Home Oxygen Therapy (HOT) in Stable Chronic Obstructive Pulmonary Disease (COPD) and Interstitial Lung Disease (ILD): Similarities, Differences and Doubts
Abstract
:1. Introduction
2. Literature Search
3. Frequency, Significance and Varieties of Hypoxemia in Subjects with COPD and PF-ILD
3.1. COPD
3.2. PF-ILD
4. Effect of HOT on Prognosis in COPD and PF-ILD Subjects
4.1. COPD
4.2. PF-ILD
5. Effect of HOT on Quality of Life, Exercise Capacity and Exertional Dyspnea in COPD and ILD Subjects
5.1. COPD
5.2. PF-ILD
6. The Issue of Adherence to HOT and the Role of the Delivery Device
7. Discussion
8. Conclusions
Funding
Conflicts of Interest
Appendix A
Type of Oxygen | Gaseous Oxygen (GOX) | Liquid Oxygen (LOX) | Oxygen Concentrator (OC) |
---|---|---|---|
Variety of models and oxygen Supply | Many types of cylinders with different weight and size. The smallest cylinders are portable devices with a capacity of 150–170 L and weight of 2.5 kg when full. The largest cylinders have an oxygen capacity of about 7000 L with weight di 70–80 kg | Many types of tanks containing up to 30–40 L of LOX. The smallest tanks are portable devices, said strollers, with weight of 2–3 kg when full | Some varieties of concentrators. The greatest models have weight of 10–25 kg, permitting greateer oxygen supply. The smallest devices, said portable concentrators, have smaller size and weight (even 2–3 kg) and rechargable batteries |
Disadvantages | Need of regular replacing the empty with full cylinders | Loss of oxygen are expected up to 0.5–1 kg of lox per day even if not used. Need of a distributional network | Noise and vibrations from the device Elettrically powered The smallest devices can only assure either intermittent oxygen flow or relatively low flows |
Advantages | Available worldwide. Noise free Oxygen may be stored for long-term periods without any loss of content if not used | Storing of large content of oxygen in limited volumes:1 L of LOX produces up to 860 L of GOX. Tanks of 30–40 L can last for 10–14 days for continuous HOT at flow of 2–3 lpm. Ease transfill of oxygen from the mother unit into the stroller Noise-free The strollers can assure good mobility outside the home and acceptable autonomy of delivery | Uninterrupted supply of oxygen Do not require regular replacement of oxygen, but only periodical (and emergency) maintenance/assistance The smallest devices can assure good mobility and autonomy outside the home. |
\Strong issues | Good mobility No need for distribution network Low mobility Acceptable autonomy. Refillable from methor unit | Deliver oxygen for long-term consuption | |
Assistance Disadvantage | with periodic visits to replace the empty with full tanks |
Cause | |
---|---|
Long-term continuous Oxygen Therapy | Oxygen delivered to subjects with stable severe resting hypoxemia |
Ambulatory Oxygen Therapy | Oxygen delivered during physical activities of everyday life |
Nocturnal Oxygen Therapy | Oxygen only delivered during sleep time. This treatment is usually administered in the presence of Sleeping Oxygen Desaturation (SOD) |
Symptomatic Oxygen Therapy | Oxygen delivered to contrast symptoms and mainly to relieve dyspnea and to improve exercise tolerance. This treatment may be administered in the presence or in the absence of Exertional Oxygen Desaturation (EOD). It also includes brief and intermittent oxygen release before and/or after exercise, generally used as needed for symptomatic reasons and defined as short-burst oxygen |
