Mussel Shells from Marine Aquaculture Act like Ecosystem Engineers: Legacy Effects on Benthic Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Set-Up
2.3. Data Analysis
3. Results
3.1. Physicochemical Variables
3.2. Macrofaunal Assemblages
3.3. Relationship with Environmental Variables
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svane, I.; Setyobudiandi, I. Diversily of associated fauna in beds of the blue mussel Mytilus edulis L.: Effects of location, patch size, and position within a patch. Ophelia 1996, 45, 39–53. [Google Scholar] [CrossRef]
- Buschbaum, C.; Dittmann, S.; Hong, J.H.; Hwang, I.S.; Strasser, M.; Thiel, M.; Valdiva, N.; Yoon, S.P.; Reise, K. Mytilid mussels: Global habitat engineers in coastal sediments. Helgol. Mar. Res. 2009, 63, 47–58. [Google Scholar] [CrossRef]
- Commito, J.A.; Como, S.; Grupe, B.M.; Dow, W.E. Species diversity in the soft-bottom intertidal zone: Biogenic structure, sediment, and macrofauna across mussel bed spatial scales. J. Exp. Mar. Biol. Ecol. 2008, 366, 70–81. [Google Scholar] [CrossRef]
- Commito, J.A.; Jones, B.R.; Jones, M.A.; Winders, S.E.; Como, S. What happens after mussels die? Biogenic legacy effects on community structure and ecosystem processes. J. Exp. Mar. Biol. Ecol. 2018, 506, 30–41. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture—2020. Available online: http://www.fao.org/publications/sofia/en/ (accessed on 20 February 2023).
- Dürr, S.; Watson, D.I. Biofouling and antifouling in aquaculture. In Biofouling; Dürr, S., Thomason, J.C., Eds.; Wiley-Blackwell: Chichester, UK, 2010; pp. 267–287. [Google Scholar]
- Fernandez-Gonzalez, V.; Sanchez-Jerez, P. Fouling assemblages associated with off-coast aquaculture facilities: An overall assessment of the Mediterranean Sea. Mediterr. Mar. Sci. 2017, 18, 87–96. [Google Scholar] [CrossRef]
- Sanchez-Jerez, P.; Krüger, L.; Casado-Coy, N.; Valle, C.; Sanz-Lazaro, C. Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming. J. Mar. Sci. Eng. 2019, 7, 335. [Google Scholar] [CrossRef]
- Fitridge, I.; Dempster, T.; Guenther, J.; de Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 2012, 28, 649–669. [Google Scholar] [CrossRef]
- Ysebaert, T.; Hart, M.; Herman, P.M.J. Impacts of bottom and suspended cultures of mussels Mytilus spp. on the surrounding sedimentary environment and macrobenthic biodiversity. Helgol. Mar. Res. 2009, 63, 59–74. [Google Scholar] [CrossRef]
- McKindsey, C.W.; Archambault, P.; Callier, M.D.; Olivier, B. Influence of suspended and off-bottom mussel culture on the sea bottom and benthic habitats: A review. Can. J. Zool. 2011, 89, 622–646. [Google Scholar] [CrossRef]
- Holmer, M.; Barry, W. Organic enrichment from marine finfish aquaculture and effects on sediment biogeochemical processes. In Handbook of Environmental Chemistry; Hargrave, B.T., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 181–206. [Google Scholar] [CrossRef]
- Sanz-Lazaro, C.; Marín, A. Assessment of Finfish Aquaculture Impact on the Benthic Communities in the Mediterranean Sea. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2008, 2, 21–32. [Google Scholar]
- Gutierrez, J.L.; Jones, C.G.; Strayer, D.L.; Iribarne, O.O. Mollusks as ecosystem engineers: The role of shell production in aquatic habitats. Oikos 2003, 101, 79–90. [Google Scholar] [CrossRef]
- Gutierrez, J.L.; Jones, C.; Byers, J.; Arkema, K.; Berkenbusch, K.; Commito, J.; Duarte, C.; Hacker, S.; Lambrinos, J.; Hendriks, I.; et al. Physical Ecosystem Engineers and the Functioning of Estuaries and Coasts. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D.S., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Waltham, MA, USA, 2011; Volume 7, pp. 53–81. [Google Scholar] [CrossRef]
- Gutierrez, J.L.; Jones, C.G. Physical ecosystem engineers as agents of biogeochemical heterogeneity. BioScience 2006, 56, 227–236. [Google Scholar] [CrossRef]
- Casado-Coy, N.; Martinez-Garcia, E.; Sanchez-Jerez, P.; Sanz-Lazaro, C. Mollusc-shell debris can mitigate the deleterious effects of organic pollution on marine sediments. J. Appl. Ecol. 2017, 54, 547–556. [Google Scholar] [CrossRef]
