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Abstract: This review explores the unique structural and functional characteristics of natural products
featuring highly oxygenated cyclobutane rings, with a specific focus on oxetane and 1,2-dioxetane
motifs. It presents the structures and biological activities of compounds containing these rings, high-
lighting their contribution to molecular stability and pharmacological potency. Through detailed case
studies and recent research findings, it has been demonstrated that these oxygen-rich rings enhance
the molecular diversity and biological efficacy of natural products, potentially offering new avenues
for drug development. Notably, these compounds are predominantly synthesized by microorganisms
and can also be found in extracts from fungi, plants, and certain marine invertebrates. Compounds
with oxetane and 1,2-dioxetane rings are primarily noted for their strong antineoplastic properties,
among other biological activities. In contrast, most 1,2-dioxetanes exhibit potent antiprotozoal effects.
It is important to note that 1,2-dioxetanes often serve as intermediate products in oxidation reactions,
characterized by their instability and propensity to decompose into new compounds.
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1. Introduction

Cyclobutane, a four-membered ring, is a cycloalkane that is widespread in nature, and
more than 2600 compounds have been discovered containing a cyclobutane moiety [1]. In
a chemical context, cyclobutane can be considered a unit or a fragment of a larger molecule.
For example, it can be a substituent or a structural component in more complex organic
compounds. It is not typically referred to as a “group” in the same way that functional
groups like hydroxyl (-OH) or methyl (-CH3) are [1–3]. The cyclobutane moiety occurs
as a major structural unit in a wide range of naturally occurring metabolites in bacteria,
fungi, plants, and marine invertebrates [4–9]. While it is less stable than larger-ring alkanes
due to ring strain, it is relatively more stable compared to oxetane and 1,2-dioxetane (see
Figure 1) because it does not contain any heteroatoms. Its synthesis in nature could be
through various pathways, including photochemical reactions or as a byproduct of other
biological processes.

The relatively higher stability and simpler structure make it more abundant in nature.
Oxetane is a four-membered ring containing one oxygen atom [10–12]. The presence
of the oxygen atom increases the ring strain compared to cyclobutane, making it less
stable. Additionally, the synthesis of oxetanes in nature is less common and typically
requires specific enzymatic or photochemical reactions. This reduced stability and more
complex synthesis pathway contribute to its lower abundance compared to cyclobutane.
1,2-Dioxetane contains two oxygen atoms in a four-membered ring, which significantly
increases the ring strain and makes it highly unstable [13–16]. It is a highly reactive
intermediate often involved in chemiluminescence reactions [17–19] and is not typically
isolated in nature due to its propensity to rapidly decompose. Its natural occurrence is
rare, and when it does form, it quickly breaks down, leading to its very low abundance
compared to cyclobutane and oxetane. In summary, the difference in the natural abundance
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of these molecules can be attributed to their relative stabilities and the complexity of the
pathways through which they are formed in nature. Cyclobutane, being the most stable and
simplest to form, is the most abundant, followed by oxetane and then the highly unstable
1,2-dioxetane [16,18].
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Figure 1. Comparative structures of cyclobutane (A) and their oxygenated derivatives: oxetane (B) and
1,2-dioxetane (C) molecules. Color of molecules: red is oxygen, gray is carbon, and white is hydrogen.
Organic compounds containing one of these units are isolated from living organisms, as well as
synthesized. The ratio of these organic compounds in nature is as follows: 2600:700:20 [1]. The
difference in the natural abundance of cyclobutane, oxetane, and 1,2-dioxetane molecules can be
explained from a chemical perspective by considering their stability, reactivity, and the pathways
through which they are formed in nature.

In this review, we have tried to present information about natural metabolites bearing
oxetane or dioxetane rings and also discuss their activity.

2. Oxetane Biomolecules Produced by Microorganisms

Oxetane biomolecules refer to biological molecules that contain an oxetane ring,
which is a four-membered cyclic ether (C3H6O). Oxetane rings are of interest in medicinal
chemistry and drug design due to their unique structural properties and ability to influence
the biological activity of molecules [10–12]. The oxetane ring is characterized by its strained,
small ring size, which can affect the conformation and reactivity of the molecule. This
strain can be exploited in drug design to improve the stability or specificity of a molecule.
Oxetane-containing compounds have been found to exhibit a range of biological activities,
including antibacterial, antifungal, and anticancer properties [12]. The incorporation of an
oxetane ring into drug molecules can also enhance their pharmacokinetic properties, such
as solubility and permeability.

The synthesis of oxetane biomolecules can be challenging due to the ring strain.
However, various synthetic strategies have been developed to incorporate oxetane rings
into larger molecules, including biomolecules [20,21].

Oxetane biomolecules have potential applications in drug discovery and development.
They are being explored as building blocks for the synthesis of more complex pharmaceuti-
cal compounds. Overall, oxetane biomolecules represent an interesting area of research in
the field of medicinal chemistry, with potential implications for the development of new
therapeutics [22,23].

Microorganisms produce significant quantities of metabolites containing an oxetane
group [12]. Four β-lactones were isolated from the endophytic Streptomyces sp. T1B1,
identified from the aged bast tissue of Taxus yunnanensis [24]: 4α-(3,5-dihydroxy hexyl)-
3α-methyl-2-oxetanone (1; structures are shown in Figure 2 and activities are shown in
Table 1); 4α-(3-methyl-4-formyloxy-hexyl)-3α-methyl-2-oxetanone (2); 4α-(3,5-dihydroxy-
heptyl)-3α-methyl-2-oxetanone (3); and 4α-(3-methyl-4-formyloxy-heptyl)-3α-methyl-2-
oxetanone (4). The fungal β-lactone hymeglusin (5, also known as antibiotic F 244), pro-
duced by Fusarium sp., inhibits HMG-CoA synthase (IC50 = 0.12 µM) by covalently mod-
ifying the enzyme’s active Cys129 residue [25,26]. Ebelactone B (6), a potent β-lactone
inhibitor of pancreatic lipase, is produced by Streptomyces aburaviensis [27,28]. Additionally,
oxetin (7), a (2R,3S)-3-amino-2-oxetane carboxylic acid, was isolated from a fermentation
broth of Streptomyces sp. OM-2317 [29].
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Table 1. Biological activity of oxetanes produced by microorganisms, fungi and marine sources [10].

No. Dominated Predicted Activity No. Dominated Predicted Activity

1 Anti-eczematic, strong 25 Autoimmune disorders treatment, strong

2 Anti-eczematic, moderate 26 Antidyskinetic, moderate

3 Anti-eczematic, strong 27 Angiogenesis stimulant, strong

4 General pump inhibitor, strong 28 Antineoplastic, strong

5 Antineoplastic, strong 29 Apoptosis agonist, strong

6 Antineoplastic, strong 30 Antineoplastic, moderate

7 Antibiotic glycopeptide-like, strong 31 Apoptosis agonist, strong

8 Antineoplastic, moderate 32 Respiratory analeptic, strong

9 Phobic disorders treatment, moderate 33 Antineoplastic, strong

10 Antineoplastic, strong 34 Antiprotozoal (Plasmodium), strong

11 Antihypertensive, strong 35 Respiratory analeptic, strong

12 Antihypertensive, strong 36 Antiprotozoal (Plasmodium), strong

13 Mucositis treatment, moderate 37 Respiratory analeptic, strong

14 Mucositis treatment, strong 38 Antineoplastic, strong

15 Anti-eczematic, strong 39 Antiprotozoal (Plasmodium), strong

16 Antineoplastic, strong 40 Apoptosis agonist, strong

17 Antidiabetic symptomatic, strong 41 Antineoplastic, strong

18 Antidiabetic symptomatic, moderate 42 Antineoplastic, strong

19 Antineoplastic, strong 43 Antineoplastic, moderate

20 Antineoplastic, strong 44 Antineoplastic, moderate

21 Genital warts treatment, strong 45 Antineoplastic, strong

22 Antineoplastic (multiple myeloma), strong 46 Antineoplastic, strong

23 Antineoplastic, strong 47 Angiogenesis stimulant, strong

24 Antineoplastic (multiple myeloma), strong 48 Antiarthritic, strong

Papulinone (8), a β-lactone with mild phytotoxic effects on apple and bean leaves,
was isolated from the rod-shaped, Gram-negative bacterium Pseudomonas syringae [30].
Bradyoxetin (9) is a distinctive chemical component involved in the symbiotic regulation
of genes, produced by the symbiotic bacterium Bradyrhizobium japonicum [31]. An ethyl
acetate extract from marine Bacillus sp. bacteria, collected from sediments in Ieodo, South
Korea, yielded a 24-membered antibacterial macrolactone called macrolactin I (10) [32].

