Optimization of Pulsed Electric-Field-Based Total Polyphenols’ Extraction from Elaeagnus pungens ‘Limelight’ Leaves Using Hydroethanolic Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material Handling
2.3. Instrumentation
2.3.1. PEF System and Calculus
2.3.2. Absorbance Measurements
2.3.3. HPLC System
2.4. Dry Weight Determination
2.5. Experimental Design and Extraction Processing Steps
2.6. Folin–Ciocalteu Assay
2.7. HPLC-Based Determination of Polyphenols
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of PEF Electric Field Intensity (Group 1)
3.2. Effect of PEF Pulse and Period Duration (Group 2)
3.3. Effect of the Hydroethanolic Mixture Choice as an Extraction Solvent (Group 3)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Dutta, I.; Gogoi, B.; Sharma, R.; Sharma, H.K. In vitro evaluation of leaves and fruits of Elaeagnus latifolia L. for antioxidant and antimicrobial activities. Asian J. Chem. 2018, 30, 2433–2436. [Google Scholar] [CrossRef]
- Hambaba, L.; Boudjellal, K.; Cherif Aberkane, M.; Abdeddaim, M.; Messaadia, N. The dosage of polyphenols in Elaeagnus angustifolia L. fruit extracts. Biochem. Indian J. 2014, 8, 2013–2014. [Google Scholar]
- Lachowicz, S.; Kapusta, I.; Świeca, M.; Stinco, C.M.; Meléndez-Martínez, A.J.; Bieniek, A. In vitro biological activities of fruits and leaves of Elaeagnus multiflora thunb. and their isoprenoids and polyphenolics profile. Antioxidants 2020, 9, 436. [Google Scholar] [CrossRef]
- Saboonchian, F.; Jamei, R.; Hosseini Sarghein, S. Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna J. Phytomedicine 2014, 4, 231–238. [Google Scholar]
- Pei, R.; Yu, M.; Bruno, R.; Bolling, B.W. Phenolic and tocopherol content of autumn olive (Elaeagnus umbellate) berries. J. Funct. Foods 2015, 16, 305–314. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Evaluation of pulsed electric field polyphenol extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. ChemEngineering 2021, 5, 25. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef]
- Yan, L.G.; He, L.; Xi, J. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds—A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2877–2888. [Google Scholar] [CrossRef]
- Martínez, J.M.; Delso, C.; Álvarez, I.; Raso, J. Pulsed electric field-assisted extraction of valuable compounds from microorganisms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 530–552. [Google Scholar] [CrossRef]
- Delsart, C.; Ghidossi, R.; Poupot, C.; Cholet, C.; Grimi, N.; Vorobiev, E.; Milisic, V.; Peuchot, M.M. Enhanced Extraction of Phenolic Compounds from Merlot Grapes by Pulsed Electric Field Treatment. Am. J. Enol. Vitic. 2012, 63, 205–211. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Bozinou, E.; Ntourtoglou, G.; Batra, G.; Athanasiadis, V.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Use of pulsed electric field as a low-temperature and high-performance “green” extraction technique for the recovery of high added value compounds from olive leaves. Beverages 2021, 7, 45. [Google Scholar] [CrossRef]
- Liu, Z.; Esveld, E.; Vincken, J.P.; Bruins, M.E. Pulsed Electric Field as an Alternative Pre-treatment for Drying to Enhance Polyphenol Extraction from Fresh Tea Leaves. Food Bioprocess Technol. 2019, 12, 183–192. [Google Scholar] [CrossRef] [Green Version]
