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Abstract: Many environmental stresses cause an increase in reactive oxygen species in plants and
alter their nutritional value. Plants respond to many stresses by producing increased amounts of
compounds with antioxidant properties including vitamins, phenylpropanoids and carotenoids.
Such compounds have wide-ranging health-promoting effects in humans that are partly due to
their antioxidant function because oxidative stress underlies many human diseases. Some of these
compounds have complex interactions with the gut, promoting gut health and changing the gut
microbiome, whereas the gut influences the bioavailability of the ingested compounds and may me-
tabolize them into products with different effects on health than the original compound. Substantial
efforts have been made to increase the nutritional value of crops through breeding or transgenic
approaches, but comparatively little effort has been directed towards increasing nutritional value
through crop management and environment, which may present another approach to enhance the
nutritional quality.
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1. Introduction

Plants are vulnerable to high light intensity and oxidative stress because they lack the
option to adapt to environmental stress by changing location. Consequently, plants have
evolved complex mechanisms to cope with adverse environmental conditions, including
the synthesis of small molecules that protect them from oxidative stress and that can have
similar protective properties for humans when ingested in the diet.

Abiotic stress results from any environmental condition that has a negative impact
on plants and is one of the major factors that reduces agricultural output worldwide.
Estimates of worldwide yield losses due to abiotic stresses range from 30–70% (https://
www.seedquest.com/News/releases/2008/october/23973.htm accessed on 15 May 2022).
Such losses may become even more severe given predicted global climate changes that are
expected to cause fluctuations in precipitation patterns and extreme temperature shifts [1].
Abiotic stressors include water, salt, light, heat, and cold [2,3]. In addition, plants often
face not just one but several stress conditions simultaneously. For example, reduced
availability of water induces stomatal closure, which results in heat stress due to reduced
transpiration and cooling efficiency, but also in light stress if CO2 becomes a limiting factor
for photosynthesis [2,4]. Plants must respond to a wide range of light conditions, and excess
light can lead to photoinhibition, photooxidative damage and reactive oxygen species (ROS)
production [5,6]. A typical consequence abiotic stresses is increased oxidative stress in the
plant (Figure 1) [7]. Alternatively, plants may produce ROS as a defense mechanism against
biotic stress, for example, to increase disease resistance. Among the most common ROS
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that are generated in a plant cell under stress are superoxide (O2
−), hydrogen peroxide

(H2O2), singlet oxygen (1O2), and hydroxyl (OH·) radicals [2,8].
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pounds can have similar health-promoting effects when consumed in the diet. 

Accumulation of ROS represents a threat for the vitality of a cell because they pro-
mote uncontrolled chemical reactions if in close vicinity to other molecules. As such they 
can cause peroxidation chain reactions in membranes as well as in densely packed oil 
bodies that can critically harm membrane integrity and render storage oils useless [9,10]. 
ROS can cause point mutations in DNA, render enzymes non-functional, or react and non-
specifically modify many of the organic molecules present in a cell [11]. If not quickly 
removed, this modification of DNA, proteins, or lipids poses a hazard to the cell [8,9,11–
14]. Consequently, organisms must quickly remove these aggressive molecules to reduce 
damage. 

ROS detoxification is mainly accomplished in two complementary ways: cells utilize 
enzymes such as catalases or peroxidases that react with ROS and convert them into non-
aggressive forms such as molecular oxygen (O2) or water (H2O) and/or a range of metab-
olites with antioxidant capabilities are synthesized that detoxify ROS either as enzymatic 
cofactors or through direct interaction with ROS [15]. These antioxidants are essential to 
broadly protect plants from long term impact from various stress situations. 

A plant’s response to abiotic stress impacts human nutrition because many of the 
compounds synthesized by the plant in response to stress are beneficial in the human diet. 
Many compounds synthesized by plants to protect against oxidative stress function ubiq-
uitously as protective agents in living organisms and are equally capable of providing 
similar protection to human cells. Oxidative stress and inflammation contribute to many 
human diseases, including cancer and diabetes [16,17]. Plant antioxidants reduce risk of 
diabetes and cancer, promote cardiovascular and gut health, and have anti-aging function 
[18–22]. 

This review will discuss some vitamins and phytonutrients whose amounts increase 
in response to oxidative stress and that are provided to the diet by plants. Their effect on 
human health will be examined, emphasizing their role in the gut, because of the cross 
talk between the gut and phytonutrients, where the gut influences the efficacy of the 
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production in cells increase under any prolonged abiotic stress condition such as salt, drought,
or temperature stress. ROS increase can be detrimental for the cellular integrity as it may cause
membrane damage (lipid peroxidation) or DNA and protein modifications. To prevent this, cells
have developed sophisticated defense mechanisms that are either based on enzymatic activities or
on secondary metabolites that act as antioxidants, and which can quench and detoxify ROS. These
compounds can have similar health-promoting effects when consumed in the diet.

Accumulation of ROS represents a threat for the vitality of a cell because they promote
uncontrolled chemical reactions if in close vicinity to other molecules. As such they can
cause peroxidation chain reactions in membranes as well as in densely packed oil bodies
that can critically harm membrane integrity and render storage oils useless [9,10]. ROS can
cause point mutations in DNA, render enzymes non-functional, or react and non-specifically
modify many of the organic molecules present in a cell [11]. If not quickly removed, this
modification of DNA, proteins, or lipids poses a hazard to the cell [8,9,11–14]. Consequently,
organisms must quickly remove these aggressive molecules to reduce damage.

ROS detoxification is mainly accomplished in two complementary ways: cells utilize
enzymes such as catalases or peroxidases that react with ROS and convert them into
non-aggressive forms such as molecular oxygen (O2) or water (H2O) and/or a range
of metabolites with antioxidant capabilities are synthesized that detoxify ROS either as
enzymatic cofactors or through direct interaction with ROS [15]. These antioxidants are
essential to broadly protect plants from long term impact from various stress situations.

