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Abstract: Lignin, a renewable and widely available biopolymer, has been explored as an
additive in polyolefins to develop high value-added materials. However, its low com-
patibility with polymers like polypropylene (PP) often causes poor particle dispersion
and compromised mechanical properties. Esterification has proven effective in enhancing
lignin-polyolefin interactions. This study evaluated the incorporation of kraft lignin (KL)
and maleic anhydride-modified kraft lignin (MAKL) into PP, focusing on lignin disper-
sion and the blends’ thermal, mechanical, and viscoelastic properties. Thermal analyses
showed that MAKL reduced PP crystallinity, indicating improved compatibility, supported
by micrographs showing more uniform particle dispersion. Mechanically, low MAKL
concentrations maintained yield strength similar to neat PP, while 5 wt% MAKL increased
impact strength by up to 148%. This improvement was attributed to enhanced interfacial
interaction, reduced crystallinity, and better energy dissipation. The findings demonstrate
that esterification of lignin with maleic anhydride effectively overcomes compatibility
limitations with PP, leading to significant gains in mechanical and viscoelastic properties.
This work advances lignin’s sustainable use in polymer blends, emphasizing its potential
as a renewable alternative in material development.

Keywords: kraft lignin; esterification; polypropylene; mechanical properties; viscoelas-
tic properties

1. Introduction
Lignin is the second most abundant biopolymer on Earth, after cellulose, and is found

in the cell walls of plants and trees. It plays a crucial role by providing rigidity and mechan-
ical support to plant tissues [1–3]. It is an amorphous aromatic macromolecule composed
of phenylpropanoid units—p-hydroxyphenyl, syringyl, and guaiacyl—organized in a com-
plex three-dimensional structure [4–6]. Furthermore, lignin features several functional
groups, with aliphatic and phenolic hydroxyl groups being particularly prominent [7,8].

Among the various technical lignins, kraft lignin, a product of the pulping process
in the paper and pulp industry, is the most readily available, with an annual production
estimated at 130 million tons [4,9,10]. While historically treated as a low-value byproduct
primarily used for thermal energy generation [11], lignin has increasingly been explored
for its potential in high-value applications [2,10,12]. In particular, its incorporation into
polymer matrices has garnered significant attention due to reported improvements in
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mechanical stiffness [13,14], electrical properties [9], adhesion [3,15,16], antioxidant ac-
tivity [17,18], and flame retardancy [19]. Additionally, blending lignin with commercial
fossil-based polymers can contribute to reducing greenhouse gas emissions and offers
advantages such as low cost and abrasiveness [20,21].

However, a major limitation to the large-scale use of lignin is its poor dispersion within
polymer matrices, which stems from its inherent chemical structure. Lignin exhibits a strong
tendency to form agglomerates due to interactions between its functional groups, while
its complex structure limits solubility and hinders uniform dispersion [9,20]. Although
processing-induced shear forces can fragment lignin into smaller particles, this effect is
counterbalanced by particle coalescence, especially at higher lignin concentrations [20].
This challenge is particularly pronounced in non-polar matrices such as polypropylene (PP),
which exhibits poor compatibility with lignin due to their low structural affinity [13,20].

Polypropylene, on the other hand, is widely used in industrial applications due to its
low cost, excellent mechanical properties, and ease of processing [16,21]. Consequently,
several studies have investigated PP-lignin blends. Despite the inherent incompatibility be-
tween these materials, even small lignin additions have demonstrated significant functional
improvements in PP, including modifications to its surface free energy [16] and stabilization
effect [18]. Nevertheless, higher lignin concentrations often lead to deteriorated mechanical
properties, limiting its applicability in such blends [13–15,20,22].