Study/No Reference | No (% Males) | Mean Age, Years | Mean PaCO2 Values *, mmHg | Mean PaO2 Values *, mmHg | FEV1% pred | Inclusion Criteria | Prescribed O2, Hours a Day | Survival Rate, Primary Outcome | Other Outcomes |
---|---|---|---|---|---|---|---|---|---|
MRC/34° | 87 (74) | 58 | 50 | 54 | NA | PaO2 ≤ 60 § | 15 vs. no O2 | † 45% vs. 67% 1 | ≈ hosp |
NOTT/35 | 203 (79) | 65 | 44 | 51 | 30 | PaO2 ≤ 55/PaO2 ≤ 59 ^ | 24 vs. 12 | † 22% vs. 41% 2 | ≈ hosp, SIP; MMPI, POMS; Ht |
Guideline/No Ref. | LTOT | AOT | SOT | OT-ILD |
---|---|---|---|---|
TSANZ/55 ^ | (a) Pa(dr)O2 ≤ 55/7.3 mmHg/kPa (b) PaO2 (dr) 56/7.4 to 59/7.8 mmHg/kPa plus hypoxic organ damage ***** | (a) Subjects on LTOT mobile outdoors with desire to maximize their duration of HOT and exercise capacy *** (b) Occasionally not on LTOT but with exertional dyspnea and EOD; blinded confirmation of oxygen benefits is required ** | Occasionally if SpO2 < 88% for > 1/3 of sleep, mainly with pulmonary hypertension and polycythemia **** | FiO2 → Pa(rd)O2 60/8 mmHg/kPa or SpO2 > 90% |
ATS/2 | (a) Pa(dr)O2 ≤ 55/7.3 mmHg/kPa or SpO2 ≤ 88% (b) PaO2 (dr) 56/7.4 to 59/7.9 mmHg/kPa or SpO2 89% plus oedema, hematocrit ≥ 55% or p pulmonale on ECG ***^^ | (a) Subjects with EOD ^^^ | No recommendation | No recommendation |
BTS/56 | (a) Pa(dr)O2 ≤ 55/7.3 mmHg/kPa (b) PaO2 (dr) ≤60/8 mmHg/kPa plus oedema, hematocrit ≥ 55% or pulmonary hypertension” | (a) Subjects on LTOT imobile outdoors ”” (b) Occasionally not on LTOT during exercise in a pulmonary rehabilitation programme and following after formal demonstration of improvement in exercise endurance ””” | not recommended in subjects with COPD with SOD but who fail to meet the criteria for LTOT $ | Start on an oxygen flow rate of 1 L/min and titrated up in 1 L/min increments until SpO2 > 90%. An ABG should confirm a PaO2 value ≥ 60/8 mmHg/kPa”” Non-hypercapnic subjects on LTOT should increase their resting daytime flow rate by 1 L/min during sleep ”” Oximetry may be performed to allow more accurate titration until a target PaO2 value is achieved. |
German/57–58 | (a) Pa(dr)O2 ≤ 55/7.3 mmHg/kPa (b) PaO2 (dr) 55/7.3 to 60/8 mmHg/kPa plus polycythaemia and/or cor pulmonale” | (a) Subjects on LTOT who are mobile outdoors (b) Subjects not on LTOT, but with drops >5/0.7 mmHg/kPa and PaO2 nadir < 55/7.3 mmHg/kPa during ergometric assessment (c) subjects not on LTOT with confirmation that AOT substantially improves exercise capacity | No recommandation | (a) FiO2 →Pa(rd)O2 60/8 mmHg/kPa (b) Exercise test to evaluate the necessary oxygen flow rate of AOT during exercise |
References
- Melani, A.S.; Sestini, P.; Rottoli, P. Home oxygen therapy: Re-thinking the role of devices. Expert Rev. Clin. Pharmacol. 2018, 11, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.S.; Krishnan, J.A.; Lederer, D.J.; Ghazipura, M.; Hossain, T.; Tan, A.M.; Carlin, B.; Drummond, M.B.; Ekström, M.; Garvey, C.; et al. Home oxygen therapy for adults with chronic lung disease. An official american thoracic society clinical practice guideline. Am. J. Respir. Crit. Care Med. 2020, 202, e121–e141. [Google Scholar] [CrossRef] [PubMed]
- Palm, A.; Ågren, K.; Grote, L.; Ljunggren, M.; Midgren, B.; Sundh, J.; Theorell-Haglöw, J.; Ekström, M. Course of DISease In patients reported to the Swedish CPAP Oxygen and VEntilator RegistrY (DISCOVERY) with population-based controls. BMJ Open 2020, 10, e040396. [Google Scholar] [CrossRef]
- Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2021. Available online: http://goldcopd.org (accessed on 16 July 2022).
- GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2020, 8, 585–596. [Google Scholar] [CrossRef]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; on behalf of the American Thoracic Society; European Respiratory Society; Japanese Respiratory Society; Latin American Thoracic Society. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef] [PubMed]
- Maher, T.M.; Bendstrup, E.; Dron, L.; Langley, J.; Smith, G.; Khalid, J.M.; Patel, H.; Kreuter, M. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir. Res. 2021, 22, 197. [Google Scholar] [CrossRef]
- Gagliardi, M.; Berg, D.V.; Heylen, C.E.; Koenig, S.; Hoton, D.; Tamirou, F.; Pieters, T.; Ghaye, B.; Froidure, A. Real-life prevalence of progressive fibrosing interstitial lung diseases. Sci. Rep. 2021, 11, 23988. [Google Scholar] [CrossRef] [PubMed]
- Nasser, M.; Larrieu, S.; Si-Mohamed, S.; Ahmad, K.; Boussel, L.; Brevet, M.; Chalabreysse, L.; Fabre, C.; Marque, S.; Revel, D.; et al. Progressive fibrosing interstitial lung disease: A clinical cohort (the PROGRESS study). Eur. Respir. J. 2021, 57, 2002718. [Google Scholar] [CrossRef]
- Palm, A.; Ekström, M. Hypoxemia severity and survival in ILD and COPD on long-term oxygen therapy. The population-based DISCOVERY study. Respir. Med. 2021, 189, 106659. [Google Scholar] [CrossRef]
- Andrianopoulos, V.; Franssen, F.M.; Peeters, J.P.; Ubachs, T.J.; Bukari, H.; Groenen, M.; Burtin, C.; Vogiatzis, I.; Wouters, E.F.; Spruit, M.A. Exercise-induced oxygen desaturation in COPD patients without resting hypoxemia. Respir. Physiol. Neurobiol. 2014, 190, 40–46. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, H.C.; Yang, C.H.; Gan, S.T.; Huang, C.H.; Chung, F.T.; Hu, H.C.; Lin, S.M.; Chang, C.H. Factors Associated with Exercise-Induced Desaturation in Patients with Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obs. Pulmon. Dis. 2020, 15, 2643–2652. [Google Scholar] [CrossRef] [PubMed]
- Casanova, C.; Cote, C.; Marin, J.M.; Pinto-Plata, V.; de Torres, J.P.; Aguirre-Jaime, A.; Vassaux, C.; Celli, B.R. Distance and oxygen desaturation during the 6-min walk test as predictors of long-term mortality in patients with COPD. Chest 2008, 134, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Stolz, D.; Meyer, A.; Rakic, J.; Boeck, L.; Scherr, A.; Tamm, M. Mortality risk prediction in COPD by a prognostic biomarker panel. Eur. Respir. J. 2014, 44, 1557–1570. [Google Scholar] [CrossRef] [PubMed]
- Waatevik, M.; Johannessen, A.; Gomez Real, F.; Aanerud, M.; Hardie, J.A.; Bakke, P.S.; Lind Eagan, T.M. Oxygen desaturation in 6-min walk test is a risk factor for adverse outcomes in COPD. Eur. Respir. J. 2016, 48, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.F.; Chin, C.H.; Tseng, C.W.; Chen, Y.C.; Kuo, H.C. Exertional Desaturation Has Higher Mortality Than Non-Desaturation in COPD. Medicina 2021, 57, 1110. [Google Scholar] [CrossRef]
- Fletcher, E.C.; Donner, C.F.; Midgren, B.; Zielinski, J.; Levi-Valensi, P.; Braghiroli, A.; Rida, Z.; Miller, C.C. Survival in COPD patients with a daytime PaO2 greater than 60 mm Hg with and without nocturnal oxyhemoglobin desaturation. Chest 1992, 101, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Lacasse, Y.; Sériès, F.; Vujovic-Zotovic, N.; Goldstein, R.; Bourbeau, J.; Lecours, R.; Aaron, S.D.; Maltais, F. Evaluating nocturnal oxygen desaturation in COPD—Revised. Respir. Med. 2011, 105, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.A.; Fergusson, W.; Eaton, T.; Zeng, I.; Kolbe, J. Isolated nocturnal desaturation in COPD: Prevalence and impact on quality of life and sleep. Thorax 2009, 64, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, J.P.; Fernandes, S.; Jamal, R.; Camp, P.; Johannson, K.; Schaeffer, M.; Wilcox, P.G.; Guenette, J.A.; Ryerson, C.J. Exertional hypoxemia is more severe in fibrotic interstitial lung disease than in COPD. Respirology 2018, 23, 392–398. [Google Scholar] [CrossRef]