A plant’s response to abiotic stress impacts human nutrition because many of the
compounds synthesized by the plant in response to stress are beneficial in the human diet.
Many compounds synthesized by plants to protect against oxidative stress function ubiqui-
tously as protective agents in living organisms and are equally capable of providing similar
protection to human cells. Oxidative stress and inflammation contribute to many human
diseases, including cancer and diabetes [16,17]. Plant antioxidants reduce risk of diabetes
and cancer, promote cardiovascular and gut health, and have anti-aging function [18–22].

This review will discuss some vitamins and phytonutrients whose amounts increase
in response to oxidative stress and that are provided to the diet by plants. Their effect on
human health will be examined, emphasizing their role in the gut, because of the cross talk
between the gut and phytonutrients, where the gut influences the efficacy of the ingested
phytonutrients, and the phytonutrients mediate gut health and microbiota in turn [23].
A common theme among these molecules, is that a major way they promote health once
ingested by humans functionally mimics how they promote health in plants—namely,
by reducing damage from oxidative stress. An in-depth understanding of the nature
and function of these compounds may help to develop crops with increased amounts of
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antioxidants that not only increase the plant’s nutritional value but result in more robust
crops that are better able to handle abiotic stress.

2. Vitamins
2.1. Vitamin C

Unlike most animals, humans cannot synthesize vitamin C, so plants are the primary
dietary source [24]. Vitamin C has a wide range of health-promoting effects, including
stimulating immune function and decreasing risk of strokes, hypertension, coronary heart
disease, diabetes, and metabolic disorder [25–27]. Vitamin C deficiency is a worldwide
issue, including in the US where up to 13% of young adults were found to have suboptimal
levels [28]. Severe vitamin C deficiency can lead to scurvy, which includes bleeding, liver
spots and tooth loss. Men with marginal deficient serum amounts had a 57% higher all-
cause mortality risk after 12–16 years than men with the highest serum concentrations [29].
The recommended daily allowance in the U.S. for vitamin C is 90 mg for men and 75 mg
for women [30].

Vitamin C is a hydrophilic molecule with six carbons and functions as a cofactor for
several enzymes. It exists in two primary forms, ascorbic and dehydroascorbic acids, with
the different redox state between the two forms being the basis for much of its biological
function [29]. The ascorbic form is a potent antioxidant that protects the cell from free
radicals and ROS, but also provides reducing power for carotenoid biosynthesis and can
regenerate vitamin E [31–33]. The loss of two electrons from ascorbic acid yields the
oxidized dehydroascorbic acid form that is stable for several minutes and can be reduced
back to ascorbic acid or is irreversibly metabolized. In plants, ascorbate has key roles
in coping with the stress from excessive light and in detoxifying H2O2 produced in the
chloroplast, with the resulting oxidized monodehydroascorbate regenerated via the Foyer-
Halliwell-Asada cycle [34,35].

The major pathway for vitamin C synthesis in plants is through the L-galactose
pathway, but other pathways are known and have a role [36,37]. Not surprisingly given
its key role in photosynthesis, leaves tend to have high concentrations of vitamin C, up to
50 mM in spinach chloroplasts and 1–5 mM in leaves and can be especially high in alpine
plants [38,39]. Amounts in leafy green vegetables such as kale, spinach and mustard greens
range from 30–130 mg/100 g fresh weight (FW) [40]. Non-leafy vegetables can contain
high amounts, with peppers having up to 242 mg/100 g FW and broccoli 91 mg/100 g FW.
More modest amounts occur in beets, carrots, peas, corn, and onions (3–10 mg/100 g FW).
Notably, non-green vegetables not exposed to sun can contain significant amounts. Vitamin
C content in over 75 potato breeding lines grown in the Pacific Northwest ranged from 11
to 40 mg/100 g FW, with both location and year affecting concentrations [41,42]. Amounts
of up to 139 mg/100 g FW were reported in Russet Burbank somaclones [43]. The wide
range reported in potato is similar to what is observed in other crops, where the amounts
of a given vitamin can vary widely by cultivar [44], and thus it is unlikely any one reported
concentration accurately captures the range in a crop.

Perhaps the highest known concentrations of vitamin C occur in camu-camu, a fruit
from the Amazon that can have up to 5000 mg/100 g FW [45]. Other fruits with high
amounts include the West Indian Cherry (1600 mg/100 g FW), guava (228 mg/100 g FW)
and litchis (183 mg/100 g FW) [40]. Amounts are lower in more widely consumed fruits
such as oranges (59 mg/100 g FW), apples (4 mg/100 g FW), pears (4 mg/100 g FW),
apricots (3 mg/100 g FW) and strawberries (41 mg/100 g FW).

Environmental conditions heavily influence on vitamin C metabolism. Light is the
most important signal, and ascorbate amounts increase with light duration and intensity,
and decrease in the dark [46]. Lettuce grown under continuous illumination for 48 h had
over a 4-fold increase in vitamin C with the amount of the increase dependent on the
light intensity [47]. Arabidopsis plants placed in darkness for 72 h had a 91% decrease
in leaf ascorbate levels [48]. Levels decreased up to 50% in apples grown under shade
cloth, which is often used to prevent sun scalding [49]. Green tomatoes exposed to light
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accumulated vitamin C, but mature red fruit did not, suggesting a role for chlorophyll [50].
The wavelength of light influences the effect on vitamin C, with exposure to blue LEDs
inducing larger vitamin C increases in citrus and leafy vegetables [51,52]. The higher
amounts of vitamin C resulting from high light intensity could be due to several factors,
including being a response by the plant to mitigate damage from free radicals and ROS,
but also because vitamin C is synthesized from sugars generated during photosynthesis.
Several genes involved in ascorbate synthesis in rice have light-responsive cis-elements
in their promoters [53] and multiple transcription factors that regulate the pathway are
known [54–56].

