 12 h of fasting, these animals received a glucose
overload of 2 g/kg bw and blood glucose levels rose above 300 mg/dL (T0 min) (Figure 7).

Administration of MPP 200 mg/kg bw significantly reduced the state of hyperglycemia
in STZ-induced diabetic animals after 30 min. This reduction in glycemic levels was
statistically similar to animals treated with metformin at 200 mg/kg bw (p > 0.05). However,
there was no significant difference in glucose levels in animals treated with MPP100
compared to the group of untreated diabetic animals (DNTG) after 60 min (p < 0.05).
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Therefore, our study revealed the hypoglycemic potential of MPP (MPP200) through the
mechanism of cellular glucose uptake. These data corroborate a previous study that reports
the in vitro potential of MPP in glucose reduction by this or another mechanism such as
insulin receptor activation and interaction with related-protein glucose control [22,57,58].
Furthermore, studies related to the performance of the microbiome in drug metabolism,
which directly influences its absorption and bioavailability, along with the potential of
flavonoids to improve glycemia, as is the case with MPP, direct this research towards future
studies on the possible mechanisms of action of MPP on the microbiota [59]. Studies with
chalcone derivatives have also demonstrated this performance in the microbiota [60,61].
Investigations with derivatives of chalcones have related the anti-diabetic activity to its
binding potential to the peroxisome proliferator-activated gamma receptor (PPAR-γ) [22,62].
Thus, it is possible to assume that MPP can be used as an anti-diabetic agent, and additional
preclinical analyses are already underway.
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Figure 7. Effects of the oral administration of MPP and metformin on the blood glucose concentration
in glucose-loaded diabetic mice. Metformin200: metformin 200 mg/kg bw (positive control); MPP100
and MPP200: 4-methoxychalcone (100 mg/kg and 200 mg/kg bw, respectively). DNTG: untreated
diabetic control group. NTG: untreated healthy mice group. Values are expressed as mean ± SD,
n = 6. ns = not significant (p > 0.05). The character **** indicates p < 0.0001 and *** indicates p < 0.001
versus the untreated control group (ANOVA followed by Dunnett’s multiple comparison test).

4. Conclusions

A method by HS-GC-MS was developed to quantify 4-methoxychalcone in solutions
with satisfactory precision and reproducibility for its characterization and quantification.
In the docking assays, 4-methoxychalcone was shown to be well-accepted orally, but its
bioavailability is hindered by its high liposolubility, which reduces its absorption. In terms
of distribution, it is easily transported due to its affinity with serum albumin by binding
to Site I through H-bonding, followed by π-π interaction. 4-methoxychalcone showed no
cytotoxicity in the human lung fibroblast lineage (MRC-5) after 72 h, and in the hemolysis
test, mouse erythrocytes maintained stable and integral membranes. Additionally, it was
demonstrated that this chalcone has hypoglycemic activity in diabetic mice, and this effect
may be related to cellular glucose uptake, the mechanism of which will be presented in
future studies. Therefore, this study presents results that show that 4-methoxychalcone has
the potential to be an anti-diabetic agent capable of reducing glucose levels to near normal
levels. Further results and preclinical studies are underway to investigate the mechanisms
involved in this effect.
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