Belactins A (11), inhibitors of serine carboxypeptidase, were discovered in the fer-
mentation broth of Saccharopolyspora sp. MK19-42F6, also known as Streptomyces ery-
thraeus [33]. Similarly, belactins B (12), also serine carboxypeptidase inhibitors, were iden-
tified in the same strain [33,34]. Two antitumor peptide antibiotics, belactosin A (13) and
belactosin C (14), which act on cyclin/CDK-mediated cell cycle regulation, were produced
by the soil-dwelling Streptomyces sp. KYI 1780 from Kanagawa Prefecture, Japan [35].

The β-lactone antibiotic lipstatin (15), derived from Streptomyces albus, exhibits an-
tibacterial properties [36], and a compound, known as oxazolomycin (16), is produced
by Streptomyces sp. KBFP-2025 and has been shown to possess antiviral activity as well,
according to research by Tonew and co-authors [37,38]. Additionally, a series of pancreatic
lipase inhibitors featuring an oxetane ring, named panclicins A, B, C, D, and E (17), are
produced by Streptomyces sp. NR0619 [39].
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The actinomycete Streptomyces albolongus MG147-CF2, isolated from a soil sample
from Shirane Mountain in Gunma Prefecture, produces the antibiotic valilactone (18). This
compound inhibits hog liver esterase and hog pancreas lipase with IC50 values of 29 ng/mL
and 0.14 ng/mL, respectively. It also inhibits fatty acid synthase, with an IC50 value of
0.3 µM, and demonstrates selective toxicity towards MDA-MB-231 breast cancer cells, with
an IC50 value of 10 µM [40].

A fungal indole-diterpenoid with an oxetane ring, known as pennigritrem (19), was
isolated from Penicillium nigricans [41]. Ansalactam D (20), another compound, was isolated
from a marine-derived Streptomyces sp. [42]. The phytotoxin FCRR-Toxin (21) was isolated
from the culture filtrate of Fusarium oxysporum f. sp. radicis-lycopersici [43]. Cinnabaramide
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A (22), a proteasome inhibitor, was detected in the fermentation broth of Streptomyces sp.
JS360 [44]. Lastly, a tricyclic sesquiterpene known as cyclodehydroisolubimin (23) has been
isolated from potato tubers inoculated with the oomycete Phytophthora infestans [45].

The marine Salinispora tropica produced antibiotics: salinosporamide A (24) and omu-
ralide (25) [46]. A sesquiterpene called stereumone A (26) was isolated from a culture
broth of the fungus Stereum sp. [47], which showed nematicidal activity against nematode
Panagrellus redivivus.

3. Oxetane Biomolecules Derived from Fungi and Marine Sources

Butenolide, known as ramariolide B (27), has been isolated from the fruiting bodies of
the coral mushroom Ramaria cystidiophora. Its structure and activity are detailed in Figure 3
and Table 1, respectively [48].
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Several natural products featuring a vibralactone skeleton have been isolated from cul-
tures of the basidiomycete Boreostereum vibrans (see Figure 4). These include vibralactone B (28),
vibralactone C (29); and acetylated vibralactone (30) [49]. Additionally, vibralactone (31)
was isolated from the same fungal source [50].
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Figure 4. (a), The coral mushroom Ramaria cystidiophora; (b), Basidiomycete Boreostereum vibrans;
(c), Japanese red algae Laurencia nipponica; (d), Red alga Sphaerococcus coronopifolius; (e), Octocoral
Briareum asbestinum; (f), Marine sponge Axinella sp. Pictures of samples of plants, fungi or marine organ-
isms presented in the review were taken from sites that permit their use for non-commercial purposes.

A highly oxygenated p-terphenyl, hawaiienol A (32), has been isolated from cultures
of Paraconiothyrium hawaiiense, a fungus associated with the Septobasidium-infected insect
Diaspidiotus sp. Another compound, a pentacyclic depsidone with an oxetane unit called
phomopsidone A (33), was isolated from the mangrove endophytic fungus Phomopsis sp.
A123. Bioactivity assays demonstrate that this compound possesses cytotoxic, antioxidant,
and antifungal activities [51].
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A taxol derivative, 7-epi-10-deacetyltaxol (34), was detected in the culture of the
endophytic fungus Pestalotiopsis microspora, which was isolated from the bark of Taxodium
mucronatum [52].

Several secochamigranes, namely laureacetal B (35), C (36), and E (37), were identi-
fied from the Japanese red algae Laurencia nipponica [53,54]. An organic extract from the
Formosan soft coral Nephthea erecta led to the isolation of a sesquiterpene (38) [55].

A brominated compound, laureatin (39), was also isolated from Laurencia nipponica [56].
A diterpene with anticancer activity, known as prevezol B (40), was found in the red algae
Laurencia rigida [57]. The diterpenoid sphaeroxetane (41) was detected in the red alga
Sphaerococcus coronopifolius, collected in the north Adriatic Sea [58]. Dictyoxetane (42),
a diterpene with a 2,7-dioxa-tricyclo[4.2.1.0]nonane ring subunit, was isolated from the
brown alga Dictyota dichotoma collected from the Indian Ocean [59].

A diterpene isovalerate, spongiolactone (43), was isolated from the Mediterranean sponge
Spongionella gracilis [60]. A series of anticancer triterpenoids, including sodwanone I (44) and
sodwanone W (45), were yielded from a South African marine sponge, Axinella sp. [61]. An
unusual asbestinane diterpene (46) has been isolated from the octocoral Briareum asbestinum,
collected off the coast of Tobago, West Indies [62].

Anhydrochimerol (47), a 24,26-epoxy-5β-cholestane-3α,7α,12α-triol, was obtained
from the hydrolysis of bile salts of the rabbit fish Chimaera monstrosa [63].

4. Oxetane Biomolecules Derived from Plants

An acetone extract from the leaves of the Indian herb Acalypha indica, particularly
from Tamil Nadu, contains a compound with an oxetane ring (48) [64]. A β-lactone called
vittatalactone (49; structures are shown in Figure 5 and activities are shown in Table 2) was
isolated from collections of airborne volatile compounds emitted by feeding male striped
cucumber beetles, Acalymma vittatum [65].

Table 2. Biological activity of oxetanes derived from fungi and plants [10].

No. Dominated Predicted Activity No. Dominated Predicted Activity

49 Anti-eczematic, strong 73 Antineoplastic, strong

50 Respiratory analeptic, strong 74 Antineoplastic, strong

51 Antineoplastic, strong 75 Antineoplastic, strong

52 Antineoplastic, moderate 76 Antineoplastic, strong

53 Genital warts treatment, strong 77 Cardiovascular analeptic, strong

54 Genital warts treatment, strong 78 Renin release stimulant, strong

55 Genital warts treatment, strong 79 Genital warts treatment, moderate

56 Antineoplastic, moderate 80 Apoptosis agonist, strong

57 Antineoplastic, strong 81 Antineoplastic enhancer, strong

58 Antineoplastic, strong 82 Anti-eczematic, moderate

59 Anti-eczematic, strong 83 Apoptosis agonist, strong

60 Expectorant, strong 84 Antineoplastic, strong

61 Wound healing agent, strong 85 Antineoplastic, strong

62 Antineoplastic, strong 86 Antineoplastic, strong

63 Antineoplastic, strong 87 Respiratory analeptic, strong

64 Antineoplastic, strong 88 Respiratory analeptic, strong

65 Antineoplastic, strong 89 Respiratory analeptic, strong

66 Antineoplastic, strong 90 Respiratory analeptic, strong

67 Genital warts treatment, moderate 91 Respiratory analeptic, strong
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Table 2. Cont.