Ozone and cadmium induce oxidative stress and both increased ascorbate pools
in sunflower [57]. Ethylene and jasmonic acid are plant hormones well-known to be
responsive to numerous environmental stimuli, including disease and salt stress and both
phytohormones are implicated in regulating vitamin C [58,59]. Cherry tomatoes grown
with higher amounts of NaCl had higher amounts of vitamin C and tocopherol but gave
lower yields [60]. Temperature during the growing season can alter vitamin C amounts,
with colder temperatures often resulting in higher amounts, and higher temperatures in
decreased amounts, including in broccoli and other Brassicas [44,61]. Temperature during
storage may alter levels, with vitamin C losses up to 60% occurring in potatoes after weeks
of cold storage [62,63]. Application of higher amounts of nitrogen fertilization resulted in
lower vitamin C amounts in fresh-cut potatoes and in a more rapid loss during storage
of the cut product [64]. These illustrate the complexity of managing or breeding a crop
to maximize its nutritional value, because in addition to field-season effects, post-harvest
factors also mediate amounts. Not all potato cultivars lose vitamin C at the same rate
in storage, as seen in a study showing some lines had no loss after 2 months of cold
storage [65]. Thus, when pursuing breeding approaches to enhance phytonutrient content
there are numerous independent mechanisms that could result in higher levels, from plants
with higher constitutive expression of the pathway, to a genotype that responds to an
environmental signal by synthesizing more of a vitamin than other cultivars, or a line that
maintains higher amounts during storage and transport.

2.2. Vitamin E

Vitamin E (vitE) comprises a group of eight related compounds that all contain a
chromanol ring and belong either to tocopherols or tocotrienols [66,67]. While tocopherols
have a saturated phytyl side chain, this chain is unsaturated in tocotrienols. Tocopherols
and tocotrienols can be further separated into α-, β-, γ-, and δ-derivatives, which differ in
the numbers and location of methyl groups added to their chromanol ring [66]. VitE is a
lipophilic compound that provides protection against 1O2 and lipid peroxidation [68,69].
For example, the vitamin is critical in plants for the protection of thylakoid membranes,
but it is also needed to reduce peroxidation chain reactions in seed storage oils [68–70].
Leaves primarily synthesize α-tocopherol, which is more efficient in quenching 1O2 [71].
This ROS can easily be generated in chloroplasts via triplet chlorophyll that dissipates
its excessive energy to oxygen rather than to photosystem II [68]. In contrast, oil storing
seeds (e.g., palm tree fruits, soybean, sunflower, or rapeseed) normally contain either
higher amounts of γ-tocopherol or γ-tocotrienol that better protect the stored fatty acids
against lipid peroxidation than α-tocopherol, thereby improving long-term viability of the
seeds [69,70,72]. Plants with altered vitE levels better tolerate water, osmotic and oxidative
stress, and show reduced lipid peroxidation rates [71,73,74].

VitE is only synthesized in photosynthetically active organisms, such as cyanobacteria,
algae, and plants, and is essential in the human diet [66,75,76]. Severe vitE deficiencies
contribute to cardiovascular diseases and spinocerebellar ataxia, which can manifest in
symptoms such as problems with balance and movement coordination, or damage to the
retina and vision problems, as well as muscle weakness [77–79]. However, severe deficien-
cies in the vitamin are uncommon in humans, and are either connected with malnutrition
or genetic defects that impact tocopherol uptake [80,81]. Nevertheless, phytofortification in
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plants may have general human health benefits by providing greater protection against
ROS. Transgenic approaches to increase vitE were successful in wheat, rapeseed, and
potato [82–86]. In addition, quantitative trait loci analysis can help to identify traits con-
nected with increased tocopherol contents and enable targeted breeding approaches, as
successfully accomplished in rice [87]. Overall, these examples underscore the potential for
generation of crops with increased vitE content. The benefit of such approaches may not
only be reflected in increased nutritional values but may also generate plants that are more
resilient against, e.g., drought or heat stress.

2.3. Vitamin B2

Vitamin B2 (vitB2) or riboflavin is the precursor for flavin mononucleotide (FMN) and
flavin adenine dinucleotide (FAD), two compounds that function in various enzymatic
reactions as co-factors, and as such participate in fatty acid oxidation, electron transport, or
the biosynthesis of other vitamins [88]. FMN is also the chromophore in the photosensory
region of the phototropin blue-light receptors that control plant movements, as well as
F-box proteins that are involved in the circadian rhythm [89,90]. Critical for these diverse
functions of FAD and FMN is an isoalloxazine ring that is already present in riboflavin.
Because of that ring system, riboflavin is a double-sided sword with respect to ROS. The
ring system can easily be excited by blue light and thereby may function as a photosensitizer
with the potential to generate 1O2 and O2

−; but riboflavin has also been found to act as an
antioxidant and participates in the regeneration of reduced glutathione, a key metabolite
to quench ROS [91–96]. Humans can utilize riboflavin as a precursor for FAD and FMN
biosynthesis, but they lack the enzymatic machinery to make riboflavin [88]. The vitamin is
therefore essential to the human diet, and deficiencies have been related to neurological and
developmental disorders, cardiovascular disease, anemia, diabetes, and even cancer [97].
Riboflavin deficiencies are fortunately rare, and mostly occur in context with endocrine
abnormalities, chronic diarrhea, alcoholism, or liver disorders [98–100]. The biosynthesis
of riboflavin is comparably well understood in plants [101]; however, there is no research
available that convincingly demonstrate increasing the amount of the vitamin in plants is
currently feasible.