A promising strategy to address these limitations is the chemical modification of lignin.
The hydroxyl groups in lignin’s structure are highly reactive, enabling the introduction
of chemical groups that modify its polar character and enhance its solubility in non-polar
matrices [1,23]. Among the available modification methods, alkylation and esterification
reactions have been extensively studied, with the latter showing greater efficacy in improv-
ing lignin’s compatibility with polymers such as PP [22,23]. Maldhure et al. [22] conducted
a comparative study on PP blends containing lignin esterified with maleic anhydride or
alkylated with dichloroethane at concentrations ranging from 5 to 25 wt%. Morphological
analyses demonstrated enhanced interaction, solubility, and dispersion of the esterified
lignin in the PP matrix, attributed to the increased aliphatic content in the lignin structure.
Mechanical testing revealed that the blends with esterified lignin retained mechanical prop-
erties comparable to pure PP up to a concentration of 10 wt%, with only a slight decline
observed at higher lignin concentrations. Similarly, Orebom et al. [24] investigated the
esterification of lignin with fatty acids, incorporating 20 wt% of the modified lignin into
various polymer matrices, including PP. While the inclusion of esterified lignin reduced
the mechanical properties overall, the values obtained for the PP matrix remained close
to those of the unmodified polymer. Remarkably, the impact resistance of the PP-lignin
blend reached 93% of that of pure PP, indicating favorable interactions between the compo-
nents. Furthermore, Dehne et al. [25] studied the effects of lignin source and esterification,
performed using acetic, propionic, and butyric anhydrides, in blends with high-density
polyethylene (HDPE), a non-polar polymer, at a 1:1 weight ratio. Their findings revealed
that, compared to unmodified lignin, esterified lignin significantly improved elongation at
break and tensile strength. These improvements became more pronounced as the carbon
chain length of the esterifying agents increased.

Despite these advances in lignin modification for better interaction with nonpolar
polymers, further investigation is still required to achieve a deeper understanding of the
factors involved in this interaction. Therefore, this study aims to analyze the interaction
between modified lignin and PP, focusing on the viscoelastic behavior and morphological
effects of these materials and their influence on the final properties of the resulting compos-
ites. To achieve this, kraft lignin was modified using a simplified esterification route by
reacting with maleic anhydride. The results demonstrate that this modification enhances
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the dispersion of lignin in PP, improving not only its mechanical properties but also its
viscoelastic behavior. By focusing on the critical role of particle dispersion and interfacial
interactions, this study offers valuable insights into the effective integration of lignin into
PP, contributing to the development of sustainable materials with enhanced performance
characteristics.

2. Materials and Methods
2.1. Materials

A development-grade kraft lignin (KL) from eucalyptus (hardwood) was kindly
provided by Suzano S.A. (Limeira, Brazil). The KL is in a solid (powder) state, brown in
color, with a pH of 8.1. Maleic anhydride (analytical grade) used for the esterification of KL
was purchased from Merck (Diadema, Brazil). Acetone (analytical grade) and silicone oil
were also obtained from Merck (Diadema, Brazil). The isotactic polypropylene (iPP) used
was supplied by Petroquímica CUYO S.A.I.C. (Buenos Aires, Argentina), with a density
ranging between 0.88 and 0.92 g cm−3.

2.2. Modification of Kraft Lignin

The modification of kraft lignin (KL), based on the method described by Chen et al. [26],
involved adding 150 g of KL, pre-dried at 70 ◦C for 24 h, to a 10% maleic anhydride solution
in acetone at a 1:20 (w/v) ratio in a round-bottom flask. The flask was immersed in a silicone
oil bath maintained at 60 ◦C. Once the temperature stabilized, the mixture was magnetically
stirred under reflux for 7 h. Figure 1 illustrates the esterification reaction of kraft lignin
with maleic anhydride. Upon completion of the reaction, acetone was evaporated, and
deionized water was added to precipitate the product. The precipitate was washed with
distilled water at least five times, vacuum-filtered, and dried at 80 ◦C for 24 h. The dried
product was subsequently ground into a fine black powder. The final product is called
MAKL.
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Figure 1. Chemical modification reaction of lignin using maleic anhydride.

2.3. Polymer Processing

The preparation of PP blends incorporating KL or MAKL was conducted via melt
extrusion using a co-rotating twin-screw extruder, Coperion ZSK 18 (Stuttgart, Germany).
The extrusion process was performed at a screw speed of 450 rpm, with the temperature
set between 160 ◦C and 210 ◦C across nine distinct zones, spanning from the feed section to
the die. The lignin content in the blends varied between 2.5 wt% and 10 wt%, as detailed in
Table 1.
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Table 1. Sample nomenclature and compositions.