No. Dominated Predicted Activity No. Dominated Predicted Activity

68 Antineoplastic, weak 92 Respiratory analeptic, strong

69 Genital warts treatment, moderate 93 Respiratory analeptic, strong

70 Genital warts treatment, moderate 94 Respiratory analeptic, strong

71 Stroke treatment, strong 95 Antineoplastic, strong

72 Genital warts treatment, moderate 96 Antineoplastic, strong
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Artocarpol F (50), a phenolic compound containing an oxepine ring, was isolated
from the root bark of Artocarpus rigida [66]. From the fruits of Aphanamixis polystachya,
two A-secolimonoids were isolated: aphanalide C (51) and aphanalide J (52), with the
latter featuring an unusual oxetane ring between C-7 and C-14 [67]. The aerial parts of
Aruncus dioicus var. kamtschaticus yielded a monoterpenoid-O-β-D-glucopyranoside known
as aruncide C (53) [68]. Two oxetane-containing neolignans, pahangine A (54) and B (55),
were discovered in the bark extract of Beilschmiedia glabra [69].

A methanol-chloroform extract from the roots of Ceriops decandra, collected from the
Kauvery estuary, resulted in the isolation of a diterpenoid, ceriopsin F (56) [70]. Addi-
tionally, 17-hydroxy-16-oxobeyer-9(11)-en-19-al (57) was found in the stems of Bruguiera
sexangula var. rhynchopetala [71].

Clementein (58), a guaianolide, was isolated from Centaurea clementei [71] (sample see
in Figure 6), and an oxetane lactone called subexpinnatin C (59) was isolated from Centaurea
canariensis [72,73]. In Australia, the plant Crotalaria virgulata subsp. grantiana contains the
alkaloid grantaline (60) [74], and cyclocaric acid A (61) was detected in the ethanol extract
of Cyclocarya paliurus [75].

The South American flowering plant Disynaphia halimifolia produced sesquiterpene
lactones, disyhamifolide (62) and disynaphiolide (63) [76], while the flowers and leaves of
Disynaphia multicrenulata from Argentina contained a sesquiterpene dilactone (64) [77].

A flavonoid named derriflavanone (65) was discovered in Chinese lianas Derris laxiflora.
The stem bark of Duguetia glabriuscula, collected in Jardim, Brazil, yielded two oxetane-
containing metabolites, (66) and (+)-α-santalan-9,11-epoxy-10-ol (67) [78]. The aerial parts
of Ethulia conyzoides from Egypt afforded a monoterpene 5-methyl-coumarin named 5′-epi-
isoethuliacoumarin B (68) [79]. Toxic metabolites, neoanisatin (69) and anisatin (70), were
isolated from Japanese star anise Illicium anisatum [80]. A unique sesquiterpene bearing
two γ-lactones and an oxetane ring, merrilactone A (71), was isolated from the pericarps
of Illicium merrillianum and showed neurotrophic activity in cultures of fetal rat cortical
neurons [81]. Neolignane (72) was detected in the aerial parts of Isodon coetsa [82].

An unusual metabolite, maoyecrystal I (73), with a 11,20:1,20-diepoxy-ent-kaurane
skeleton, exhibiting cytotoxic activity against K562 cells, was found in the extract of Isodon
japonicus. The presence of the oxetane group in maoyecrystal I is believed to determine its
biological activity [83].

Guaiagrazielolide (74); structures are shown in Figure 7 and activities are shown in
Table 2), a guaianolide with a β-lactone and an oxetane ring, was obtained from the leaves
of the South American flowering plant Grazielia sp., along with 8-hydroxygrazielolide
(75) [84]. cis-Himachalane-type sesquiterpenes, 2α,6α-epoxy- 3-himachalene (76) and
2α,6α-epoxyhimachalan-3β-ol (77) were isolated from the heartwood of Juniperus chinensis
var. tsukusiensis [85].

A limonoid named kigelianolide (78) was isolated from the ethyl acetate-soluble frac-
tion of the methanolic extract of the African plant Kigelia africana, showing weak inhibitory
activities against acetylcholinesterase, butyrylcholinesterase, and lipoxygenase [86].

Phenolic amide, lyciumamide C (79), identified from the stem of Lycium barbarum,
exhibited moderate anticancer activity against human glioma stem cell lines [87,88].

Norfriedelane A, possessing an α-oxo-β-lactone group (80) and showing acetyl-
cholinesterase inhibitory effects with an IC50 value of 10.3 µM, was isolated from the branches
and roots of Malpighia emarginata [89]. An ent-Trachylobane diterpenoid, mitrephorone A
(81), which possesses a hexacyclic ring system with adjacent ketone moieties and an oxetane
ring, was detected in the stem bark of Mitrephora glabra [90].

Parthoxetin (82) was detected in the flowering plant Parthenium fruticosum, which be-
longs to the Chrysanthemum family. A triterpenoid carbon framework, named petatrichol
B (83), was isolated from the rhizome of Petasites tricholobus and exhibited significant an-
tibacterial activity against Bacillus subtilis [91]. A series of ergostane-type steroids, including
petuniasterone P1 (84), were isolated from the leaves and stems of Petunia hybrida [92,93].
A limonoid, 7,14-epoxy-azedarachin B (85), was detected in a methanol extract of the roots
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of Melia azedarach [94]. An alkaloid, 1,9-epoxy-9α-hydroxystenine (86), has been isolated
from the roots of Stemona tuberosa [95].
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Figure 6. (a), Artocarpus lacucha, also known as monkey jack or monkey fruit, is a tropical evergreen
tree species of the family Moraceae from the Indian Subcontinent and Southeast Asia. The tree is
valued for its wood; its fruit is edible and is believed to have medicinal value; (b), Centaurea clementei
is a native of southern Spain where it grows on limestone cliffs and is rarely seen in cultivation. The
flowers are very thistle-like, and the hairy bracts form a tight urn, above which the pale yellow
flower opens; (c), Crotalaria virgulata, garden plant; (d), Derris laxiflora, is native to Taiwan and grows
primarily in the humid tropical biome; (e), Ethulia conyzoides is an erect or lodging annual aromatic
plant that is collected from the wild, mainly for local medicinal purposes in Myanmar, Thailand,
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Laos, and Vietnam; (f), Illicium anisatum—with common names Japanese star anise, Aniseed tree, and
sacred Anise tree, known in Japanese as shikimi—is an evergreen shrub or small tree closely related
to the Chinese star anise; (g), Isodon coetsa, a plant from tropical and subtropical Asia; (h), the sausage
tree Kigelia africana (also Kigelia pinnata), with its distinctive sausage-shaped fruits and blood-red
tulip-shaped flowers, is a colorful standout plant native to tropical Africa, where it grows in open
forests, along river sand stream banks, and in floodplains.
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The genus Taxus is known for containing over 450 taxane diterpenes, many of which
have an oxetane ring. An acetone extract from the leaves and twigs of Taxus sumatrana
resulted in the isolation of bicyclic taxoids tasumatrol Y (87) [96] and tasumatrol V (88) [97].
The anticancer agent taxoprexin (89) was first isolated from the bark of Taxus brevifolia [98,99].
A taxane diterpene, taxagifine III (90), was isolated from the leaves and stems of Taxus
chinensis [100], and the taxoid 13-O-acetyl wallifoliol (91) was isolated from extracts of the
needles of Himalayan Taxus wallichiana [101]. A diterpene with a 5/6/6/6/4 ring system
called wallifoliol (92) was also isolated from Himalayan T. wallichiana [101]. Taxumairol
Q (93) was isolated from the leaves and twigs of T. sumatrana and exhibited significant
cytotoxicities against both Hepa 59 T/VGH (human liver carcinoma) and KB (human
oral epidermoid carcinoma) tumor cells [102]. An anti-Leishmania donovani agent called
10-deacetylbaccatin (94) and a series of closely related compounds have been isolated from
the yew tree Taxus sp. [103]. A neo-clerodane diterpenoid, chamaedroxide (95), containing
an oxetane ring, was found in Teucrium chamaedrys [104], and the aerial parts of Teucrium
salviastrum contain diterpene teucroxide (96) and teusandrin E (97; structures are shown in
Figure 8 and activities are shown in Table 3) [105].

Table 3. Biological activity of oxetanes derived from fungi and plants [10].