2.4. Vitamin B6

Vitamin B6 (vitB6) comprises a group of six related compounds that contain a pyridine
ring as their core. They mainly differ in their 4′ substituent that can be an aldehyde group
(pyridoxal), an amino methyl group (pyridoxamine), or a hydroxy methyl group) [102].
In addition, these three derivatives can be phosphorylated, which is a requirement for
the vitamin to function as cofactor in enzymatic reactions [102]. In plants, two enzymes
are involved in vitB6 de novo biosynthesis called Pyridoxal Synthase (PDX) 1 and 2 that
are expressed throughout the plant body [103]. The main biologically active form is
pyridoxal-5-phosphate, which is involved in more than 140 biochemical reactions in the
cell, mainly related to amino acid metabolism [102]. Besides being a central cofactor
for the cellular metabolism, it has also been demonstrated that the vitamin is capable
of quenching ROS, such as 1O2 [104], a ROS that can accumulate under light stress in
chloroplasts [105]. Consequently, plants deficient in vitB6 biosynthesis accumulate 1O2
under high light conditions and have increased lipid peroxidation [105]. VitB6 likely
protects more broadly against ROS since vitB6 mutants are widely sensitive to osmotic and
oxidative stress situations as well as UV-B exposure [106–109]. A role in stress protection is
further supported by the notion that in Arabidopsis expression of some genes involved in
vitB6 biosynthesis is increased under stress (e.g., paraquat, UV, heat) [110,111]. VitB6 is an
essential nutrient in the human diet as we are unable to synthesize it [102]. Given the broad
involvement in cellular metabolism and its potential as an antioxidant, it is not surprising
that the vitamin has human health benefits including reduced risk of mental disorders,
cardiovascular diseases or diabetes [112]. Although vitB6 malnutrition is not a general
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problem in humans, phytofortification in crops may be beneficial, and the feasibility has
been demonstrated by overexpressing PDX genes [113,114].

3. Phytonutrients

Unlike the vitamins above, phytonutrients such as phenylpropanoids and carotenoids
do not have recommended daily allowances, yet are highly beneficial in the diet and have
numerous health-promoting properties [115].

3.1. Phenylpropanoids

Phenylpropanoids are a diverse group of compounds, of which thousands of types
are synthesized by plants (Figure 2). The three largest dietary sources of phenylpropanoids
in the U.S. are apples, oranges and potatoes in a study of 34 fruits and vegetables [116].
Not only are phenylpropanoids are the most abundant antioxidants in the human diet,
but they also act synergistically with other antioxidants, including vitamin C and toco-
pherols [117,118]. Moreover, phenylpropanoids are metabolized upon ingestion, and the
resulting metabolites may have different health-promoting properties from the ingested
compound [119]. Further complicating analysis of phenylpropanoid efficacy is that gut
microbiota influence their bioefficacy but because people do not necessarily have the same
microbiota, the efficacy of dietary phenylpropanoids can vary among individuals [120–122].
Phenylpropanoids are the most abundant dietary antioxidants, and a great deal has been
learned about their effect on gut health over the last decade. Interactions between dietary
antioxidants and the gut will be discussed in Section 4.
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Major dietary phenylpropanoids from plants include hydroxycinnamic acids, an-
thocyanins and flavonols, most of which are stronger antioxidants than vitamin C and
tocopherols [123]. Like vitamin C and carotenoids, phenylpropanoids are critical for plants
to cope with light stress and mitigate damage from the resulting 1O2 and O2

−, the hydroxyl
radical and hydrogen peroxide [124]. Phenylpropanoids contain an aromatic ring with at
least one hydroxyl group and function both as reducing agents and hydrogen donors. Their
antioxidant strength has been characterized in structure-activity relationships studies that
show numerous factors influence their antioxidant activity, including the number and posi-
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tion of the hydroxyl groups, C2=C3 conjugation, number and types of ring structure, and
whether they are conjugated to other molecules such as sugars or proteins [118,125,126].
Not all phenylpropanoids are equally bioavailable, and some of the factors including
structure that influence their antioxidant strength also influence bioavailability.

Phenylpropanoids have numerous roles in plants, not just in abiotic and biotic stress
resistance, but in plant growth and development, flowering, fertility, signal transduction
and mitigation of damage from ozone [127–129]. Despite the lack of a daily intake reference,
they are highly desirable in the diet, conferring various health-promoting properties too
numerous to describe in full here, but including anti-obesity, anti-inflammatory and anti-
cancer effects, improved concentration, eye, and gut health [120,130–133]. Some, such as
the polyphenol, resveratrol, found in grapes and other plants, may extend lifespan through
anti-aging mechanisms including modulating telomere attrition and cell senescence, and
conferring some of the benefits seen from caloric restriction [134,135].

Phenylpropanoid metabolism begins with the deamination of phenylalanine into
cinnamate by phenylalanine ammonia lyase (PAL), which is encoded by a multi-gene
family [136–138]. Individual members of the PAL gene family can respond differentially
to environmental stress, such as in potato and mushroom where expression of some PAL
isogenes, but not others, increases in response to heat stress [139,140]. PAL essentially func-
tions as a gatekeeper, playing a key role in regulating overall phenylpropanoid metabolism,
which can assimilate up to 40% of biospheric organic carbon [138]. Phenylpropanoid
metabolism can be considered a central component of how plants adapt to and survive
environmental stress. Not only PAL, but biosynthetic and regulatory genes downstream in
the pathway are highly responsive to environmental stimuli including light, pathogens,
cold and heat stress [141–144].