- Casado-Coy, N.; Sanchez-Jerez, P.; Troncoso, J.S.; Sanz-Lazaro, C. Mollusc-shell debris derived from aquaculture can promote macrofaunal communities with a high bioturbation capacity. Aquaculture 2022, 548, 737642. [Google Scholar] [CrossRef]
- Martinez-Garcia, E.; Carlsson, M.S.; Sanchez-Jerez, P.; Sánchez-Lizaso, J.L.; Sanz-Lazaro, C.; Holmer, M. Effect of sediment grain size and bioturbation on decomposition of organic matter from aquaculture. Biogeochemistry 2015, 125, 133–148. [Google Scholar] [CrossRef]
- Sweetman, A.K.; Norling, K.; Gunderstad, C.; Haugland, B.T.; Dale, T. Benthic ecosystem functioning beneath fish farms in different hydrodynamic environments. Limnol Ocean. 2014, 59, 1139–1151. [Google Scholar] [CrossRef]
- Tenore, K.R.; Corral, J.; Gonzalez, N. Effects of intense mussel culture on food chain patterns and production in coastal Galicia, NW Spain. In Proceedings of the International Symposium on Utilization of Coastal Ecosystems: Planning, Pollution and Productivity, Rio Grande, Brazil, 21–27 November 1982. [Google Scholar]
- Blanton, J.O.; Tenore, K.R.; Castillejo, F.; Atkinson, L.P.; Schwing, F.B.; Lavin, A. The relationship of upwelling to mussel production in the rias on the western coast of Spain. J. Mar. Res. 1987, 45, 497–511. [Google Scholar] [CrossRef]
- Instituto Geológico de Estadística. Available online: www.ige.eu (accessed on 20 February 2023).
- APROMAR. 2019. La Acuicultura en España. Available online: www.apromar.com (accessed on 20 February 2023).
- D’Ortenzio, F.; Marullo, S.; Ragni, M.; Ribera d’Alcalà, M.; Santoleri, R. Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas. Remote Sens. Environ. 1987, 82, 79–94. [Google Scholar] [CrossRef]
- Sanchez-Jerez, P.; Couret Huertas, M.; Pérez-Benavente, G.; Uglem, I.; Casado Coy, N.; Fernández González, V.; Toledo Guedes, K.; Sanz-Lázaro, C. Ecological effects of mussel shells from marine aquaculture on benthic macrofauna. Foro Rec. Mar. Ac. Rías Gal. 2019, 21, 355–362. [Google Scholar]
- Wilding, T.A.; Nickell, T.D. Changes in Benthos Associated with Mussel (Mytilus edulis L.) Farms on the West-Coast of Scotland. PLoS ONE 2013, 8, e68313. [Google Scholar] [CrossRef]
- Sanz-Lazaro, C.; Belando, M.D.; Marín-Guirao, L.; Navarrete-Mier, F.; Marín, A. Relationship between sedimentation rates and benthic impact on Maërl beds derived from fish farming in the Mediterranean. Mar. Environ. Res. 2011, 71, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, E.; Capaccioni-Azzati, R.; Sánchez-Lizaso, J.L.; Sanchez-Jerez, P. Application of a new protocol to evaluate the benthic impacts of aquaculture: Colonization of experimental units for monitoring by polychaeta. Ecol. Indic. 2019, 101, 50–61. [Google Scholar] [CrossRef]
- Martinez-Garcia, E.; Fernandez-Gonzalez, V.; Aguado-Giménez, F.; Sánchez-Lizaso, J.L.; Sanchez-Jerez, P. From paper to practice: An initial approach to implementation of the environmental monitoring plan for fish farming proposed by JACUMAR. Sci. Mar. 2018, 82, 27–34. [Google Scholar] [CrossRef]
- Allen, H.E.; Fu, G.; Deng, B. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ. Toxicol. Chem. 1993, 12, 1441–1453. [Google Scholar] [CrossRef]
- Underwood, A.J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance; Cambridge University Press: Cambridge, UK, 1997; p. 522. [Google Scholar]
- Sandrini-Neto, L.; Camargo, M.G. GAD: An R Package for ANOVA Designs from General Principles. 2018. Available online: https://cran.r-project.org/package=gad (accessed on 10 February 2018).
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.B.; Simpson, G.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version. 2.5-6. 2019. Available online: https://cran.r-project.org/web/packages/vegan (accessed on 9 March 2017).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 9783319242774. Available online: https://ggplot2.tidyverse.org (accessed on 20 June 2017).