No. Dominated Predicted Activity No. Dominated Predicted Activity

97 Antineoplastic, strong 113 Antineoplastic, moderate

98 Antineoplastic, strong 114 Antiviral, moderate

99 Cytotoxic, strong 115 Antiviral, moderate

100 Neurotrophic, moderate 116 Antiviral, strong

101 Antibacterial, strong 117 Antineoplastic, weak

102 Anti-inflammatory, weak 118 Antineoplastic, weak

103 Tyrosine kinase inhibitor, strong 119 Antineoplastic, weak

104 Tyrosine kinase inhibitor, strong 120 Antineoplastic, moderate

105 Anti-HIV-1, strong 121 Anti-feedant, moderate

106 Antibacterial, moderate 122 Anti-feedant, moderate

107 Antibacterial, moderate 123 Cytotoxic, moderate

108 Cytotoxic, moderate 124 Cytotoxic, moderate

109 Antibacterial, moderate 125 Cytotoxic, moderate

110 Antibacterial, moderate 126 Cytotoxic, strong

111 Antifungal, moderate 127 Antitumor, strong

112 Cytotoxic, moderate 128 Antitumor, moderate

Bufogargarizin C (98), a steroid with rearranged A/B rings and an unusual bufadieno-
lide with a cycloheptatriene B ring, was isolated from the toad Bufo bufo gargarizans [106]. A
cardenolide glycoside (99) was isolated from the aerial parts of the milkweed, Gomphocar-
pus sinaicus [107]. Merrilactone A (100), isolated from the pericarps of Illicium merrillianum,
shows intriguing neurotrophic activity in the cultures of fetal rat cortical neurons [81].

An isoprenoid epoxycyclohexenone, expanstine C (101), featuring an unusual oxetane
ring, was isolated from Penicillium expansum YJ-15. This compound exhibited potent
antibacterial activities against B. subtilis [108].

A homomonoterpene, 1,3,3-trimethyl-7-oxabicyclo[3.1.1]hexa-9-en-10-oic acid, named
madhusic acid A (102), was isolated from the methanolic extract of the dried leaves of
Madhuca pasquieri [109].
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Highly oxygenated diterpenes, trigochinin C (103) and trigonothyrin C (104), were iso-
lated from Trigonostemon chinensis and showed significant inhibition against MET tyrosine
kinase activity with an IC50 value of 2 µM [110]. A daphnane diterpenoid, trigothysoid H
(105) [111], was isolated from the methanol extract of the twigs and leaves of Trigonostemon
thyrsoideum; this compound demonstrated potent anti-HIV-1 activity, with an EC50 value of
0.001 nM and a TI value of 1618 [112].

An abietane diterpene, triptergulide A (106), containing a fused 5/6/6/3/6/4 hexa-
cyclic system, was isolated from the leaves of Tripterygium wilfordii [113]. A highly func-
tionalized daphnane diterpenoid, trigonothyrin A (107), was found in the extract of the
stems of Trigonostemon thyrsoideum [114]. A furanoid diterpene of the clerodane type,
12-epi-montanin D (108), was isolated from the bitter fraction of the aerial parts of the
Mediterranean tree, Teucrium montanum (syn. Chamaedrys montana) [115].

A bisindole alkaloid, quimbeline (109), was found in the root bark of Voacanga chalo-
tiana [116], and a sesquiterpene, zizyberanone (110), was isolated from the fruits of the
thorny rhamnaceous plant Ziziphus jujuba [117].

Approximately 300 compounds, including 3,3-dimethyl-oxetane (111), contribut-
ing to apple flavor and aroma from different cultivars (Cortland and Empire), have
been reviewed [118]. The hormone thromboxane A2 (112) has been discovered in blood
platelets [119,120].

An unusual 3,5-epoxysterol (113) was derived from the octocoral Plexaura flexuosa,
located in Mochima Bay, Venezuela [121].

Two withanolide derivatives (114 and 115) were found in leaf extracts of plants be-
longing to the genus Solanum [122]. The antiviral activity of oxetane (116) obtained from
23,3α-dihydroxy-5α-cholestane has been described [123]. Highly oxygenated trichilin-type
limonoids (117–120) were isolated from the desiccative ripe fruits of Trichilia sinensis, which
showed weak inhibitory activity in the HeLa cell line [124]. From the fruits of the tropical
tree Aphanamixis grandifolia, two oxetane limonoids, aphanalide J (121) and L (122), were
isolated and demonstrated anti-feedant activity [125].

A limonoid named ciliatasecone (123) was detected in the barks of Toona ciliata, be-
longing to the Meliaceae family. This tree is cultivated throughout the tropics for its
colored wood hearts, which are suitable for architecture and furniture. Large amounts of
T. ciliata bark, a by-product of wood first-stage processing, have also been used as Chi-
nese folk medicine to treat diarrhea, dysentery, and ringworm [126]. Rubescin F (124), a
vilasinin-type limonoid, and another compound (125), were obtained from the leaves of
Trichilia rubescens (Meliaceae) [127]. A cytotoxic triterpenoid named altissimanin A (126),
a tirucallane-type triterpenoid bearing an uncommon oxetane ring in the side chain, was
isolated from the bark of Ailanthus altissima [128].

A protostane-type triterpenoid bearing an oxetane ring in the side chain, named
alisol W (127), has been obtained from the dried rhizome of Alisma plantago-aquatica subsp.
orientale [129]. Bile sterol, 3α,7α,12α-trihydroxy-26,27-epoxycholestane (128), from carp
bile, was reported by Hoshita [130].

5. Dioxetane Biomolecules Derived from Natural Sources

1,2-Dioxetanes, characterized by a four-membered ring containing two oxygen and
two carbon atoms (C2H4O2), are a class of cyclic peroxides known for their instability and
tendency to release energy as light [14–16,20]. These high-energy, non-aromatic heterocycles
are of interest due to their potential as novel pharmacophores, with a broad spectrum of
biological activities. Due to their strained structure and relatively weak peroxide bond (-O-
O-) ranging from 190 to 210 kJ/M, 1,2-dioxetanes are highly unstable. These compounds
have been found, isolated, and identified as intermediate products in natural and synthetic
contexts [131].

1,2-Dioxetane units are found in extracts from various plants and marine invertebrates
and are produced by certain fungi and fungal endophytes (samples of fungi and plants
are shown in Figure 9). For example, a solubilized enzyme fraction from the mycelium
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lyophilisate of the oyster mushroom Pleurotus sapidus converts β-myrcene into furanoter-
penoids through 1,4-endoperoxides, with compound (129) isolated as a stable intermedi-
ate [132].
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Figure 9. Samples of fungi and plants in which stable 1,2-dioxetanes were discovered and isolated.
(a), the oyster mushroom Pleurotus sapidus; (b), wormwood Artemisia spp.; (c), Pongamia pinnata, a
species of tree in the pea family, Fabaceae, native to eastern and tropical Asia, Australia, and the
Pacific islands; (d), Dendrobium nobile, commonly known as the noble dendrobium, is a member of
the family Orchidaceae.

Several mono- and diterpenoids (129a–g; structures are shown in Figure 10 and activi-
ties are shown in Table 4) have been isolated from terrestrial and marine species and showed
antimalarial activity. Tinctures made from wormwood have always enjoyed panacea status
in folk medicine, especially as thermogenics and remedies for fatigue, dyspepsia, and
respiratory tract infections. Some representatives of this group of plants (Artemisia spp.,
Angelica keiskei, Melaleuca alternifolia) contain a number of bioactive substances, such as
1,2-dioxetanes (129a–f). Studies have shown that these compounds demonstrate strong
antimalarial activity against Plasmodium falciparum [16,20,133,134].

The sesquiterpenoid (6E,10R)-4,5-dioxo-11-methoxy-eudesm-6-ene (129g), isolated
from the organic extract of the Formosan soft coral Nephthea erecta, demonstrated anti-
inflammatory and cytotoxic activities [55].

An unusual sesquiterpene lactone, 11,13-Epidioxy-10-hydroxy-4-oxo- 12,8-pseudo-
guaianolide (130), was isolated from the methanol extract of the Ambrosia species [134].
A dipeptide, diketopiperazine (131), isolated from a static culture of the Antarctic fungus
Penicillium citreonigrum SP-6, showed weak inhibition against the HCT116 cancer cell line.
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Neolignan mansoxetane (132) was obtained from dichloromethane extracts of the
heartwood stem of Mansonia gagei (Sterculariaceae) [135] and was also isolated from the



Oxygen 2024, 4 197

roots of Pongamia pinnata alongside compounds 133 and 134; phenylisoflavone (135); and
compound 136 [136–138]. Compounds possessing a bis(bibenzyl) skeleton, dendronophenol
A (137) and B (138), were isolated from the stems of Dendrobium nobile (Orchidaceae) [139].
Dendrowillol A (139), a 9,10-dihydrophenanthrene, was identified in the whole plants of
Dendrobium moniliforme [140]. Neolignans (140 and 141) featuring a 1,2-dioxetane moiety
were isolated from the twigs of Cinnamomum cassia [139].