Anthocyanin biosynthesis is mediated by environmental conditions including light,
temperature and water stress [145]. Anthocyanins function as light attenuators and biosyn-
thesis increases in high-light conditions [146]. In apple, anthocyanin biosynthesis is in-
creased by colder temperatures and repressed by higher temperatures via various MYB
transcription factors [147,148]. Drought stress can increase respiration and reduce photosyn-
thesis, creating conditions of excess light energy. Anthocyanin amounts increased in grapes
subjected to drought stress, whereas only small changes were seen in flavonols [149,150].
Tomato cultivars that were more resistant to drought had higher amounts of chlorogenic
acid and flavonols, and reduced amounts of H2O2 and lipid peroxidation [151]. Low
temperatures more than doubled anthocyanin amounts in blood orange and the authors
suggested post-harvest cold storage could be used to increase the nutritional value of
oranges grown in warm locations [152]. Higher temperatures increased amounts of chloro-
genic acid in potato but decreased anthocyanin amounts and reduced expression of a MYB
transcription factor that positively regulates the anthocyanin pathway [153,154]. Plants
grown in higher light intensity, such as occurs at high elevation, typically have higher
amounts of phenylpropanoids [155]. UV-C irradiation increased anthocyanin in cherries
up to 77% [156]. Studies have shown radioprotective effects of phenylpropanoids, and also
vitamin C and carotenoids in humans, and they have been proposed for use in mitigating
effects from cancer radiotherapy, space travel and nuclear accidents [157].

Soil with higher metal content is another environmental stressor that causes oxidative
damage in plants, including formation of OH· radicals. Metals can induce plant polyphe-
nols that mitigate oxidative damage via their antioxidant ability, but also reduce generation
of OH· radicals by chelating metals [158]. Salt stress causes a metabolic imbalance and leads
to a rapid increase in ROS in plant organelles and induces ROS signal transduction [159].
Plants can respond by synthesizing phenolic acids, flavonols and anthocyanins that amelio-
rate the oxidative damage [160]. In tomato, salinity led to the preferential accumulation of
chlorogenic acids, whereas heat stress led to preferential accumulation of flavonols [161].

Types and amounts of phenylpropanoids vary widely among plants. Hydroxycin-
namic acids such as chlorogenic, caffeic and ferulic acids are much more abundant than
hydroxybenzoic acids. A 200 mL cup of coffee can contain up to 350 mg of chlorogenic
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acids [162]. Chlorogenic acid can comprise up to 90% of the total soluble phenylpropanoids
in potatoes and can rival the amounts found in coffee [163,164]. Blueberries, cherries,
apples and plums contain from 50–200 mg per 100 g serving [131] and eggplant, endive
and lettuce from 5–60 mg/100 g [162]. Anthocyanins tend to be found in high amounts in
foods with the most intense red, blue, or purple pigmentation. Raspberries, blackberries,
strawberries and blueberries contain from 20–690 mg/100 g serving, while even higher
amounts are in elderberry and chokeberry (410–1800 mg/100 g serving [165,166]. Amounts
in a 100 g serving of other fruits and vegetables include red cabbage (322 mg), red onion
(49 mg), red grape (27 mg), apple (12 mg), peach (5 mg) and red bean (7 mg) [167]. Purple
potato contains up to 16 mg per gram dry weight [168].

Flavonol content also varies widely among plants. Amounts reported in some fruits
per 100 g serving range from 1.4–18 mg among blueberry, blackberry, strawberry, apple
and cherry [169]. Among onions, kale, broccoli, green beans, and green peppers, that range
was 1.4–63.4 mg, with onions having the highest amounts [170,171]. Flavonols in tomato
fruit from 20 varieties varied from 0.13–2.2 mg/100 g, with 98% of the amount present in
the skin and higher amounts found in those from sunnier environments [172]. Flavonol
amounts ranged from 0.1–8 mg/100 g among 91 grape varieties, and an even greater range
for anthocyanins of 2.5–628 mg/100 g was found in 64 red-skinned grape varieties [173].
Collectively, these data make it clear that both cultivar and environment have a substantial
effect on phenylpropanoid amounts and this should be considered by consumers seeking
to increase their dietary intake of phenylpropanoids.

3.2. Carotenoids

Humans cannot synthesize carotenoids, so fruits and vegetables are the major dietary
source for carotenoids, but egg yolks, diary and seafood also contribute [174]. Carotenoids
are lipophilic terpenoids with phytoene backbones that are derived from C5 isoprenoid
precursors and synthesized in chloroplasts [174]. Plant carotenoids are typically C40
molecules and classified as either carotenes or xanthophylls based on their structure and
oxygen content. They are pigments responsible for the color of yellow potatoes (lutein),
orange carrots (β-carotene) and red tomato (lycopene). While over 1100 carotenoids
occur in nature, only around 40 have been found in human blood samples, with six
the most abundant in blood: lutein, lycopene, zeaxanthin, β-cryptoxanthin, β-carotene
and α-carotene [175–177]. The primary role of carotenoids in plants is light harvesting
in photosynthesis and protection from excess light [174]. Carotenoids are antioxidants
that have been particularly studied for their role in quenching 1O2, which is produced in
chloroplasts under conditions of excess light energy [178]. Additionally, volatile carotenoid
oxidation products such as β-cyclocitral are generated by 1O2 attack on β-carotene and
act as signal molecules that induce changes in large sets of genes that overlap with genes
induced by 1O2 oxygen but not H2O2 [179]. These are thought to reprogram the cell from
active growth to defense against photooxidative stress. Oxidized carotenoids resulting
from scavenging radicals can be regenerated by vitamin C and tocopherols, which prevents
their transformation into radical-propagating pro-oxidants [180].

Carotenoids are anti-inflammatory, can improve cognitive performance and decrease
the risk of cancer, cardiovascular disease, and diabetes [181–187]. A unique property of
dietary carotenoids that functionally mimics their role in plants, is in reducing the risk of
age-related macular degeneration [181,182,188], which is an increasing problem with the
growing global elderly population [189]. Zeaxanthin and lutein are concentrated in the
macula and protect the retina from light, reducing damage from 1O2 oxygen, ROS, and
UV-induced peroxidation [186]. Studies suggest supplements of these two carotenoids are
beneficial for eye health, even in healthy people [186]. The United States does not have
a dietary reference intake, but the China Nutrition Society recommends a daily intake of
10 mg lutein and 2 mg zeaxanthin [186].