- El Kantar, S.; Boussetta, N.; Lebovka, N.; Foucart, F.; Rajha, H.N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innov. Food Sci. Emerg. Technol. 2018, 46, 153–161. [Google Scholar] [CrossRef]
- Frontuto, D.; Carullo, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Pataro, G. Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. Food Bioprocess Technol. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The effect of Pulsed Electric Field as a pre-treatment step in Ultrasound Assisted Extraction of phenolic compounds from fresh rosemary and thyme by-products. Innov. Food Sci. Emerg. Technol. 2021, 69, 102644. [Google Scholar] [CrossRef]
- Carullo, D.; Pataro, G.; Donsì, F.; Ferrari, G. Pulsed Electric Fields-Assisted Extraction of Valuable Compounds From Arthrospira platensis: Effect of Pulse Polarity and Mild Heating. Front. Bioeng. Biotechnol. 2020, 8, 551272. [Google Scholar] [CrossRef]
- Nowacka, M.; Tappi, S.; Wiktor, A.; Rybak, K.; Miszczykowska, A.; Czyzewski, J.; Drozdzal, K.; Witrowa-Rajchert, D.; Tylewicz, U. The impact of pulsed electric field on the extraction of bioactive compounds from beetroot. Foods 2019, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Xue, D.; Farid, M.M. Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus). Innov. Food Sci. Emerg. Technol. 2015, 29, 178–186. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.; Wang, Z.; Zhang, H. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid. Based Complement. Altern. Med. 2015, 2015, 595393. [Google Scholar] [CrossRef] [Green Version]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Athanasiadis, V.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Optimization of pulsed electric field as standalone “green” extraction procedure for the recovery of high value-added compounds from fresh olive leaves. Antioxidants 2021, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Donsì, F.; Ferrari, G.; Pataro, G. Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Eng. Rev. 2010, 2, 109–130. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron processing wastes as a bioresource of high-value added compounds: Development of a green extraction process for polyphenol recovery using a natural deep eutectic solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musa, K.H.; Abdullah, A.; Jusoh, K.; Subramaniam, V. Antioxidant Activity of Pink-Flesh Guava (Psidium guajava L.): Effect of Extraction Techniques and Solvents. Food Anal. Methods 2011, 4, 100–107. [Google Scholar] [CrossRef]
- Suktham, K.; Daisuk, P.; Shotipruk, A. Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia L. (Rubiaceae): Errata and review of technological development and prospects. Sep. Purif. Technol. 2021, 256, 117844. [Google Scholar] [CrossRef]
- Nguyen-Kim, M.-T.; Truong, Q.-C.; Nguyen, M.-T.; Cao-Thi, B.-H.; Tong, T.-D.; Dao, T.P.; Tran, T.H.; Van Tan, L.; Le, X.-T. Optimized extraction of polyphenols from leaves of Rosemary (Rosmarinus officinalis L.) grown in Lam Dong province, Vietnam, and evaluation of their antioxidant capacity. Open Chem. 2021, 19, 1043–1051. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Pappas, V.M.; Palaiogiannis, D.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Pulsed Electric Field-Based Extraction of Total Polyphenols from Sideritis raiseri Using Hydroethanolic Mixtures. Oxygen 2022, 2, 91–98. [Google Scholar] [CrossRef]