Two pheophytins, bidenphytins A (142) and B (143), with peroxide functionalities on
ring E were discovered over 20 years ago in crushed leaves of Biden pilosa var. radiata [141].
More recently, an unusual phaeophytin, 131-hydroxy- 131,132- peroxyphaeophorbide an
ethyl ester known as ligulariaphytin A (144), was isolated from the aerial parts of Ligularia
knorringiana, displaying weak cytotoxicity [142].

Hypocrellin A, an effective photosensitizer known for its light-induced antitumor,
antifungal, and antiviral activities, has gained attention for its ability to generate reactive
oxygen species and inhibit protein kinase C activity, along with antimicrobial and anti-
leishmanial activities in vitro [143]. The photo-oxidation of hypocrellin A yielded two
cytotoxic peroxyhypocrellins (145 and 146) [144].

Table 4. Biological activity of oxetanes derived from fungi and plants [16,141–144].

No. Dominated Activity No. Dominated Activity

129 Antiprotozoal (Plasmodium), moderate 135 Neuroprotective effect, strong

129a Antiprotozoal (Plasmodium), strong 136 Antiprotozoal (Plasmodium), strong

129b Antiprotozoal (Plasmodium), strong 137 Antiprotozoal (Plasmodium), strong

129c Antiprotozoal (Plasmodium), strong 138 Antiprotozoal (Plasmodium), strong

129d Antiprotozoal (Plasmodium), strong 139 Antiprotozoal (Plasmodium), strong

129e Antiprotozoal (Plasmodium), strong 140 Antiprotozoal (Plasmodium), strong

129f Antiprotozoal (Plasmodium), moderate 141 Antiprotozoal (Plasmodium), strong

129g Antiprotozoal (Plasmodium), moderate 142 Photosensitizer, strong

130 Antiprotozoal (Plasmodium), moderate 143 Photosensitizer, strong

131 Anticancer, weak 144 Cytotoxic, weak

132 Antiprotozoal (Plasmodium), weak 145 Antineoplastic, strong

133 Antiprotozoal (Plasmodium), moderate 146 Antineoplastic, strong

134 Neuroprotective effect, strong

The data presented in Table 4 are of great interest, since more than 75 percent of stable
1,2-dioxetanes demonstrate strong antimalarial activity against Plasmodium falciparum,
although others compounds show strong neuroprotective or antineoplastic effects.

5.1. Stable and Unstable 1,2-Dioxetanes of Natural Products

Research in recent years has shown that 1,2-dioxetanes are intermediates in synthesis
or biosynthesis in reactions that form new molecules [14–16]. Currently, more than 150 re-
actions are known in which, as a result of oxidation, unstable intermediate products are
formed in the form of 1,2-dioxetanes. Below are some oxidation reactions of various natural
products, the oxidation of which produces 1,2-dioxetanes.

The biological activity of the unstable 1,2-dioxetanes presented below has not been
determined or found in published studies. However, based on published data, these
peroxides should exhibit antiprotozoal or anticancer activity.

5.1.1. Cholesterol Oxidation by Singlet Molecular Oxygen

Cholesterol (147) is a crucial lipid molecule necessary for the structure and function of
animal cell membranes. It is a waxy, fat-like substance produced in the liver and obtained
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from dietary sources [145,146]. Cholesterol plays a vital role in maintaining the fluidity and
integrity of cell membranes and serves as a precursor for the synthesis of various steroid
hormones, including sex hormones like estrogen and testosterone, as well as corticosteroids
such as cortisol and aldosterone [147]. It also contributes to the synthesis of vitamin D
in the skin when exposed to sunlight [148] and is used in the liver to produce bile acids,
which are essential for digesting and absorbing dietary fats [149].

Paolo Di Mascio and colleagues recently published a review focusing on the use of
[18O] labeled endoperoxides and hydroperoxides to investigate the mechanistic aspects
of the formation of singlet molecular oxygen and its reactions in biological systems. The
review highlights the synthesis and primary uses of [18O]-labeled compounds, particularly
peroxides and singlet oxygen (1O2), to elucidate reaction mechanisms. It also summarizes
the peroxidation reactions of major cellular targets like steroids, unsaturated lipids, proteins,
and nucleic acids published over the last three decades [150]. The review reports choles-
terol oxidation by singlet molecular oxygen and the decomposition of the 1,2-dioxetane
intermediate (Scheme 1).
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Scheme 1. Cholesterol oxidation by singlet molecular oxygen. 5β-Cholesterol-hydroperoxide (150)
and secosteroids (149, 151 and 152) can be formed by either the Hock-cleavage of 5α-OOH or the
decomposition of the 1,2-dioxetane intermediate (148). The 1,2-dioxetane ring is highlighted in red.

Additionally, the formation of endogenous ozone has been linked to the oxidation of
water catalyzed by antibodies, with the formation of dihydrogen trioxide as a primary inter-
mediate product. A specific product of cholesterol’s reaction with singlet molecular oxygen
(1O2) is 3β-hydroxy-5β-hydroxypseudo-B-norcholestane-6β-carboxaldehyde, generated
from photodynamic exposure or the thermal decomposition of 1,4-dimethylnaphthalene
endoperoxide as an oxygen source. The mechanism for generating this product (151) in-
volves forming well-known 5α-cholesterol hydroperoxide (5α-OOH) (150, main product)
and a 1,2-dioxetane intermediate (148). The unstable decomposition of this dioxetane
yields an intermediate compound of 5,6-secosterol (149), which undergoes intramolecular
aldolization to form the compound (152) [151].
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5.1.2. The Autoxidation of Cholesterol

The autoxidation of cholesterol is a chemical process in which cholesterol undergoes
oxidation, typically in the presence of oxygen from the air. This reaction can occur under
normal atmospheric conditions, without the need for enzymes or other biological catalysts.
The autoxidation process generally involves the formation of reactive oxygen species (ROS),
which then attack the cholesterol molecule. This leads to the formation of various oxidized
products. The primary sites of oxidation in cholesterol are the double bond in the ring
structure and the allylic methyl groups [152–154].

The autoxidation of cholesterol (147) involves a carbon-centered radical (153) and a
peroxyl radical (154), leading to the formation of cholesterol-7-hydroperoxide (155) as the
major product [152,153]. During this process, the unstable peroxyl radical (154) further
reacts to produce cholesterol dioxetane (156) and cholesterol 5-hydroperoxide dioxetane
(157), as shown in Scheme 2 [153,154].
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5.1.3. Oxidation of Cholesterol with Singlet Oxygen

Singlet oxygen is a highly reactive form of oxygen. Normally, molecular oxygen (O2)
is in a triplet state, which is its most stable form, with two unpaired electrons that have
parallel spins. In contrast, singlet oxygen has both electrons paired and opposite spins,
making it energetically excited and more reactive than the ground-state triplet oxygen.
Singlet oxygen is a powerful oxidizing agent. It reacts with a wide range of organic and
inorganic substances, often altering their chemical structure. Notably, it can add to double
bonds in unsaturated organic compounds, leading to the formation of peroxides or other
oxidation products [155–161].

Singlet oxygen (1O2), a crucial non-radical molecule, plays a significant role in the
oxidation of cholesterol. It is formed when molecular oxygen receives an energy input,
such as through photoactivation [155]. Due to its extremely short half-life, singlet oxygen
reacts rapidly with cholesterol, resulting in the formation of four primary oxysterols: 5α-
cholesterol-hydroperoxide (150), preferentially formed; 6α-cholesterol-hydroperoxide (152);
6β-cholesterol-hydroperoxide (158); and dioxetane (148). Additionally, ozone’s interac-
tion with cholesterol (147) results in the formation of an unstable cholesterol-trioxolane
(159) [156–161]. These cholesterol oxidation products are detailed in Scheme 3.
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unstable cholesterol-trioxolane (159).