A wide range of lutein and zeaxanthin amounts are found in various fruits and
vegetables per 100 g serving including spinach (16 mg), turnip greens (13 mg), chard
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(11 mg), collards (11 mg), peas (2.5 mg), corn (0.64 mg), and orange (0.13 mg) [40]. β-
carotene amounts reported per 100 g serving include sweet potato (12.5 mg), carrots
(8.2 mg), and spinach (6.3 mg) [40]. However, the range for a given crop likely varies widely
as seen in potato, where white potatoes contain 27–74 µg/100 g FW of carotenoids [190],
and cultivated diploid potatoes up to 2 mg of zeaxanthin per 100 g FW [191–193], indicating
that breeding can likely greatly increase amounts in crops. Transgenic approaches have
increased potato carotenoids over 3000-fold [194,195].

Various environmental stresses increase amounts of carotenoids in plants and Orange
(OR) genes help the plant adapt to stress [196]. OR genes were first discovered in cauliflower
and activate chromoplast biogenesis creating a sink for stable storage of carotenoids [196].
Increased expression of the OR and the resulting increase in carotenoids conferred addi-
tional protection against salt, heat, drought and oxidative stress in sweet potato, alfalfa and
tobacco [197–199].Light generally increases the amounts of carotenoids in plants, although
light treatment decreased carotenoids in carrots [200]. Low temperatures can increase
carotenoid amounts in plants [200]. A study examining carotenoid content in potatoes
grown in multiple locations from the Arctic Circle to Texas and Florida found modest
differences in total carotenoids but dramatic changes in carotenoid composition, with vio-
laxanthin predominant in all Alaska locations, but zeaxanthin predominant in Florida and
lutein in Texas [201]. Like phenylpropanoids, cultivar and environment strongly influence
carotenoid amounts in plants, impacting dietary intake. Moreover, transgenic approaches
to increase carotenoids have been very successful, at least in the lab, if not the marketplace.

4. Effect of Plant Foods on Gut Health from an Antioxidant Perspective

It is now realized that many of the compounds discussed above mediate human
health through their effect on gut health and the gut microbiome, which has extensive
influence on overall health. This is a two-way street, with the gut, in-turn, acting on the
ingested compounds, influencing their bioavailability and even metabolizing them into
compounds with different bioactivity. As discussed below, data suggest that polyphenols
and other antioxidants exert beneficial effects on gut epithelium through improving gut
microbiota and their metabolites, which are closely associated with their anti-oxidative and
anti-inflammatory functions.

4.1. Oxidative Stress, Inflammation, and Gut Health

The gut epithelium is a large, highly selective barrier [202] that contains a single layer
of epithelial cells, which undergo constant self-renewal. This process requires the prolifera-
tion and differentiation of epithelial stem cells located at the bottom of the crypts [203,204].
Proliferating cells migrate upwards while differentiating into enterocytes, goblet cells, and
enteroendocrine cells [205]. Enterocytes are responsible for nutrient absorption [206], goblet
cells secrete mucin to form a protective mucus barrier, and enteroendocrine cells produce
hormones that regulate food intake and other physiological responses [207]. On the surface
of the epithelial layer, a mucus layer is formed through the mucin secretion by goblet cells
and is the frontline in defending against pathogenic bacteria and their translocation into
host tissue [208,209]. An impaired mucus layer increases the adhesion of bacteria and delays
the elimination of pathogens that can trigger inflammation [210,211]. Therefore, this layer
is critical for maintaining epithelial integrity and barrier function [212,213]. Disturbances
of gut epithelial barrier function account for the etiologies of many diseases, including
inflammatory bowel disease (IBD), colorectal cancer, and other diseases originating from
the gut [214–219].

The gut is also an immune organ [220], with immune cells densely populated in
intestinal lymphoid follicles or Peyer’s patches [221]. When microorganisms breach the
intestinal epithelial cell barrier, they are phagocytized and eliminated by lamina propria
macrophages [222], during which macrophages and other cells secrete inflammatory cy-
tokines to elicit local inflammation.
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Inflammation is a major factor leading to epithelial dysfunction. The epithelial barrier
is disrupted, or the passage of harmful antigens across the epithelial barrier fuels local
inflammation, which attracts macrophages and other immune cells to produce ROS and
elicit oxidative stress [223]. Thus, gut inflammation and oxidative stress are integrated
processes [224]. In addition, inflammatory cytokines impair epithelial barrier function by
weakening tight junctions among epithelial cells [225–230]. These changes may result in
gut chronic inflammation, as observed in patients with inflammatory bowel diseases (IBD),
leading to mucosal erosion and ulceration [231]. Therefore, oxidative stress, inflammation,
and impaired gut epithelial barrier create a worsening spiral. Dietary antioxidants from
plants can suppress oxidative stress and inflammation in the gut mucosal layer, which
improves overall gut health [232–235].