- Ntourtoglou, G.; Drosou, F.; Dourtoglou, V.G.; Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Lalas, S.I. Hyphenated Extraction of Valuable Compounds from Aesculus carnea: Ultrasound Extraction with Pulsed Electric Field Pretreatment. AgriEngineering 2022, 4, 847–854. [Google Scholar] [CrossRef]
- Ntourtoglou, G.; Drosou, F.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Dourtoglou, V.G.; Elhakem, A.; Sami, R.; Ashour, A.A.; Shafie, A.; et al. Combination of Pulsed Electric Field and Ultrasound in the Extraction of Polyphenols and Volatile Compounds from Grape Stems. Appl. Sci. 2022, 12, 6219. [Google Scholar] [CrossRef]
Exp. Group | Exp. Series | EtOH:H2O Content | textraction (min) | E (kV cm−1) | tpulse (μs) | Τ (μs) | N | tPEFtreatment (s) | Energy Input (kWh) | Specific Energy Input (kJ kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0% | 20 | 1 | 10 | 1000 | 1.20 × 106 | 12 | 1.68 × 10−6 | 8.85 × 10−2 |
2 | 0% | 20 | 0.85 | 10 | 1000 | 1.20 × 106 | 12 | 1.43 × 10−6 | 7.52 × 10−2 | |
3 | 0% | 20 | 0.7 | 10 | 1000 | 1.20 × 106 | 12 | 1.18 × 10−6 | 6.20 × 10−2 | |
4 | 0% | 20 | - | - | - | - | - | - | - | |
2 | 5 | 0% | 20 | 0.85 | 1 | 100 | 1.20 × 107 | 12 | 1.43 × 10−6 | 7.52 × 10−2 |
6 | 0% | 20 | 0.85 | 10 | 1000 | 1.20 × 106 | 12 | 1.43 × 10−6 | 7.52 × 10−2 | |
7 | 0% | 20 | 0.85 | 100 | 1000 | 1.20 × 106 | 120 | 1.43 × 10−5 | 7.52 × 10−1 | |
8 | 0% | 20 | - | - | - | - | - | - | - | |
3 | 9 | 0% | 20 | 0.85 | 10 | 1000 | 1.20 × 106 | 12 | 1.43 × 10−6 | 7.52 × 10−2 |
10 | 0% | 20 | - | - | - | - | - | - | - | |
11 | 25% | 20 | 0.85 | 10 | 1000 | 1.20 × 106 | 12 | 1.43 × 10−6 | 7.52 × 10−2 | |
12 | 25% | 20 | - | - | - | - | - | - | - | |
13 | 50% | 20 | 0.85 | 10 | 1000 | 1.20 × 106 | 12 | 1.43 × 10−6 | 7.52 × 10−2 | |
14 | 50% | 20 | - | - | - | - | - | - | - | |
15 | 75% | 20 | 0.85 | 10 | 1000 | 1.20 × 106 | 12 | 1.43 × 10−6 | 7.52 × 10−2 | |
16 | 75% | 20 | - | - | - | - | - | - | - | |
17 | 100% | 20 | 0.85 | 10 | 1000 | 1.20 × 106 | 12 | 1.43 × 10−6 | 7.52 × 10−2 | |
18 | 100% | 20 | - | - | - | - | - | - | - |
Exp. Group | Exp. Series | Average TPC (mg GAE g−1 dw) | % Increase |
---|---|---|---|
1 | 1 | 12.76 ± 0.03 b | 28.7 ± 0.3 B |
2 | 14.38 ± 0.05 a | 45.0 ± 0.5 A | |
3 | 12.96 ± 0.23 b | 30.7 ± 2.4 B | |
4 | 9.92 ± 0.07 c | - | |
2 | 5 | 13.16 ± 0.21 c | 32.7 ± 2.1 C |
6 | 14.38 ± 0.05 a | 45.0 ± 0.5 A | |
7 | 13.53 ± 0.09 b | 36.4 ± 0.9 B | |
8 | 9.92 ± 0.07 d | - | |
3 | 9 | 14.38 ± 0.05 d | 45.0 ± 0.5 B |
10 | 9.92 ± 0.07 f | - | |
11 | 19.7 ± 0.88 b | 54.7 ± 6.9 A,B | |
12 | 12.74 ± 0.91 e | - | |
13 | 23.32 ± 1.72 a | 57.5 ± 11.6 A | |
14 | 14.8 ± 0.74 d | - | |
15 | 17.43 ± 0.17 c | 47.6 ± 1.4 A,B | |
16 | 11.81 ± 0.09 e | - | |
17 | 8.13 ± 0.36 g | 15.1 ± 5.2 C | |
18 | 7.07 ± 0.02 g | - |
Exp. Series | Concentration Parameters | p-Coumarate Derivative 1 | 1-Luteolin Rutinoside Derivative 2 | Luteolin Glucoside Derivative 2 | 2-Luteolin Rutinoside Derivative 2 |
---|---|---|---|---|---|
5 | Average 3 | 0.756 ± 0.04 b | 0.399 ± 0.015 a | 0.021 ± 0.001 a | 0.063 ± 0.001 a |
% Increase 3 | 27.2 ± 0.7 B | 49.2 ± 5.7 A | 25.6 ± 3.8 A | 41.8 ± 3.0 A | |
6 | Average | 1.075 ± 0.051 a | 0.402 ± 0.015 a | 0.023 ± 0.001 a | 0.060 ± 0.004 a |