Sample PP (wt%) KL (wt%) MAKL (wt%)

PP 100 0 0
PP-KL 2.5 97.5 2.5 0
PP-KL 5.0 95.0 5.0 0

PP-KL 10.0 90.0 10.0 0
PP-MAKL 2.5 97.5 0 2.5
PP-MAKL 5.0 95.0 0 5.0

PP-MAKL 10.0 90.0 0 10.0

The specimens were prepared using a molten-state injection molding process with
a Micro Injector, Xplore IM12 (Sittard, The Netherlands). The injection molding was
conducted at 210 ◦C, with an injection pressure of 6 bar and a total cycle time of 30
s. Tensile test specimens were prepared in accordance with ISO 527-2 [27] Type 1 BA,
while impact test specimens were prepared following ASTM D256-23e1 [28] standards.
Dynamic mechanical analysis (DMA) was performed on the same specimens used for the
impact tests.

2.4. Lignin Characterizations

Fourier Transform Infrared Spectroscopy in Attenuated Total Reflectance mode (FTIR-
ATR) was used to confirm the modification of kraft lignin (KL) into maleic anhydride-
modified kraft lignin (MAKL). Characterization was performed using a Spectrum Two
instrument, PerkinElmer (Hopkinton, MA, USA). Spectra were acquired from 4000 to
500 cm−1, with 32 scans and a resolution of 4 cm−1. The obtained spectra were normalized
relative to the peak of the aromatic ring at 1514 cm−1.

Differential scanning calorimetry (DSC) analysis was conducted using a DSC, TA
Instruments Q200 (Waltham, MA, USA). Approximately 8 mg of each sample was weighed.
The procedure involved heating the sample from 25 ◦C to 200 ◦C, holding it isothermally
for 3 min to erase thermal history, followed by cooling to 25 ◦C and a second heating to
200 ◦C. All heating and cooling cycles were performed at a rate of 10 ◦C min−1 under
an inert nitrogen atmosphere. The glass transition temperature (Tg) of the samples was
determined during the second heating cycle.

2.5. Polymer Characterizations

Optical microscopy was used to evaluate the dispersion of KL and MAKL within
the PP matrix. Micrographs were captured using a microscope, Carl Zeiss Axio Scope
A1 (Oberkochen, Germany), equipped with a heating module, Linkam T95 HS (Salfords,
UK). For sample preparation, approximately 4 mg of each sample was placed on a glass
slide, covered with a coverslip, and heated to 210 ◦C before being gently compressed with
tweezers. After cooling to room temperature, the samples were analyzed to obtain images
of the lignin dispersion.

DSC analysis was conducted using a DSC, TA Instruments Q200 (Waltham, MA,
USA). Approximately 10 mg of each sample was heated to 210 ◦C at a rate of 10 ◦C min−1,
held isothermally for 5 min to erase thermal history, then cooled to −25 ◦C and reheated
to 210 ◦C. All cycles were performed under an inert nitrogen atmosphere. The melting
temperature (Tm) was extracted from the second heating curve, while the crystallization
temperature (Tc) was determined from the cooling curve. The effect of lignin incorporation
on the crystallinity of the PP phase was evaluated by calculating the degree of crystallinity
(Xc) using Equation (1):

Xc =
∆Hm

∆H0
m × f

× 100, (1)
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where ∆Hm represents the measured enthalpy of fusion for the sample, ∆H0
m corresponds

to the enthalpy of fusion for fully crystalline polypropylene (207 J g−1) [15], and f denotes
the polypropylene fraction.

DMA was performed using a DMA, TA Instruments Q800 (Waltham, MA, USA) to
assess the variation in the viscoelastic properties of PP with the addition of KL or MAKL.
Samples were analyzed in single cantilever mode at a frequency of 1 Hz and a strain
amplitude of 15 µM. The testing temperature ranged from −40 ◦C to 120 ◦C, with a heating
rate of 5 ◦C min−1.