5.1.4. Oxidation of 6,7-Dehydrocarnosic Acid

6,7-dehydrocarnosic acid is a diterpene compound that is chemically related to carnosic
acid. Both of these compounds are found in rosemary (Rosmarinus officinalis) and are highly
valued for their antioxidant properties. These compounds are part of a class of chemicals
known as phenolic diterpenes, which are known for their ability to scavenge free radicals
and contribute to the stability and health benefits of rosemary extract [162–164].

The oxidation of 6,7-dehydrocarnosic acid, a derivative of carnosic acid found in
rosemary, involves its transformation into various oxidized products. Carnosic acid and
its derivatives are known for their antioxidant properties, but under certain conditions,
they can undergo oxidation. Carnosic acid (160, (4αR,10αS)-5,6-dihydroxy- 1,1-dimethyl-7-
propan-2-yl-2,3,4,9,10,10α-hexahydrophenanthrene-4α-carboxylic acid) and carnosol (164)
are potent antioxidant compounds naturally found in Salvia officinalis. These compounds
have demonstrated antimicrobial properties against pathogens such as Escherichia coli,
Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus [162–164].

In the presence of oxygen, 6,7-dehydrocarnosic acid can be oxidized to form several
products. This process may involve the formation of radical species, which then react
further with oxygen. The oxidation typically occurs at the double bond between the sixth
and seventh carbons, which is part of a larger ring structure in the molecule. Additionally,
these compounds, along with rosmanol (165), were identified in extracts from Rosmarinus
officinalis [165]. Carnosic acid is also known for its anti-obesity [166], neuroprotective [167],
anti-inflammatory [163], anticancer [168,169], and other biological activities [170–172]. The
oxidation of 6,7-dehydrocarnosic acid (160) along with its oxidation products (161–165) are
illustrated in Scheme 4 [173–175].

5.1.5. Oxidation of Vitamin D

Vitamin D is a fat-soluble vitamin that plays a crucial role in several important body
functions, particularly in the regulation of calcium and phosphorus absorption, making it



Oxygen 2024, 4 201

essential for maintaining healthy bones and teeth. Unlike many other vitamins, vitamin D
functions like a hormone, and every cell in the body has a receptor for it. The oxidation of
vitamin D refers to the chemical process in which vitamin D reacts with oxygen, leading to
the alteration of its molecular structure and potentially affecting its biological activity. This
process can occur under various conditions, including exposure to air, light, or heat, and
can impact the stability and efficacy of vitamin D [176–179].
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Vitamin D (166) possesses a standard reduction potential of 650 mV and is readily
oxidized by reactive oxygen species (ROS) [176]. The oxidation of vitamin D by singlet
oxygen results in the formation of 5,6-epoxide (167) [177]. Notably, this oxidation process
is independent of temperature [178] and occurs at a high reaction rate [179]. The cleavage
of 5,6-epoxide or dioxetane (167) ultimately leads to the formation of 4-methylcyclohex-
3-ene-1,3-diol (170) and compound (169) through the intermediate (168), as detailed in
Scheme 5.

5.1.6. Reaction of 17α-Hydroperoxy Steroids with P450 17A Enzymes

Cytochrome P450 enzymes are a diverse group of proteins known for catalyzing the ox-
idation of various substances, including aliphatic, aromatic, and heteroatomic compounds,
involving both ring formation and cleavage reactions [180–182]. These enzymes play a
crucial role in the biosynthesis and degradation of steroids, including critical C–C bond
cleavage reactions [183].

Guengerich and colleagues explored the reactions of 17α-hydroxypregnenolone (171)
and 17α-hydroxyprogesterone (172) catalyzed by human P450 17A1, specifically focus-
ing on the 17α,20-lyase reactions. They discovered that one of the reaction products
for each steroid contained a 17,20-dioxetane unit, labeled as compounds (173) and (174)
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in Scheme 6 [184,185]. The team also synthesized biomimetic reagents, 17α-OOH preg-
nenolone (175) and 17α-OOH progesterone (176), and introduced these to P450 17A en-
zymes without NADPH or reductase, leading to the suggested formation of steroids with
the 17,20-dioxetane unit (177 and 178). The oxidation pathway is depicted in Scheme 7.
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5.1.7. Formation of Vitamin K 2,3-Epoxide from Vitamin KH2

Vitamin K is a group of fat-soluble vitamins that play a crucial role in blood clotting,
bone metabolism, and regulating blood calcium levels. The vitamin K family consists of
structurally similar compounds that are divided into two main types [186–188]. Vitamin
K1 (phylloquinone) is found predominantly in green leafy vegetables like spinach, kale,
and broccoli, as well as in some plant oils. Vitamin K1 is the primary form of vitamin
K consumed in the human diet and is particularly important for its role in the blood
clotting process. Vitamin K2 (menaquinones) is primarily found in fermented foods and
animal products. It is also produced by bacteria in the human gut. Menaquinones have
several subtypes, which differ in their side chain lengths, known as MK-4, MK-7, MK-8, etc.
Vitamin K2 is especially important for bone health and cardiovascular health, as it helps
regulate calcium deposition.

Vitamin K is crucial for the normal biosynthesis of clotting factors and is known to
inhibit cell growth. Vitamin K1 2,3-epoxide (182, or 2,3-epoxyphylloquinone) is a derivative
and inactive metabolite of vitamin K1. During the clotting process, vitamin K1 is converted
into this epoxy form and then rapidly converted back to vitamin K1 by microsomal epoxide
reductase. This conversion involves vitamin K hydroquinone and an unstable intermediate
such as (180) and dioxetane (181), as outlined in Scheme 8. This cyclical process, known as
the vitamin K1 epoxide cycle, allows for the transition of vitamin K1 between active and
reserve states [186–188].

5.1.8. Synthesis of a Phosphodiesterase-4 Inhibitor Called Moracin M

Moracin M (188), a phosphodiesterase-4 inhibitor, was isolated from the leaves of
plants within the Morus genus. Leaf fractions from Morus insignis, soluble in ethyl acetate
and n-butanol, exhibited significant hypoglycemic activity in hyperglycemic streptozotocin-
induced (STZ) rats. Both fractions contained moracin M (188) and mulberroside F (known
as moracin M-3-O-β-D-glucopyranoside) [189]. Mulberroside F, isolated from the leaves
of Morus alba, is known to inhibit melanin biosynthesis [190]. Moracin M has also been
isolated from the bark of Morus nigra [191].

Resveratrol (183), a natural phenolic stilbenoid, undergoes oxidation with singlet
oxygen along two major pathways. Pathway A, which is a [2+2] cycloaddition, forms a
transient dioxetane (184) that subsequently cleaves into the corresponding aldehydes (185
and 186). Pathway B, a [4+2] cycloaddition, results in the formation of an endoperoxide
(187). Under heating, this endoperoxide undergoes a rearrangement to yield moracin M
(188), as illustrated in Scheme 9 [192].
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5.1.9. Oxidation of Resveratrol Catalyzed by Dioxygenase NOV1

Bai and co-authors [193] investigated the oxidative cleavage of resveratrol (183) cat-
alyzed by the dioxygenase enzyme NOV1 from the Gram-negative bacterium Novosphingo-
bium aromaticivorans. NOV1, identified as a stilbene cleavage oxygenase, is responsible for
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the oxidative cleavage of the central double bond in stilbenes, resulting in the formation of
two phenolic aldehydes (190 and 191).

The research outlined two distinct pathways for this reaction, differing only in the
sequence of forming the first [C-O] bond. The first pathway involves a dioxetane interme-
diate (189), while the second pathway involves an epoxy intermediate (192). Each pathway
encounters high energy barriers for the formation of the second [C-O] bond, as depicted
in Scheme 10 [193]. These pathways highlight the complex mechanisms involved in the
biochemical transformation of stilbene compounds by microbial enzymes.
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Mazzone and co-authors also studied the trans-resveratrol (183) and 1O2 interaction
mechanism and concluded that the oxidation of trans-resveratrol resulted in a resveratrol-
quinone (194) product via an endoperoxide intermediate (193) through the action of 1O2
on the resorcin ring. The second mechanism, in which singlet oxygen reacts with a double
bond connecting two resveratrol rings, resulting in benzaldehyde products (190 and 191),
involves the formation of dioxetane intermediate (189) (Scheme 11) [194].
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5.1.10. Oxidation of Natural Unsaturated Products by Dioxygenases

Dioxygenases, a class of oxidoreductase enzymes, are found across a wide range
of organisms, from simple unicellular species and bacteria to complex eukaryotic organ-
isms [194]. These enzymes are distinguished by their ability to incorporate both atoms
of molecular oxygen into substrates during various metabolic pathways. Dioxygenases
frequently participate in the cleavage of bonds, including aromatic rings, making them
essential in biochemical transformations [195].