- Khor, Y.H.; Goh, N.S.; Glaspole, I.; Holland, A.E.; McDonald, C.F. Exertional desaturation and prescription of ambulatory oxygen therapy in interstitial lung disease. Respir. Care 2019, 64, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Lama, V.N.; Flaherty, K.R.; Toews, G.B.; Colby, T.V.; Travis, W.D.; Long, Q.; Murray, S.; Kazerooni, E.A.; Gross, B.H.; Lynch, J.P., 3rd; et al. Prognostic value of desaturation during a 6-minute walk test in idiopathic interstitial pneumonia. Am. J. Respir. Crit. Care Med. 2003, 168, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Hallstrand, T.S.; Boitano, L.J.; Johnson, W.C.; Spada, C.A.; Hayes, J.G.; Raghu, G. The timed walk test as a measure of severity and survival in idiopathic pulmonary fibrosis. Eur. Respir. J. 2005, 25, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, K.R.; Andrei, A.C.; Murray, S.; Fraley, C.; Colby, T.V.; Travis, W.D.; Lama, V.; Kazerooni, E.A.; Gross, B.H.; Toews, G.B.; et al. Idiopathic pulmonary fibrosis: Prognostic value of changes in physiology and six-minute-walk test. Am. J. Respir. Crit. Care Med. 2006, 174, 803–809. [Google Scholar] [CrossRef]
- Nonoyama, M.L.; Brooks, D.; Guyatt, G.H.; Goldstein, R.S. Effect of oxygen on health quality of life in patients with chronic obstructive pulmonary disease with transient exertional hypoxemia. Am. J. Respir. Crit. Care Med. 2007, 176, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Wallaert, B.; Monge, E.; Le Rouzic, O.; Wémeau-Stervinou, L.; Salleron, J.; Grosbois, J.M. Physical activity in daily life of patients with fibrotic idiopathic interstitial pneumonia. Chest 2013, 144, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Corte, T.J.; Wort, S.J.; Talbot, S.; Macdonald, P.M.; Hansel, D.M.; Polkey, M.; Renzoni, E.; Maher, T.M.; Nicholson, A.G.; Wells, A.U. Elevated nocturnal desaturation index predicts mortality in interstitial lung disease. Sarcoidosis Vasc. Diffus. Lung Dis. Off. J. WASOG 2012, 29, 41–50. [Google Scholar]
- Kolilekas, L.; Manali, E.; Vlami, K.A.; Lyberopoulos, P.; Triantafillidou, C.; Kagouridis, K.; Baou, K.; Gyftopoulos, S.; Vougas, K.N.; Karakatsani, A.; et al. Sleep oxygen desaturation predicts survival in idiopathic pulmonary fibrosis. J. Clin. Sleep Med. 2013, 9, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Troy, L.K.; Young, I.H.; Lau, E.M.T.; Wong, K.K.H.; Yee, B.J.; Torzillo, P.J.; Corte, T.J. Nocturnal hypoxaemia is associated with adverse outcomes in interstitial lung disease. Respirology 2019, 24, 996–1004. [Google Scholar] [CrossRef]
- Pitsiou, G.; Bagalas, V.; Boutou, A.; Stanopoulos, I.; Argyropoulou-Pataka, P. Should we routinely screen patients with idiopathic pulmonary fibrosis for nocturnal hypoxemia? Sleep Breath. 2013, 17, 447–448. [Google Scholar] [CrossRef]
- Bosi, M.; Milioli, G.; Fanfulla, F.; Tomassetti, S.; Ryu, J.H.; Parrino, L.; Riccardi, S.; Melpignano, A.; Vaudano, A.E.; Ravaglia, C.; et al. OSA and Prolonged Oxygen Desaturation During Sleep are Strong Predictors of Poor Outcome in IPF. Lung 2017, 195, 643–651. [Google Scholar] [CrossRef]