The mechanical properties of the samples were evaluated through tensile and Izod
impact strength tests. Tensile tests were conducted using an universal testing machine,
Instron 3369 (Norwood, MA, USA), equipped with a 50 kN load cell, operating at a
displacement rate of 5 mm min−1. Izod impact strength tests on notched samples were
performed using an equipment Shanta Engineering (Dhokali, India) with a pendulum of
nominal energy capacity of 5.42 J. Five specimens were analyzed for each condition.

3. Results and Discussion
3.1. Lignin Modification

Figure 2 displays the FTIR spectra of KL and MAKL. A comparison of the spectra
highlights changes that are consistent with the chemical modification of lignin. In particular,
an increase in the intensity of the peaks at 1715 cm−1, corresponding to the carbonyl
group, and at 1210 cm−1, attributed to the C–O stretching vibration [29], was observed.
These spectral changes suggest a successful esterification reaction between lignin and
maleic anhydride, as evidenced by the enhanced intensity of ester and carboxyl group
bands [22,26,29]. Furthermore, the increased intensity of bands within the 3050–2800 cm−1

region, associated with the symmetric and asymmetric stretching of CH2 and CH3 groups,
provides additional confirmation of the modification process [15,29]. Finally, the prevalence
of hydroxyl groups in the MAKL spectrum, identified in the broad shoulder within the
3700–3050 cm−1 region, characterizes a partial esterification of lignin.
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Figure 2. FTIR spectra of KL and MAKL.

Figure 3 displays the DSC curves of the lignins. Consistent with the FTIR findings,
thermal analysis was performed to further evaluate the modifications of KL. The Tg of KL
was determined to be 165 ◦C, aligning with the range reported in the literature for this
material [1,30]. Following esterification, MAKL exhibited a slightly reduced Tg of 158 ◦C.
This decrease is a well-documented phenomenon in the literature for lignin subjected to
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various chemical modification routes [15,29,31,32] and is attributed to the increased free
molecular volume resulting from the addition of lateral groups to the polymer chain [29].
These results confirm the successful chemical modification of KL through esterification.
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3.2. Dispersion of Lignin

Figure 4 presents micrographs of the PP-KL (Figure 4a–c) and PP-MAKL (Figure 4d–f)
samples.
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and MAKL (d–f). Yellow arrows highlight some pronounced aggregation.

The optical micrographs reveal clear differences in dispersion between the blends
containing unmodified KL and those with MAKL. In the unmodified KL blends, larger and
more unevenly distributed particles are observed, whereas the MAKL-based blends show
a more homogeneous dispersion, with smaller and more uniformly distributed particles.
This improvement in dispersion is particularly evident in the blends with 2.5 and 5 wt%
MAKL. However, at a concentration of 10 wt%, both KL and MAKL-based blends exhibit
severe phase separation, with larger particles and more pronounced aggregation (indicated
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by yellow arrows). Despite these variations, all blends remain immiscible, with clear phase
separation between the PP and lignin components.

Maldhure et al. [22] evaluated the modification of lignin using two routes: one with
maleic anhydride and the other with dichloroethane and anhydrous aluminum chloride.
Both modifications significantly enhanced the dispersion of lignin particles in the PP blend,
reducing particle size and improving the homogeneity between the lignin and PP phases.
However, the lignin modified with maleic anhydride demonstrated superior dispersion
and mechanical properties compared to the lignin modified with dichloroethane. The
modified lignins improved dispersion and particle size, particularly when up to 10 wt%
modified lignin was used.

Although PP and MAKL remain immiscible, maleic anhydride modification strength-
ens interphase adhesion, resulting in a more uniform distribution of MAKL particles and
consequently improved blend properties [20,33,34]. The esterification of lignin with maleic
anhydride improves its compatibility with PP by grafting aliphatic chains onto the lignin
surface. These chains extend the molecular structure of lignin, facilitating intermolecular
interactions with the non-polar PP matrix. This modification contributes to a more uniform
dispersion of lignin within the polymeric matrix and reduces particle aggregation [25].

3.3. Thermal Properties

DSC analysis was performed to assess the impact of the addition of KL or MAKL
on the thermal properties of the PP matrix. Table 2 summarizes the thermal events of
neat PP and its blends based on KL or MAKL, including the melting temperature (Tm)
crystallization temperature (Tc), and degree of crystallinity (Xc).