% Increase | 80.9 ± 8.5 A | 50.5 ± 5.6 A | 35.6 ± 6.8 A | 35.1 ± 8.1 A | |
7 | Average | 0.772 ± 0.042 b | 0.386 ± 0.013 a | 0.019 ± 0.001 b | 0.062 ± 0.002 a |
% Increase | 30.0 ± 7.2 B | 44.5 ± 4.8 A | 9.6 ± 4.7 B | 41.4 ± 5.7 A | |
8 | Average | 0.594 ± 0.029 c | 0.267 ± 0.017 b | 0.017 ± 0.001 b | 0.044 ± 0.001 b |
% Increase | - 4 | - | - | - |
Exp. Series | Concentration Parameters | p-Coumarate Derivative 1 | 1-Luteolin Rutinoside Derivative 2 | Luteolin Glucoside Derivative 2 | 2-Luteolin Rutinoside Derivative 2 |
---|---|---|---|---|---|
9 | Average 3 | 1.075 ± 0.003 d | 0.402 ± 0.029 d | 0.023 ± 0.002 e | 0.060 ± 0.002 e |
% Increase 3 | 80.9 ± 0.5 A | 50.5 ± 10.8 B | 35.6 ± 8.8 A | 35.1 ± 4.6 B | |
10 | Average | 0.594 ± 0.040 f | 0.267 ± 0.006 f | 0.017 ± 0.001 f | 0.044 ± 0.003 f |
% Increase | - 4 | - | - | - | |
11 | Average | 1.321 ± 0.078 b | 0.452 ± 0.009 b,c | 0.036 ± 0.001 c | 0.072 ± 0.005 c |
% Increase | 31.4 ± 7.8 D | 33.8 ± 2.8 D | 36.1 ± 4.6 C | 33.3 ± 8.5 C | |
12 | Average | 1.005 ± 0.037 d | 0.338 ± 0.022 e | 0.026 ± 0.002 d,e | 0.054 ± 0.002 e |
% Increase | - | - | - | - | |
13 | Average | 1.604 ± 0.087 a | 0.646 ± 0.025 a | 0.056 ± 0.004 a | 0.088 ± 0.002 a |
% Increase | 37.3 ± 7.4 B,C | 91.9 ± 7.3 A | 37.9 ± 9.7 A | 51.7 ± 3.3 A | |
14 | Average | 1.168 ± 0.029 c | 0.336 ± 0.017 e | 0.041 ± 0.002 b | 0.058 ± 0.004 e |
% Increase | - | - | - | - | |
15 | Average | 0.870 ± 0.048 e | 0.478 ± 0.011 b | 0.053 ± 0.003 a | 0.083 ± 0.005 b |
% Increase | 31.8 ± 7.2 C | 12.4 ± 2.6 C | 27.3 ± 7.3 A,B | 26.9 ± 7.7 B | |
16 | Average | 0.660 ± 0.048 f | 0.426 ± 0.015 c,d | 0.042 ± 0.001 b | 0.065 ± 0.003 d |
% Increase | - | - | - | - | |
17 | Average | 0.479 ± 0.016 g | 0.237 ± 0.005 g | 0.034 ± 0.002 c | 0.045 ± 0.002 f |
% Increase | 43.0 ± 4.9 B | 53.9 ± 3.5 B | 16.1 ± 5.8 B | 47.1 ± 7.2 A | |
18 | Average | 0.335 ± 0.022 h | 0.154 ± 0.006 h | 0.029 ± 0.002 d | 0.031 ± 0.001 g |
% Increase | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappas, V.M.; Palaiogiannis, D.; Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Optimization of Pulsed Electric-Field-Based Total Polyphenols’ Extraction from Elaeagnus pungens ‘Limelight’ Leaves Using Hydroethanolic Mixtures. Oxygen 2022, 2, 537-546. https://doi.org/10.3390/oxygen2040035
Pappas VM, Palaiogiannis D, Athanasiadis V, Chatzimitakos T, Bozinou E, Makris DP, Lalas SI. Optimization of Pulsed Electric-Field-Based Total Polyphenols’ Extraction from Elaeagnus pungens ‘Limelight’ Leaves Using Hydroethanolic Mixtures. Oxygen. 2022; 2(4):537-546. https://doi.org/10.3390/oxygen2040035
Chicago/Turabian StylePappas, Vasileios M., Dimitrios Palaiogiannis, Vassilis Athanasiadis, Theodoros Chatzimitakos, Eleni Bozinou, Dimitris P. Makris, and Stavros I. Lalas. 2022. "Optimization of Pulsed Electric-Field-Based Total Polyphenols’ Extraction from Elaeagnus pungens ‘Limelight’ Leaves Using Hydroethanolic Mixtures" Oxygen 2, no. 4: 537-546. https://doi.org/10.3390/oxygen2040035
APA StylePappas, V. M., Palaiogiannis, D., Athanasiadis, V., Chatzimitakos, T., Bozinou, E., Makris, D. P., & Lalas, S. I. (2022). Optimization of Pulsed Electric-Field-Based Total Polyphenols’ Extraction from Elaeagnus pungens ‘Limelight’ Leaves Using Hydroethanolic Mixtures. Oxygen, 2(4), 537-546. https://doi.org/10.3390/oxygen2040035