- Yasuda, Y.; Nagano, T.; Izumi, S.; Yasuda, M.; Tsuruno, K.; Tobino, K.; Nakata, K.; Okamura, K.; Nishiuma, T.; Takatsuki, K.; et al. Analysis of nocturnal desaturation waveforms using algorithms in patients with idiopathic pulmonary fibrosis. Sleep Breath. 2022, 26, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Nocturnal Oxygen Therapy Trial Group. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: A clinical trial. Ann. Intern. Med. 1980, 93, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Medical Research Council Working Party. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Lancet 1981, 1, 681–686. [Google Scholar]
- Long-Term Oxygen Treatment Trial Research Group. The randomized trial of Long-Term Oxygen for COPD with moderate desaturation. N. Engl. J. Med. 2016, 375, 1617–1622. [Google Scholar] [CrossRef]
- Lacasse, Y.; Sériès, F.; Corbeil, F.; Baltzan, M.; Paradis, B.; Simão, P.; Abad Fernández, A.; Esteban, C.; Guimarães, M.; Bourbeau, J.; et al. Randomized Trial of Nocturnal Oxygen in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2020, 383, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Braghiroli, A.; Ioli, F.; Spada, E.L.; Vecchio, C.; Donner, C.F. LTOT in pulmonary fibrosis. Monaldi Arch. Chest Dis. 1993, 48, 437–440. [Google Scholar] [PubMed]
- Ekström, M.; Ahmadi, Z.; Bornefalk-Hermansson, A.; Abernethy, A.; Currow, D. Oxygen for breathlessness in patients with chronic obstructive pulmonary disease who do not qualify for home oxygen therapy. Cochrane Database Syst. Rev. 2016, 11, CD006429. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.P.; Berlowitz, D.J.; Denehy, L.; Pretto, J.J.; Brazzale, D.J.; Sharpe, K.; Jackson, B.; McDonald, C.F. A randomised trial of domiciliary, ambulatory oxygen in patients with COPD and dyspnoea but without resting hypoxaemia. Thorax 2011, 66, 32–37. [Google Scholar] [CrossRef]
- Alison, J.A.; McKeough, Z.J.; Leung, A.E.; Hill, K.; Morris, N.R.; Jenkins, S.; Spencer, L.M.; Hill, J.L.; Lee, A.M.; Seale, H.; et al. Oxygen compared to air during exercise training in COPD with exercise-induced desaturation. Eur. Respir. J. 2019, 53, 1802429. [Google Scholar] [CrossRef]
- Edvardsen, A.; Jarosch, I.; Grongstad, A.; Wiegand, L.; Gloeckl, R.; Kenn, K.; Spruit, M.A. A randomized cross-over trial on the direct effects of oxygen supplementation therapy using different devices on cycle endurance in hypoxemic patients with Interstitial Lung Disease. PLoS ONE 2018, 13, e0209069. [Google Scholar] [CrossRef]
- Dowman, L.M.; McDonald, C.F.; Hill, C.J.; Lee, A.L.; Barker, K.; Boote, C.; Glaspole, I.; Goh, N.S.; Southcott, A.M.; Burge, A.T.; et al. The evidence of benefits of exercise training in interstitial lung disease: A randomised controlled trial. Thorax 2017, 72, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Arizono, S.; Furukawa, T.; Taniguchi, H.; Sakamoto, K.; Kimura, T.; Kataoka, K.; Ogawa, T.; Watanabe, F.; Kondoh, Y. Supplemental oxygen improves exercise capacity in IPF patients with exertional desaturation. Respirology 2020, 25, 1152–1159. [Google Scholar] [CrossRef]
- Visca, D.; Mori, L.; Tsipouri, V.; Fleming, S.; Firouzi, A.; Bonini, M.; Pavitt, M.J.; Alfieri, V.; Canu, S.; Bonifazi, M.; et al. Effect of ambulatory oxygen on quality of life for patients with fibrotic lung disease (AmbOx): A prospective, open-label, mixed-method, crossover randomised controlled trial. Lancet Respir. Med. 2018, 6, 759–770. [Google Scholar] [CrossRef]
- Ström, K.; Boe, J.; Boman, G.; Midgren, B.; Rosenhall, L. Long-term domiciliary oxygen therapy. Experiences acquired from the Swedish Oxygen Register. Monaldi Arch. Chest Dis. 1993, 48, 473–478. [Google Scholar]