4.2. Plant Antioxidants in Alleviating Gut Epithelial Barrier Disruption, Inflammation, and
Oxidative Stress

Dietary phenylpropanoids suppress inflammation and improve gut epithelial barrier
function. Naringenin, a major polyphenol in citrus fruits, enhances intestinal barrier in-
tegrity [236] and alleviates the dextran sulfate sodium (DSS)-induced colitis in BALB/c
mice [237]. Similarly, the green tea flavonoid, epigallocatechin gallate, improves the in-
testinal barrier of pigs [238]. Polyphenol rich grape seed extract reduces the severity of
DSS-induced colitis, alleviates the inflammatory response in 2,4,6-trinitrobenzene sulfonic
acid (TNBS)-induced colitis in rats, and interleukin-10-deficient mice [239–241]. Resveratrol
from grape promotes the expression of tight junction proteins to improve epithelial barrier
function [242]. Anthocyanins attenuated lipopolysaccharide (LPS)-induced inflammatory
response in macrophages, attenuated inflammation, and improved colonic histological
architecture in DSS-induced colitis mice [243]. Polyphenol-rich purple potato extract en-
hanced intestinal epithelial differentiation and improved intestinal barrier functions [219].
Pigmented potato consumption resulted in reduced inflammation and DNA oxidative
damage in healthy adult males [244]. Finally, vitamin C suppresses oxidative stress and
inflammation in the gut [27].

Carotenoid rich fruit and vegetables are beneficial for gut health. β-carotene fed
to mice enhances the expression of antioxidant enzymes, reduces oxidative products,
and improves gut epithelial barrier function [245]. Vitamin A, derived from β-carotene,
facilitates epithelial differentiation and barrier function [246]. Capsicum extract, which
is rich in both polyphenolics and lycopene, prevents oxidative stress and inflammation
of gut epithelium and other tissues [247]. Dietary lycopene protects intestinal epithelium
from deoxynivalenol-induced oxidative damage [248]. In addition, tocopherols, including
vitamin E, mitigate colitis and protect intestinal barrier function [249]. Antioxidant enzyme
GSH-Px and plasma antioxidant capacity were significantly increased in the colon of colitis
mice supplemented with antioxidant rich Lacto-wolfberry [250]. These benefits are mainly
due to the anti-oxidative and anti-inflammatory effects of the ingested compounds [227].

4.3. Plant Antioxidants Shape Gut Microbiota
4.3.1. Gut Microbiota and Gut Health

The human intestine is inhabited by over 100 trillion microorganisms, accounting for
~35,000 different species that are dominated by Bacteroidetes, Firmicutes, and Actinobacte-
ria [251]. The microbial ecosystem in the gut is dynamic and determined by numerous
factors. The microbiota colonization begins immediately following birth and is shaped by
the host genetics and the environment, including diet and lifestyle.

The gut microbiota has been recognized as a “separate organ” inside our body with
vital roles in host physiology, metabolism, and health [252]. The gut epithelial structure
is compromised in germ-free mice; colonization of germ-free mice with Bacteroides thetaio-
taomicron, a prominent constituent of mouse/humane gut normal flora, improves host
nutrient absorption and strengthens epithelial barrier function [253,254]. Gut microbiota
is an important player in the incidence of chronic diseases, including gastrointestinal dis-
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orders and metabolic diseases. The imbalanced gut microbiota, also known as dysbiosis,
is closely associated with chronic gut inflammation, and is recognized as an important
etiological factor of inflammatory bowel disease (IBD) [255,256]. IBD subjects are char-
acterized by reduced alpha diversity [257], a lower Firmicutes to Bacteroidetes ratio [258],
decreased total bacterial load [256], depletion of the butyrate-producing bacteria family
Lachnospiraceae [256], Clostridium cluster XIVa [259], Clostridium leptum [258,260], Butyrici-
monas [257], and Faecalibacterium prausnitzii [258]. On the other hand, IBD patients are
associated with the enrichment of the Proteobacteria [256,261].

Gut microbiota also deliver beneficial effects by producing metabolites, including
short-chain fatty acids (SCFAs), that have a crucial role in maintaining intestinal epithelial
homeostasis, and intestinal barrier function [262]. Butyrate, a major SCFA, inhibits cell
proliferation and promotes cell differentiation, induces immune cell differentiation into an
anti-inflammatory state, alleviates the inflammatory responses, strengthens the intestinal
barrier function [263–269], and ameliorates TNBS-induced colitis in C57BL/6 mice [263].
Alterations in SCFAs, bile acid metabolites, and tryptophan metabolites associated with
dysbiosis are implicated in the development of IBD [270,271]. Oral microencapsulated
butyrate supplementation increased SCFA-producing bacteria, Lachnospiraceae spp. and
Butyricicoccus, in IBD patients [272]. Therefore, the dietary approach to restoring dysbiosis
and associated gut metabolites is a viable intervention strategy in IBD management.

4.3.2. Plant Antioxidants and Gut Microbiota

Dietary factors have a predominant role in controlling the composition of gut micro-
biota. Besides impacting the composition of gut microbes, diet influence the function of gut
microbiota through microbial metabolism. Besides the well-known antioxidative benefits
of phytonutrients, they also have prebiotic effects and modulate gut microbiota.

Phenylpropanoid-rich grape seed extract increased the abundance of beneficial bacte-
ria, specifically Lactobacilli and Bacteroides, in the gut microbiota of mice [240]. Consumption
of a high-flavonol cocoa drink or polyphenols from red wine increased Bifidobacteria abun-
dance in feces [273]. Flavanol-enriched cocoa powder supplementation augments Bifidobac-
teria and Lactobacilli in pig gut microbiota [274]. Quercetin improved the gut microbiota
diversity and fecal butyrate level in antibiotic-treated mice, reduced Phascolarctobacterium
and Anaerovibrio levels in high cholesterol diet-fed atherosclerotic mice, and increased
Bacteroidetes/Firmicutes ratio, Akkermansia muciniphila and Bacteroides vulgatus abundance
associated with metabolic improvements in diet-induced obese rats [242,275,276]. Like-
wise, chlorogenic acid supplementation decreased Blautia, Sutterella, and Akkermansia and
increased bacterial diversity and butyrate levels in rats, augmented SCFA-producing bac-
teria in weaned piglets and in mice induced with hyperuricemia [277–279]. Microbially
derived metabolites of quercetin and chlorogenic acid down-regulated the expression of
the inflammatory enzyme, cyclooxygenase-2, in human colon adenoma cells [280].