Table 2. Main thermal parameters obtained from DSC analysis. Tm is the melting peak temperature;
Tc is the crystallization peak temperature; Xc is the calculated degree of crystallinity.

Sample Tc (◦C) Tm (◦C) Xc (%)

PP 121.1 163.4 61
PP-KL 2.5 117.9 163.5 54
PP-KL 5.0 114.2 163.1 56

PP-KL 10.0 113.3 163.0 58
PP-MAKL 2.5 115.3 163.5 47
PP-MAKL 5.0 113.8 164.1 48

PP-MAKL 10.0 112.6 163.1 49

The incorporation of lignin into polymer matrices can affect crystallinity in different
ways. While it has the potential to act as a nucleating agent [35,36], other studies attribute
a reduction in crystallinity to steric hindrance within the polymer’s crystalline structure, as
well as the inherently amorphous nature of lignin [15,16,37,38]. The DSC results obtained in
this research indicate that while the melting temperature remained relatively stable across
all samples, the crystallization temperature progressively decreased with increasing content
of both KL and MAKL. Similarly, the degree of crystallinity declined with the addition
of KL and MAKL, with neat PP exhibiting the highest crystallinity among the samples.
This reduction was more pronounced in samples containing MAKL, indicating that the
modification significantly impacts crystallinity, whereas the concentration appears to have
minimal influence on this parameter.

Other studies in the literature have shown that esterified lignins can effectively in-
fluence the crystallization behavior of PP when incorporated into the polymer. Tanjung
et al. [39] conducted a comparative study on the use of esterified alkaline lignin (AAL)
and esterified organosolv lignin (AOSL) as interfacial modifying agents for PP-chitosan
composites. Both modified lignins enhanced the interfacial adhesion within the composites.
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Notably, the incorporation of AAL and AOSL led to a reduction in the crystallinity of the
PP phase.

The incorporation of esterified lignin into PP significantly influences both the disper-
sion and crystallinity of the resulting blends through multiple potential mechanisms. One
such mechanism is steric hindrance, resulting from the increased molecular free volume
of the MAKL particles and the structural alterations introduced during esterification [40].
The addition of bulky functional groups and the extension of molecular chains significantly
increase the spatial volume occupied by each particle, creating physical barriers that in-
hibit close packing and clustering [38,41]. This enhanced separation between particles
promotes a more uniform distribution of MAKL within the PP, as evidenced by optical
microscopy results.

The modification of lignin with maleic anhydride introduces aliphatic chains, which
improve its dispersion within the polyolefin. These aliphatic chains enhance intermolecular
interactions between lignin and PP, strengthening interfacial bonding and providing a
more uniform distribution of lignin throughout the thermoplastic [37,42,43]. This improved
compatibility facilitates the formation of well-defined interfaces, which disrupts the orderly
arrangement of PP chains. As a result, these interfaces generate amorphous regions within
the blends, hindering the growth and formation of large PP crystals, which ultimately
contributes to a reduction in the degree of crystallinity.

The presence of lignin also reduces the mobility of PP chains, reducing their ability
to organize into crystalline regions. In contrast, the mobility of KL is expected to increase
after modification, likely due to the chain extension resulting from esterification with
maleic anhydride. This increased mobility within the amorphous phase further limits
the formation and growth of PP crystalline domains, leading to an overall reduction in
crystallinity in the blends [40,44].

3.4. Viscoelastic Properties

Figure 5 presents the storage modulus (E′) and loss modulus (E′′) curves for PP-KL
(Figure 5a,b) and PP-MAKL (Figure 5c,d) samples as a function of temperature. Addi-
tionally, the insets highlight the tan δ (E′′/E′) curves as a function of temperature, which
are commonly used to characterize the polymer’s Tg. The storage modulus reflects the
elastic energy storage capacity of the material, serving as a key parameter for assessing
load resistance [45]. Below room temperature, the glassy plateau characteristic of PP is
slightly reduced by the addition of lignin, consistent with findings by Rezaei et al. [45],
who reported a similar reduction when incorporating 10 wt% short carbon fibers into a
PP matrix.