- Vergeret, J.; Brambilla, C.; Mounier, L. Portable oxygen therapy: Use and benefit in hypoxaemic COPD patients on long-term oxygen therapy. Eur. Respir. J. 1989, 2, 20–25. [Google Scholar]
- Lock, S.H.; Blower, G.; Prynne, M.; Wedzicha, J.A. Comparison of liquid and gaseous oxygen for domiciliary portable use. Thorax 1992, 47, 98–100. [Google Scholar] [CrossRef]
- Mussa, C.C.; Tonyan, L.; Chen, Y.F.; Vines, D. Perceived Satisfaction with Long-Term Oxygen Delivery Devices Affects Perceived Mobility and Quality of Life of Oxygen-Dependent Individuals With COPD. Respir. Care 2018, 63, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Neri, M.; Melani, A.S.; Miorelli, A.M.; Zanchetta, D.; Bertocco, E.; Cinti, C.; Canessa, P.A.; Sestini, P.; Educational Study Group of the Italian Association of Hospital Pulmonologists (AIPO). Long-term oxygen therapy in chronic respiratory failure: A Multicenter Italian Study on Oxygen Therapy Adherence (MISOTA). Respir. Med. 2006, 100, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Dakkak, J.; Tang, W.; Smith, J.T.; Balasubramanian, A.; Mattson, M.; Ainechi, A.; Dudley, B.; Hill, M.N.; Mathai, S.C.; McCormack, M.C.; et al. Burden and Unmet Needs with Portable Oxygen in Patients on Long-Term Oxygen Therapy. Ann. Am. Thorac. Soc. 2021, 18, 1498–1505. [Google Scholar] [CrossRef]
- Storgaard, L.H.; Hockey, H.U.; Laursen, B.S.; Weinreich, U.M. Long-term effects of oxygen-enriched high-flow nasal cannula treatment in COPD patients with chronic hypoxemic respiratory failure. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 1195–1205. [Google Scholar] [CrossRef]
- Vitacca, M.; Paneroni, M.; Zampogna, E.; Visca, D.; Carlucci, A.; Cirio, S.; Banfi, P.; Pappacoda, G.; Trianni, L.; Brogneri, A.; et al. High-Flow Oxygen Therapy During Exercise Training in Patients with Chronic Obstructive Pulmonary Disease and Chronic Hypoxemia: A Multicenter Randomized Controlled Trial. Phys. Ther. 2020, 100, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Bitos, K.; Furian, M.; Mayer, L.; Schneider, S.R.; Buenzli, S.; Mademilov, M.Z.; Sheraliev, U.U.; Marazhapov, N.H.; Abdraeva, A.K.; Aidaralieva, S.D.; et al. Effect of High-Flow Oxygen on Exercise Performance in COPD Patients. Randomized Trial. Front. Med. 2021, 7, 595450. [Google Scholar] [CrossRef] [PubMed]
- Badenes-Bonet, D.; Cejudo, P.; Rodó-Pin, A.; Martín-Ontiyuelo, C.; Chalela, R.; Rodríguez-Portal, J.A.; Vázquez-Sánchez, R.; Gea, J.; Duran, X.; Caguana, O.A.; et al. Impact of high-flow oxygen therapy during exercise in idiopathic pulmonary fibrosis: A pilot crossover clinical trial. BMC Pulm. Med. 2021, 21, 355. [Google Scholar] [CrossRef] [PubMed]
- Harada, J.; Nagata, K.; Morimoto, T.; Iwata, K.; Matsunashi, A.; Sato, Y.; Tachikawa, R.; Ishikawa, A.; Tomii, K. Effect of high-flow nasal cannula oxygen therapy on exercise tolerance in patients with idiopathic pulmonary fibrosis: A randomized crossover trial. Respirology 2022, 27, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Hardinge, M.; Annandale, J.; Bourne, S.; Cooper, B.; Evans, A.; Freeman, D.; Green, A.; Hippolyte, S.; Knowles, V.; MacNee, W.; et al. British Thoracic Society guidelines for home oxygen use in adults. Thorax 2015, 70 (Suppl. S1), i1–i43. [Google Scholar] [CrossRef]
- McDonald, C.F.; Whyte, K.; Jenkins, S.; Serginson, J.; Frith, P. Clinical practice guideline on adult domiciliary oxygen therapy: Executive summary from the Thoracic Society of Australia and New Zealand. Respirology 2016, 21, 76–78. [Google Scholar] [CrossRef]
- Koczulla, A.R.; Schneeberger, T.; Jarosch, I.; Kenn, K.; Gloeckl, R. Long-Term Oxygen Therapy. Dtsch. Arztebl. Int. 2018, 115, 871–877. [Google Scholar] [CrossRef]