- Tičina, V.; Katavić, I.; Grubišić, L. Marine Aquaculture Impacts on Marine Biota in Oligotrophic Environments of the Mediterranean Sea–A Review. Front. Mar. Sci. 2020, 7, 217. [Google Scholar] [CrossRef]
- Wright, L.; Friedrichs, C.; Hepworth, D. Effects of benthic biology on bottom boundary layer processes, Dry Tortugas Bank, Florida Keys. Geo. Mar. Lett. 1997, 17, 291–298. [Google Scholar] [CrossRef]
- Otero, X.L.; Calvo de Anta, R.M.; Macías, F. Sulphur partitioning in sediments and biodeposits below mussel rafts in the Ria de Arousa (Galicia, NW Spain). Mar. Environ. Res. 2006, 61, 305–325. [Google Scholar] [CrossRef]
- Bergström, P.; Durland, Y.; Lindegarth, M. Deposition of shells modify nutrient fluxes in marine sediments: Implications for effects of nutrient enrichment and mitigation by bioturbation below mussel farms. Aquac. Environ. Interact. 2020, 12, 315–325. [Google Scholar] [CrossRef]
- Svenningsen, N.B.; Heisterkamp, I.M.; Sigby-Clausen, M.; Larsen, L.H.; Nielsen, L.P.; Stief, P.; Schramm, A. Shell Biofilm Nitrification and Gut Denitrification Contribute to Emission of Nitrous Oxide by the Invasive Freshwater Mussel Dreissena polymorpha (Zebra Mussel). Appl. Environ. Microbiol. 2012, 78, 4505–4509. [Google Scholar] [CrossRef]
- Caffrey, J.M.; Hollibaugh, J.T.; Mortazavi, B. Living oysters and their shells as sites of nitrification and denitrification. Mar. Pollut. Bull. 2016, 112, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, M.S.; Engström, P.; Lindahl, O.; Ljungqvist, L.; Petersen, J.K.; Svanberg, L.; Holmer, M. Effects of mussel farms on the benthic nitrogen cycle on the Swedish west coast. Aquac. Environ. Interact. 2012, 12, 177–191. [Google Scholar] [CrossRef]
- Rosón, G.; Pérez, F.F.; Álvarez-Salgado, X.A.; Figueiras, F.G. Variation of Both Thermohaline and Chemical Properties in an Estuarine Upwelling Ecosystem: Ria de Arousa; I. Time Evolution. Estuar. Coast. Shelf Sci. 1995, 41, 195–213. [Google Scholar] [CrossRef]
- Commito, J.A.; Dankers, N. Dynamics of spatial and temporal complexity in European and North American soft- bottom mussel beds. In Ecological Comparisons of Sedimentary Shores; Reise, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 39–59. [Google Scholar]
- Grant, J.; Hatcher, A.; Scott, D.B.; Pocklington, P.; Schafer, C.T.; Winters, G.V. A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities. Estuaries 1995, 18, 124–144. [Google Scholar] [CrossRef]
- D’Amours, O.; Archambault, P.; McKindsey, C.W.; Johnson, L.E. Local enhancement of epibenthic macrofauna by aquaculture activities. Mar. Ecol. Prog. Ser. 2008, 371, 73–84. [Google Scholar] [CrossRef]
- Lee, H.W.; Bailey-Brock, J.H.; McGurr, M.M. Temporal changes in the polychaetes infaunal community surrounding a Hawaiian mariculture operation. Mar. Ecol. Prog. Ser. 2008, 307, 175–185. [Google Scholar] [CrossRef]
- Dean, H.K. The use of polychaetes (Annelida) as indicator species of marine pollution: A review. J. Trop. Biol. Conserv. 2008, 56, 11–38. Available online: https://www.redalyc.org/pdf/449/44919934004.pdf (accessed on 19 September 2018).