At higher temperatures (0–100 ◦C), the E′ values of PP-lignin composites surpass those
of pure PP, attributed to the higher rigidity of lignin compared to PP [9,13,14]. However,
the E′ values at 25 ◦C (Table 3) reveal that this increase is not proportional to lignin
content. PP-MAKL samples exhibit a narrower E′ range (1.7–1.79 GPa) compared to PP-
KL samples (1.62–1.84 GPa), indicating improved dispersion of MAKL lignin in the PP
matrix, as supported by micrographs in Figure 4. With increasing temperature, E′ decreases
continuously for both PP and the composites, a behavior widely reported in the literature
and associated with enhanced polymer chain mobility at elevated temperatures [13,45,46].
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Table 3. Values of Tg and E′ from DMA.

Sample E′ @25 ◦C (GPa) Tg (◦C)

PP 1.61 13.07
PP-KL 2.5 1.84 13.45
PP-KL 5.0 1.61 13.51

PP-KL 10.0 1.75 13.19
PP-MAKL 2.5 1.71 13.41
PP-MAKL 5.0 1.70 13.21

PP-MAKL 10.0 1.79 13.17

The loss modulus quantifies the material’s capacity to dissipate energy, either as
heat or via molecular rearrangements during deformation, and corresponds to the viscous
component of the material [45]. Maximum energy dissipation occurs during the α-transition
of PP [46], between −20 ◦C and 30 ◦C, and can be associated with the material’s Tg,
as determined from the tan δ peak [47]. The Tg values for PP-lignin composites are
summarized in Table 3, showing a discrete and consistent increase with lignin addition.
This trend is generally attributed to the restriction of polymer chain mobility imposed by
the complex and highly branched structure of lignin [3]. In this case, the Tg values for
the PP-KL and PP-MAKL blends are similar, indicating that the restriction effect is more
associated with the presence of lignin rather than its concentration or specific interaction.
This behavior is consistent with previously reported results for kraft lignin in ethylene-
butylene matrix composites [9].

On the other hand, the magnitude of energy dissipation varies among the compos-
ites. KL addition has minimal effect on E′′, while 5 wt% MAKL significantly increases
dissipation, as evidenced by the higher E′′ values relative to pure PP. This effect can be
ascribed to an increase in the amorphous fraction of the composites, as evidenced by DSC
analysis, which reflects the inherently amorphous structure of lignin. Additionally, the
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improved interaction between PP and MAKL, compared to PP-KL, contributes to this
behavior. Moreover, the enhanced energy dissipation observed at the interface between the
flexible polymer matrix and the rigid lignin is more prominent in samples with MAKL. This
is attributed to the stronger interfacial interaction between MAKL and the PP matrix, lead-
ing to a greater number of contact interfaces. Similar behavior was reported by De Sousa
et al. [3], who observed increased interfacial energy dissipation in SEBS block copolymers
containing kraft lignin, specifically at the interface between the flexible ethylene-butylene
segments and lignin. In contrast, the PP-MAKL 10 sample exhibits a slight reduction in E′′

magnitude, showing behavior similar to pure PP and the PP-KL 10 sample. This effect is
attributed to the formation of larger MAKL aggregates in the PP matrix at higher lignin
concentrations, which reduces the efficiency of interfacial energy dissipation.