- Haidl, P.; Jany, B.; Geiseler, J.; Andreas, S.; Arzt, M.; Dreher, M.; Frey, M.; Hauck, R.W.; Herth, F.; Hämäläinen, N.; et al. Guideline for Long-Term Oxygen Therapy—S2k-Guideline Published by the German Respiratory Society. Pneumologie 2020, 74, 813–841. [Google Scholar] [CrossRef]
- Swigris, J. Caution against Extrapolating Results from the Trial of Long-Term Oxygen for Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2017, 14, 296. [Google Scholar] [CrossRef]
- Lim, R.K.; Humphreys, C.; Morisset, J.; Holland, A.E.; Johannson, K.A.; O2 Delphi Collaborators. Oxygen in patients with fibrotic interstitial lung disease: An international Delphi survey. Eur. Respir. J. 2019, 54, 1900421. [Google Scholar] [CrossRef]
- Holland, A.E.; Corte, T.; Chambers, D.C.; Palmer, A.J.; Ekström, M.P.; Glaspole, I.; Goh, N.S.L.; Hepworth, G.; Khor, Y.H.; Hoffman, M.; et al. Ambulatory oxygen for treatment of exertional hypoxaemia in pulmonary fibrosis (PFOX trial): A randomised controlled trial. BMJ Open 2020, 10, e040798. [Google Scholar] [CrossRef] [PubMed]
- Ryerson, C.J.; Camp, P.G.; Eves, N.D.; Schaeffer, M.; Syed, N.; Dhillon, S.; Jensen, D.; Maltais, F.; O’Donnell, D.E.; Raghavan, N.; et al. High Oxygen Delivery to Preserve Exercise Capacity in Patients with Idiopathic Pulmonary Fibrosis Treated with Nintedanib. Methodology of the HOPE-IPF Study. Ann. Am. Thorac. Soc. 2016, 13, 1640–1647. [Google Scholar] [CrossRef] [PubMed]
- Vivodtzev, I.; L’Her, E.; Vottero, G.; Yankoff, C.; Tamisier, R.; Maltais, F.; Lellouche, F.; Pépin, J.L. Automated O2 titration improves exercise capacity in patients with hypercapnic chronic obstructive pulmonary disease: A randomised controlled cross-over trial. Thorax 2019, 74, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Kofod, L.M.; Westerdahl, E.; Kristensen, M.T.; Brocki, B.C.; Ringbæk, T.; Hansen, E.F. Effect of Automated Oxygen Titration during Walking on Dyspnea and Endurance in Chronic Hypoxemic Patients with COPD: A Randomized Crossover Trial. J. Clin. Med. 2021, 10, 4820. [Google Scholar] [CrossRef]
- Schneeberger, T.; Jarosch, I.; Leitl, D.; Gloeckl, R.; Hitzl, W.; Dennis, C.J.; Geyer, T.; Criée, C.P.; Koczulla, A.R.; Kenn, K. Automatic oxygen titration versus constant oxygen flow rates during walking in COPD: A randomised controlled, double-blind, crossover trial. Thorax 2021, 76, 1–9. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melani, A.S.; Refini, R.M.; Croce, S.; Messina, M. Home Oxygen Therapy (HOT) in Stable Chronic Obstructive Pulmonary Disease (COPD) and Interstitial Lung Disease (ILD): Similarities, Differences and Doubts. Oxygen 2022, 2, 371-381. https://doi.org/10.3390/oxygen2030026
Melani AS, Refini RM, Croce S, Messina M. Home Oxygen Therapy (HOT) in Stable Chronic Obstructive Pulmonary Disease (COPD) and Interstitial Lung Disease (ILD): Similarities, Differences and Doubts. Oxygen. 2022; 2(3):371-381. https://doi.org/10.3390/oxygen2030026
Chicago/Turabian StyleMelani, Andrea S., Rosa Metella Refini, Sara Croce, and Maddalena Messina. 2022. "Home Oxygen Therapy (HOT) in Stable Chronic Obstructive Pulmonary Disease (COPD) and Interstitial Lung Disease (ILD): Similarities, Differences and Doubts" Oxygen 2, no. 3: 371-381. https://doi.org/10.3390/oxygen2030026
APA StyleMelani, A. S., Refini, R. M., Croce, S., & Messina, M. (2022). Home Oxygen Therapy (HOT) in Stable Chronic Obstructive Pulmonary Disease (COPD) and Interstitial Lung Disease (ILD): Similarities, Differences and Doubts. Oxygen, 2(3), 371-381. https://doi.org/10.3390/oxygen2030026