Purple sweet potato anthocyanins increase Bifidobacteria and Lactobacilli abundance and
SCFA production in vitro culture of human intestinal microbiota [281]. Phenylpropanoid-rich
purple-flesh potato intake results in an increase in the gut microbiota Bacteroidetes/Firmicutes
ratio associated with suppressed systemic oxidative stress and gut inflammation in pigs
fed a high-fat diet [282]. Similarly, antioxidant rich Goji berry extracts promoted the
growth of probiotic Bifidobacterium and Lactobacillus casei in simulated gastric and intestinal
juices [283]. Anthocyanin-rich extracts from black goji berry supplementation augmented
SCFA-producing bacteria, Coprobacter, and the cecal and fecal acetate and butyrate contents
associated with increased antioxidant status in liver and anti-inflammatory status in the
colon of C57BL/6 mice [284]. Furthermore, anthocyanin extracts from black goji berry
prevented high-fat diet-induced obesity, alleviated intestinal barrier dysfunction and inflam-
mation in mice fed a high-fat diet, and was linked to the increased colonic SCFA level and
enriched SCFA producing bacteria, including Roseburia, Bacteroides, and Akkermansia [285].
Goji berry intake in IL-10-deficient mice enriched Bifidobacteria and SCFA-producing bacte-
ria, including Lachnospiraceae-Ruminococcaceae family and Roseburia spp. under Clostridium
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cluster XIV, butyrate-producers C. leptum and F. prazusnitzii, and augmented fecal SCFA
levels linked to the improved colitis symptom and colonic pathobiological status [286].

Other phytonutrients besides phenylpropanoids modulate gut microbiota. Lycopene
increases the abundance of Bifidobacterium adolescentis and Bifidobacterium longum associated
with improvement of gut, blood, and liver lipid metabolism in subjects with moderate
obesity [287]. Lycopene supplementation attenuates DSS-induced colitis and gut inflam-
mation and increases Bifidobacterium and Lactobacillus abundance and fecal SCFA level in
colitis mice [288]. β-carotene ameliorates the severity of colitis, suppresses inflammation,
and increases the relative abundance of Faecalibacterium in DSS-induced colitis rat [289],
prevents weaning-induced intestinal inflammation in piglets and alters gut microbiota
composition, particularly decreased Prevotella abundance [290]. Capsicum extract rich in
polyphenols, β-carotene, and lycopene promotes weight loss, improves metabolic mark-
ers, and alleviates obesity-associated inflammation and intestinal barrier dysfunction in
mice fed with a high-fat diet, likely due to its antioxidant properties and associated gut
microbiota modulation [247].

Recently, Otten et al. [291] reported that a two-week supplementation of vitamin C at
1000 mg in healthy individuals resulted in a shift in gut microbiota composition, especially
increased relative abundance of Lachnospiraceae and decreased Bacteroidetes, Enterococci,
and Gemmiger formicilis. Supplementation of 2-O-β-D-glucopyranosyl-L-ascorbic acid
(AA-2βG), a natural ascorbic acid derivative isolated from goji berry, alleviates colitis
symptoms, inflammatory response, and intestinal barrier impairment in DSS-treated mice
accompanied by increased SCFA levels and altered gut microbiota composition [292].
Dietary vitamin E improve intestinal epithelial barrier and suppress oxidative stress in heat-
stressed pigs [293]. Consistently, γ-tocopherol-rich tocopherols vitamin E supplementation
mitigates colitis, colitis-induced tight junction protein loss, and attenuated DSS-induced
depletion of Roseburia in DSS-induced colitis mice [249].

5. Conclusions

The findings summarized in this review illustrate the complex role environment can
have on human health by altering the nutritional composition of fruits and vegetables.
Environmental signals that cause oxidative stress in plants can markedly change the
nutritional profile of a crop by triggering the plant to make more of the compounds that
counter the stress. This can benefit human health by increasing dietary intake of health-
promoting compounds such as phenylpropanoids that mitigate oxidative stress in humans
as they do in plants. To be efficacious in humans, such compounds must be bioavailable,
which is not just a function of the molecule’s structure, but is also influenced by gut
microbiota composition, which can vary among individuals. These illustrate the complex
role environment has on human health, including by altering the composition of our foods
and our gut microbiome. Substantial effort has taken place to increase the nutritional value
of food by breeding or transgenic approaches, but very little attention has been paid to
increasing nutritional value by managing crops to maximize their nutritional value, despite
numerous studies showing that environment can markedly alter phytonutrient content in
crops. Perhaps the lack of such strategies stem from the complexity of the question, which
would likely require years of field trials for each crop across multiple locations and with
multiple cultivars. Then, there is the challenge of controlling for environmental variables
and assessing compounds that are naturally variable in amounts anyway. Positive effects
on nutrition from deliberate management would have to be balanced with potentially
negative effects on the crop, such as yield reduction. To date, viticulture may have been
the most active studying the environment-crop quality interaction, where the concept of
terroir is now well-established [150]. Terroir is a concept that the land and climate where
a grape is grown imparts unique characteristics, so one region might produce a better
quality of wine than another region. Of course, efforts to maximize terroir are largely due
to interest in sensory qualities, not nutritional value, although some of the compounds that
influence flavor also have nutritional value. At least one kind of abiotic stress has been
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deliberately used to alter a crop’s phytonutrient content, with water stress used to improve
flavor, anthocyanin content and quality in grapes [150]. Perhaps in the future more crops
will be similarly managed to maximize their nutritional value using more sophisticated
agronomic approaches. As with grapes, additional incentive for such approaches may
come from the fact that taste and appearance (such as more intense coloration) may also be
enhanced, further increasing the appeal to consumers.
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