3.5. Mechanical Properties

The mechanical behavior of lignin-polymer blends has been extensively explored in
the literature [13,14,20,22,25,44,48,49]. Incorporating lignin generally increases the elastic
modulus of the blends, as indicated by DMA at the temperature of 25 ◦C, due to lignin’s
high intrinsic rigidity. On the other hand, ultimate tensile strength is more sensitive to
interactions between blend components, making it a key parameter for assessing interfacial
compatibility [9,15]. Figure 6a shows the yield strength (σy) of PP-KL and PP-MAKL
samples as a function of lignin concentration. Regardless of the lignin type, its addition
decreases σy. This behavior, previously observed in polyolefin matrices, is attributed to
the low chemical affinity between PP and lignin due to the inherent differences in their
chemical structures [13,20,33]. Higher lignin concentrations result in reduced mechanical
strength, which is associated with the formation of larger lignin aggregates. This phase
separation hinders efficient interfacial stress transfer, leading to lower tensile strength in
PP-KL and PP-MAKL blends compared to pure PP [33,42]. A previous study [22] indicated
that the addition of up to 10 wt% of esterified lignin to the PP matrix results in materials
with mechanical properties comparable to pure PP, demonstrating good compatibility
between PP and MAKL. In this study, while there is a slight tendency for higher σy values
in MAKL composites compared to KL, these values remain within experimental error. This
behavior can be attributed to the relatively low lignin concentration (up to 10 wt%), as
previous studies have reported more significant decreases in tensile strength at higher
concentrations of esterified lignin [22].
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Figure 6b presents the impact strength of blends with KL and MAKL. While KL
addition does not significantly affect PP’s impact strength, incorporating 5 wt% and
10 wt% of MAKL increases impact resistance by 148% and 108%, respectively. The lit-
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erature reports varying behaviors regarding the impact strength of PP-lignin blends. In
some cases, lignin—whether unmodified, esterified, or alkylated—reduces impact resis-
tance, primarily due to its rigidity, which promotes embrittlement [14,22]. Conversely,
Chen et al. [48] observed a 35% increase in impact strength when incorporating 10 wt% of
alkylated lignin into PP. Although higher lignin concentrations led to declines in impact
strength, values remained superior to pure PP up to 40 wt% of lignin. According to the
authors, this is likely due to the enhanced interaction between alkylated lignin and the PP
matrix, facilitated by added aliphatic chains.

In this work, the enhanced impact strength observed with MAKL incorporation can
be attributed to two factors: (i) improved interaction between modified lignin and PP,
and (ii) an increased amorphous fraction, which enhances energy dissipation. Improved
interaction is supported by the known influence of particle size and dispersion on the
impact strength of multiphase materials; smaller, well-dispersed particles effectively hinder
crack propagation [50,51]. The increase in the amorphous fraction, observed in DMA
analyses, was most pronounced for the PP-MAKL 5 sample, which exhibited maximum
energy dissipation. This behavior arises from both the increased amorphous content of the
material and the enhanced interfacial dissipation between phases, which contribute to the
improved cohesive strength [3]. However, the PP-MAKL 10 sample, although exceeding
pure PP in impact strength, exhibited lower values compared to PP-MAKL 5. This is likely
attributed to the formation of larger lignin aggregates, which reduce energy dissipation
efficiency and act as sites of embrittlement. Thus, the results indicate a synergistic effect
in PP-MAKL blends, where enhanced phase compatibility and improved viscoelastic
properties contribute to superior impact strength at specific compositions.

4. Conclusions
This study demonstrated that the modification of kraft lignin through a simplified

esterification process with maleic anhydride (MAKL) resulted in significant improvements
in the properties of PP blends. The modification was confirmed by FTIR and DSC analyses.
Optical microscopy images revealed a more uniform dispersion of MAKL in PP compared
to unmodified lignin, indicating enhanced interfacial compatibility resulting from grafting
aliphatic chains onto the lignin surface. Thermal analysis via DSC showed that the addition
of MAKL did not significantly alter the Tm of PP but led to a marked decrease in crystallinity.
This change was attributed to the improved interaction between PP and the modified
lignin, which restricted polymer chain mobility and hindered crystallization. Viscoelastic
properties, evaluated by DMA, further corroborated these findings, showing a slight
increase in the Tg and an increase in energy dissipation, reflecting a higher amorphous
content and enhanced interfacial energy dissipation. From a mechanical perspective, the
impact strength of the PP-MAKL blends was significantly improved, with an increase of
up to 148% upon the incorporation of 5 wt% MAKL, which was attributed to better lignin
dispersion and interfacial energy dissipation. In conclusion, esterification of kraft lignin
with maleic anhydride proved to be an effective strategy for enhancing the dispersion,
thermal, viscoelastic, and mechanical properties of PP blends. These findings provide
valuable insights into the potential of using modified lignin as a sustainable component in
polymer blends with improved performance.
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