Dioxetanes (four-membered peroxides, labeled 195–198) are often intermediates in
these reactions (Scheme 12). The oxidative cleavage of aromatic rings typically involves
substrates such as catechol (1,2-dihydroxy) or quinol (1,4-dihydroxy). In the case of cat-
echols, cleavage usually occurs between the two hydroxyl groups, resulting in products
that contain aldehyde and/or carboxylic acid(s) (Scheme 12). This enzymatic action under-
scores the critical role of dioxygenases in the degradation and transformation of aromatic
compounds in nature.
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5.1.11. Oxidation of Unsaturated Fatty Acids with Formation of Dioxetanes

Over the past four decades, numerous mechanisms have been proposed for the oxi-
dation of fatty acids [196–207]. These oxidative processes generally produce biologically
active fatty aldehydes, such as (E)-4-hydroxynon-2-enal (206), 4-hydroxyhexenal, malon-
aldehyde, and 9-oxononanoic acid (205). The fatty aldehydes formed are highly reactive
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and have been shown to promote various diseases due to their cytotoxic, genotoxic, and
chemotactic activities and influences on cell proliferation and gene expression [208–210].

One specific pathway of interest is the Esterbauer Dioxetane Mechanism [211,212], which
involves the fragmentation of fatty acids and the formation of intermediate dioxetanes (203
and 204). A notable limitation of this mechanism, however, is that the specific process of
dioxetane generation, which presumably involves singlet oxygen cyclo-additions to the
C=C bond, is not fully elucidated.

Linoleic acid, an essential fatty acid with two cis-configured double bonds at positions
9 and 12 (199, cis-9,12-18:2), is primarily found in vegetable oils as triglyceride esters. It
plays a crucial role in mammalian nutrition and is used in the biosynthesis of prostaglandins
and cell membranes [213–217]. Linoleic acid’s biological activities, studied for over 90 years,
include antibacterial, antimicrobial, antiviral, and antifungal properties [218–222].

Conjugated linoleic acid (CLA) has been extensively researched for its health-promoting
benefits. Recent in vivo and in vitro studies have demonstrated that CLA inhibits the devel-
opment of multistage carcinogenesis at various sites. These studies have provided significant
insights into CLA’s mechanisms of action in cancer prevention [223–226].

The oxidation of linoleic acid has been the subject of research for over 50 years,
with numerous reviews summarizing these findings [227–232]. Overall, the mechanism
of linoleic acid oxidation presents an interesting and plausible scenario, as depicted in
Scheme 13.
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Scheme 13. The scheme shows an example of the Esterbauer mechanism for the synthesis of
dioxetanes in the breakdown of unsaturated fatty acids using singlet oxygen. The scheme shows a
special case of the oxidation of linoleic acid (199). The formation of two dioxetans (203 and 204) is
the most interesting point in the oxidation of linoleic acid, which flows through the intermediate
products (200, 201 and 202) and the final products (E)-4-hydroxynon-2-enal (206) and 9-oxononanoic
acid (205).

Over 25 years ago, Salomon and co-authors [233] proposed the peroxycyclization-
dioxetane fragmentation mechanism. This theory suggests a competitive process between
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peroxycyclization, leading to fragmentation products, and the formation of derivatives
such as 205, 206, 209, 212, and 213, as depicted in Scheme 14.

Oxygen 2024, 4, FOR PEER REVIEW 30 
 

 

 

Scheme 14. Proposed of peroxycyclization-dioxetane fragmentation mechanism. 

5.1.12. Oxidation of Arachidonic Acid with Formation of Dioxetane Unit 

Arachidonic acid (214, or eicosatetraenoic acid, 20:4) is a 20-carbon chain polyunsatu-

rated fatty acid featuring four double bonds at positions 5, 8, 11, and 14. It is found in 
various sources including animals [234–240]; red [241–247] and brown algae [247–251]; 
and marine invertebrates [249]. In mammals, arachidonic acid is primarily located in the 

phospholipids of cell membranes, such as phosphatidylethanolamine, phosphatidylser-
ine, phosphatidylcholine, and phosphatidylinositides, with high concentrations in the 

brain, muscles, and liver, and also in fish [252–254]. Arachidonic acid serves as a precursor 
for the biosynthesis of prostaglandins, isoprostanes, thromboxane, and endoperoxides 
[255–259]. 

The oxidation products derived from arachidonic acid are crucial for the normal 
functioning of various human organs [260–262]. When arachidonic acid is oxidized by 

cyclooxygenases, it leads to the production of the bicyclic endoperoxide prostaglandin G2, 
along with other oxidized metabolites such as thromboxane, PGF2, PGD2, PGE2, and 
prostacyclin [263–268]. In both in vitro and in vivo conditions, the free radical oxidation 

of arachidonic acid generates numerous isoprostanes, which are stereoisomers of PGF2 
resulting from the reduction of bicyclic endoperoxides [269–272]. 

Scheme 14. Proposed of peroxycyclization-dioxetane fragmentation mechanism.

According to Scheme 14, linoleic acid (199) can undergo two distinct oxidative path-
ways. During the oxidation process, four dioxetanes (203, 208, 210, and 211) are formed.
The subsequent decomposition of these dioxetanes results in the production of three differ-
ent aldehydes (77, 80, and 84) and two keto acids (205 and 212). This detailed mechanism
outlines the complexity and diversity of pathways available in the oxidative degradation
of linoleic acid, highlighting how various intermediates and end products can arise from
the same precursor under oxidative conditions.

5.1.12. Oxidation of Arachidonic Acid with Formation of Dioxetane Unit

Arachidonic acid (214, or eicosatetraenoic acid, 20:4) is a 20-carbon chain polyunsat-
urated fatty acid featuring four double bonds at positions 5, 8, 11, and 14. It is found in
various sources including animals [234–240]; red [241–247] and brown algae [247–251];
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and marine invertebrates [249]. In mammals, arachidonic acid is primarily located in the
phospholipids of cell membranes, such as phosphatidylethanolamine, phosphatidylserine,
phosphatidylcholine, and phosphatidylinositides, with high concentrations in the brain,
muscles, and liver, and also in fish [252–254]. Arachidonic acid serves as a precursor for the
biosynthesis of prostaglandins, isoprostanes, thromboxane, and endoperoxides [255–259].

The oxidation products derived from arachidonic acid are crucial for the normal
functioning of various human organs [260–262]. When arachidonic acid is oxidized by
cyclooxygenases, it leads to the production of the bicyclic endoperoxide prostaglandin
G2, along with other oxidized metabolites such as thromboxane, PGF2, PGD2, PGE2, and
prostacyclin [263–268]. In both in vitro and in vivo conditions, the free radical oxidation
of arachidonic acid generates numerous isoprostanes, which are stereoisomers of PGF2
resulting from the reduction of bicyclic endoperoxides [269–272].

The synthesis of prostaglandin PGF2 during the oxidation of arachidonic acid involves
the formation of dioxetanes (217–219), as illustrated in Scheme 15. The synthesis process
begins with the 4-exocyclization of the peroxyl radical, leading to an intermediate dioxetane.
This mechanism is proposed not only for the biosynthesis of prostaglandins but also for
the formation of 4-hydroxynonenal, underscoring the complex pathways involved in the
metabolic processing of arachidonic acid.
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Scheme 15. Prostaglandin PGF2 (220) is synthesized during the oxidation of arachidonic acid (214)
and the formation of dioxetanes (217, 218 and 219), which are formed from hydroperochids (216).
The last stage goes through 5-exo cyclization and dioxetane opening.

Isoprostanes, which are prostaglandin-like compounds, can be formed via the dioxe-
tane/endoperoxide mechanism, as outlined in Scheme 16 [237,273–275]. This process in-
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volves several steps and initiates with molecular oxygen attacking double bonds at specific
positions in the arachidonic acid backbone, leading to the formation of various isoprostanes.
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Initially, oxygen molecules attack the double bonds at positions 15 (type 3, structure
215), 12 (type 5, structure 221), 8 (type 4, structure 222), and 5 (type 6, structure 223) on
the arachidonic acid chain. This attack leads to the formation of corresponding hydroper-
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oxides for each type (215, 221, 222, and 223). These hydroperoxides then convert into
hydroperoxy radicals.