- Pagliosa, P.R. Another diet of worms: The applicability of polychaetes feeding guilds as a useful conceptual framework and biological variable. Mar. Ecol. 2005, 26, 246–254. [Google Scholar] [CrossRef]
- Méndez, N.; Flos, J.; Romero, J. Littoral soft-bottom polychaetes communities in a pollution gradient in front of Barcelona (Western Mediterranean, Spain). Bull. Mar. Sci. 1998, 63, 167–178. [Google Scholar]
- Nelson, W.G.; Capone, M.A. Experimental studies of predation on polychaetes associated with seagrass beds. Estuaries 1990, 13, 51–58. [Google Scholar] [CrossRef]
- Fauchald, K.; Jumars, P.A. The diet of worms: A study of polychaete feeding guilds. Ocean. Mar. Biol. Annu. Rev. 1979, 17, 193–284. [Google Scholar]
- Kohn, A.J.; Lloyd, M.C. Polychaetes of Truncated Reef Limestone Substrates on Eastern Indian Ocean Coral Reefs: Diversity, Abundance, and Taxonomy. Int. Rev. Ges. Hydrobiol. Hydrogr. 1973, 58, 369–400. [Google Scholar] [CrossRef]
- Albertson, L.K.; Sklar, L.S.; Tumolo, B.B.; Cross, W.F.; Collins, S.F.; Woods, H.A. The ghosts of ecosystem engineers: Legacy effects of biogenic modifications. Funct. Ecol. 2022. [Google Scholar] [CrossRef]
- Commito, J.A.; Celano, E.A.; Celico, H.J.; Como, S.; Johnson, C.P. Mussels matter: Post-larval dispersal dynamics altered by a spatially complex ecosystem engineer. J. Exp. Mar. Biol. Ecol. 2005, 316, 133–147. [Google Scholar] [CrossRef]
OM | Redox | AVS | NH4+ | PO43− | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
p | MS | p | MS | p | MS | p | MS | p | MS | df | Sources of Variability |
1.20 × 10−4 | 123.8 | 7.9 × 10−6 | 18.33 | 1.206 × 10−4 | 864,489.5 | 0.0117 | 0.0166 | 2.4 × 10−11 | 8684.1 | 1 | L |
0.034 | 4.27 | 0.055 | 0.89 | 0.034 | 116,783.8 | 9.1 × 10−6 | 0.155 | 0.019 | 28.47 | 1 | M |
0.037 | 1.95 | 0.056 | 0.89 | 0.037 | 111,505.8 | 3.5 × 10−6 | 0.198 | 0.146 | 8.67 | 1 | LxM |
0.004 | 0.081 | 0.047 | 0.18 | 0.0043 | 17,990.5 | 0.99 | 0.0015 | 0.837 | 3.35 | 8 | S(LxM) |
0.031 | 0.08 | 5139.3 | 0.013 | 6.5 | 36 | Residual | |||||
p | p | p | p | p | Cochran | ||||||
0.583 | 0.209 | 0.089 | 0.3008 | 0.119 | 0.287 | 4.639 × 10−8 | 0.7158 | 0.283 | 0.246 |
Overall | Mediterranean | Atlantic | ||||
---|---|---|---|---|---|---|
YES | NO | YES | NO | YES | NO | Mussel Shells |
Crustacea | ||||||
438 (303) | 383 (515) | 419 (351) | 231 (154) | 456 (262) | 535 (693) | Mean (SD) |
[27.8, 1170] | [27.8, 2640] | [83.3, 1170] | [27.8, 528] | [27.8, 806] | [55.6, 2640] | [Min, Max] |
Mollusca | ||||||
124 (214) | 57.9 (88.2) | 134 (300) | 16.2 (18.6) | 113 (74.4) | 99.5 (110) | Mean (SD) |
[0, 1000] | [0, 333] | [0, 1000] | [0, 55.6] | [27.8, 250] | [0, 333] | [Min, Max] |
Polychaeta | ||||||
1170 (886) | 1100 (1620) | 495 (252) | 208 (136) | 1840 (769) | 1980 (1930) | Mean (SD) |
[194, 2810] | [55.6, 6420] | [194, 1100] | [55.6, 528] | [611, 2810] | [500, 6420] | [Min, Max] |
Total | ||||||
1740 (953) | 1540 (1720) | 1050 (325) | 456 (245) | 2440 (863) | 2620 (1900) | Mean (SD) |
[333, 3440] | [167, 6560] | [333, 1440] | [167, 944] | [667, 3440] | [722, 6560] | [Min, Max] |
Total | Polychaeta | Mollusca | Crustacea | ||||||
---|---|---|---|---|---|---|---|---|---|
p | MS | p | MS | p | MS | p | MS | df | Sources of Variability |
0.0105 | 52.23 | 0.000057 | 35.36 | 0.0105 | 52.23 | 0.466 | 1.383 | 1 | L |
0.298 | 5.84 | 0.041 | 3.52 | 0.298 | 5.84 | 0.497 | 1.194 | 1 | M |
0.870 | 0.13 | 0.112 | 1.89 | 0.870 | 0.13 | 0.538 | 0.975 | 1 | LxM |
0.126 | 4.73 | 0.142 | 0.59 | 0.126 | 4.733 | 0.0012 | 2.367 | 8 | S(LxM) |
2.74 | 0.35 | 2.74 | 0.560 | 36 | Residual | ||||
p | p | p | p | Cochran | |||||
0.0627 | 0.316 | 0.0465 | 0.329 | 0.00346 | 0.431 | 0.806 | 0.192 |
p | Cumsum | avYES | avNO | Ratio | sd | Average | |
---|---|---|---|---|---|---|---|
0.541 | 0.115 | 2.8748 | 2.957 | 1.086 | 0.041 | 0.044 | Cirratulidae |
0.521 | 0.213 | 3.9359 | 3.327 | 0.881 | 0.043 | 0.038 | Paraonidae |
0.501 | 0.309 | 2.5174 | 3.285 | 1.024 | 0.036 | 0.037 | Nereididae |
0.390 | 0.399 | 3.2947 | 4.055 | 0.900 | 0.039 | 0.035 | Spionidae |
0.340 | 0.472 | 0.6162 | 1.233 | 0.787 | 0.035 | 0.028 | Dorvilleidae |
0.341 | 0.533 | 0.4507 | 0.896 | 0.625 | 0.038 | 0.023 | Phyllodocidae |
0.771 | 0.593 | 1.0095 | 0.560 | 0.700 | 0.033 | 0.023 | Lumbrineridae |
0.820 | 0.650 | 1.0095 | 0.560 | 0.710 | 0.031 | 0.022 | Syllidae |
0.275 | 0.706 | 7.0583 | 6.864 | 1.342 | 0.016 | 0.022 | Capitellidae |
p | Cumsum | avYES | avNO | Ratio | sd | Average | |
---|---|---|---|---|---|---|---|
0.003 | 0.109 | 4.0092 | 1.588 | 1.346 | 0.054 | 0.073 | Capitellidae |
0.026 | 0.205 | 3.1790 | 1.120 | 1.233 | 0.053 | 0.065 | Chaetopteridae |
0.079 | 0.289 | 4.6527 | 2.792 | 0.979 | 0.057 | 0.056 | Syllidae |
1.000 | 0.360 | 1.5688 | 1.882 | 1.010 | 0.048 | 0.048 | Poecilochaetidae |
0.590 | 0.429 | 1.6353 | 1.210 | 0.935 | 0.050 | 0.046 | Nereididae |
0.199 | 0.495 | 0.2800 | 1.882 | 0.934 | 0.048 | 0.044 | Lumbrineridae |
1.000 | 0.560 | 1.2325 | 1.626 | 0.953 | 0.046 | 0.043 | Paraonidae |
0.049 | 0.607 | 1.3080 | 0.280 | 0.722 | 0.044 | 0.032 | Dorvilleidae |
1.000 | 0.651 | 0.6162 | 0.896 | 0.691 | 0.043 | 0.030 | Nephtyidae |
0.996 | 0.692 | 0.8962 | 0.560 | 0.684 | 0.041 | 0.028 | Cirratulidae |
0.054 | 0.733 | 0.8962 | 0.280 | 0.603 | 0.045 | 0.027 | Eunicidae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Jerez, P.; Casado-Coy, N.; Souza Troncoso, J.; Olabarria, C.; Valle-Pérez, C.; Marí Such, C.; Sanz-Lázaro, C. Mussel Shells from Marine Aquaculture Act like Ecosystem Engineers: Legacy Effects on Benthic Communities. Coasts 2023, 3, 328-344. https://doi.org/10.3390/coasts3040020
Sanchez-Jerez P, Casado-Coy N, Souza Troncoso J, Olabarria C, Valle-Pérez C, Marí Such C, Sanz-Lázaro C. Mussel Shells from Marine Aquaculture Act like Ecosystem Engineers: Legacy Effects on Benthic Communities. Coasts. 2023; 3(4):328-344. https://doi.org/10.3390/coasts3040020
Chicago/Turabian StyleSanchez-Jerez, Pablo, Nuria Casado-Coy, Jesus Souza Troncoso, Celia Olabarria, Carlos Valle-Pérez, Candela Marí Such, and Carlos Sanz-Lázaro. 2023. "Mussel Shells from Marine Aquaculture Act like Ecosystem Engineers: Legacy Effects on Benthic Communities" Coasts 3, no. 4: 328-344. https://doi.org/10.3390/coasts3040020
APA StyleSanchez-Jerez, P., Casado-Coy, N., Souza Troncoso, J., Olabarria, C., Valle-Pérez, C., Marí Such, C., & Sanz-Lázaro, C. (2023). Mussel Shells from Marine Aquaculture Act like Ecosystem Engineers: Legacy Effects on Benthic Communities. Coasts, 3(4), 328-344. https://doi.org/10.3390/coasts3040020