These radicals undergo further transformations to form corresponding dioxetanes (217,
224, 225, and 226). The subsequent cleavage of these dioxetanes results in the formation
of different types of isoprostanes, specifically isoprostanes 220, 227, 228, and 229, for each
respective original position of the double-bond attack. This complex mechanism highlights
the intricate biochemical pathways involved in the oxidative stress response and lipid
peroxidation processes in the body.

5.1.13. Formation of Dioxetanilated Phosphatidic Acids and Triacylglycerols

Dioxetanilated phosphatidic acids and triacylglycerols are specialized compounds that
involve the incorporation of a dioxetane ring into the molecular structure of phosphatidic
acids and triacylglycerols, respectively. The incorporation of a dioxetane ring into phospha-
tidic acids and triacylglycerols creates dioxetanilated phosphatidic acids and dioxetanilated
triacylglycerols. This modification is of particular interest due to the unique chemical and
physical properties of dioxetanes, especially their ability to undergo chemiluminescent
decomposition. Unique dioxetanilated phosphatidic acids (230–232, 234–237, 239–241,
243–245, 247–249, and 122–125) have been synthesized and identified as potent anticancer
agents [276] (see Scheme 17). These phospholipids, including phosphatidylserine (239,
234, 239, 243, 247, 251), phosphatidylinositol (231, 235, 240, 244, 248, and 252), and phos-
phatidylethanolamine (232, 237, 241, 245, 249, and 253), with dioxetane-containing fatty
acids, have shown promising anticancer activity against L-1210 tumor cells.

Linoleic acid and its derivatives, specifically trilinolenoylglycerol dioxetanes (TAG,
233, 238, 242, 246, 250, and 125), were prepared through the ozonation of linoleic acid
methyl ester at 80 ◦C in acetone (Me2CO) [277]. These trilinolenoylglycerols with dioxetane
groups, as well as the linoleic acid methyl ester dioxetanes, also displayed cytotoxicity
against L-1210 leukemia cells [276,277].

The breakdown of fatty acid hydroperoxides from phospholipids can be facilitated by
phospholipase A2 [278], including its mitochondrial calcium-dependent isoform triggered
by superoxide, or by a calcium-independent isoform. While fatty acid hydroperoxides are
transient and non-radical, they are highly reactive and typically degrade into hydroxyl
fatty acids through the action of glutathione peroxidase or phospholipid hydroperoxide
glutathione peroxidase. They can also decompose into toxic epoxy acids and α,β,γ,δ-
unsaturated aldehydes [279].

The free radical-initiated autoxidation of polyunsaturated fatty acids has been impli-
cated in numerous human diseases, such as atherosclerosis and cancer [275]. The dioxetane
group-containing linoleic acid derivatives (230–254), along with other peroxides, have been
extensively studied and identified, underscoring the critical role these compounds play in
health and disease [271,276,277,280].

5.1.14. Oxidation of Carotenoids and Similar Compounds

Polyene terpenoids, known as carotenoids (C40), are synthesized by bacteria, plants,
and algae and can also be found in marine invertebrates and some protozoa. Mammals
obtain carotenoids primarily through their diet, predominantly in the forms of β-carotene
(provitamin A) and lycopene. To date, over 700 different carotenoids have been identified
from various natural sources. Carotenoids are susceptible to the oxidative cleavage of
their double bonds, resulting in smaller molecules known as apocarotenoids or noriso-
prenoids [281–283]. This splitting can be specific or nonspecific: nonspecific cleavage
typically occurs via photo- or chemical oxidation, while specific cleavage is mediated by
enzymes known as carotenoid cleavage dioxygenases, producing fatty aldehydes and other
compounds like the phytohormones strigolactone and abscisic acid [284–286].
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Currently identified are nine different products from the interaction of retinoic acid
(255) with singlet oxygen, some of which are illustrated in Scheme 18 [287,288]. These



Oxygen 2024, 4 213

oxidation products include an epoxide (256), hydroxyketone (257), a furan derivative
(258, through the rearrangement of 256), endoperoxide (259), dioxetane (260), and four
degradation products with molecular weights lower than that of the parent retinoic acid.
Similar oxidation products have been reported for other vitamin A derivatives such as
retinal [289–291], retinol [289,292,293], and retinol palmitate [289,293]. In most of these
cases, oxidation is often limited to the addition of two oxygen atoms, with 5,8-endoperoxide
(similar to 130) frequently proposed as either the major or sole initial product [294].
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Astaxanthin Oxidation Reaction

Astaxanthin is a keto-carotenoid, belonging to a larger class of chemical compounds
known as terpenes. It is a naturally occurring pigment that is part of the carotenoid family,
which includes beta-carotene, lutein, and canthaxanthin. Astaxanthin is most notable for
its strong antioxidant properties, and this is what gives the pink and red color to many
marine organisms, including salmon, shrimp, lobster, and some algae [295–297].

Astaxanthin, like other carotenoids, is susceptible to oxidation, particularly when
exposed to light, heat, or oxygen. The oxidation of astaxanthin involves complex chemical
changes that can affect its color, antioxidant capacity, and biological activity. Understanding
these oxidation processes is crucial for the stability and efficacy of astaxanthin in various
applications, including dietary supplements and food products. An oxidative mecha-
nism has been observed in the oxidation of astaxanthin and its derivatives, as detailed in
Scheme 19 [295–297]. Through the application of liquid chromatography coupled with
photodiode array and electrospray ionization mass spectrometry (LC/PDA ESI-MS) and
electron spin resonance (ESR) spectrometry, various reaction products of astaxanthin (261)
and its acetate with reactive oxygen species have been isolated and identified.

Astaxanthin epoxides (264 and 265) emerged as the major reaction products when
astaxanthin interacted with superoxide anion radicals and hydroxyl radicals. In contrast,
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when reacting with singlet oxygen, astaxanthin predominantly formed endoperoxides,
including compounds identified as a dioxetane (264) and an endoperoxide (265). These
findings were consistent with the reactions involving astaxanthin acetate, indicating a re-
producible pattern of oxidation products across different astaxanthin derivatives [298,299].
This research highlights the sensitivity of astaxanthin to oxidative modifications and pro-
vides insight into the chemical behavior of carotenoids under oxidative stress.
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β-Carotene Oxidation Reaction

β-Carotene is a type of carotenoid that is widely recognized for its vibrant orange
color. It is a provitamin A carotenoid, meaning it can be converted into vitamin A in the
body. Beta-carotene is an essential nutrient that offers numerous health benefits, primarily
due to its role as a precursor to vitamin A and its antioxidant properties. It is a hydrocarbon
molecule consisting of a long chain with alternating double bonds (a conjugated system).
This structure is responsible for its chemical properties and ability to act as an antioxidant.

The molecule is fat-soluble, meaning it is best absorbed when consumed with dietary
fats. It is commonly found in fruits and vegetables that are orange, yellow, or deep
green in color. Key sources include carrots, sweet potatoes, pumpkins, spinach, kale, and
cantaloupe [300–303].

The oxidative reactions of β-carotene have been thoroughly studied and are detailed
in Scheme 20 [300]. This includes the well-documented all-trans-cis isomerization of β-
carotene, extensively explored by Doering and colleagues, who evaluated the stabilization
energy of semi-rigid conjugated systems with varying numbers of double bonds [301,302].
Scheme 20 illustrates that trans-β-carotene (266) can convert to 15,15′-cis-β-carotene (267).
This cis-isomer, upon interaction with singlet oxygen, forms a dioxetane (268) through the
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cleavage at the 15,15′ double bonds and also forms a 5,8-endoperoxide (269). Additionally,
the free radical oxidation of 15,15′-cis-β-carotene (267) leads to the formation of 5,6-epoxy-
β-carotene, which can also arise from the cleavage of the 5,8-endoperoxide (269) [302,303].
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Scheme 20. β-Carotene oxidation reaction and main oxidation products.

An alternative pathway, highlighted in Scheme 21, demonstrates the formation of
retinal, a precursor to vitamin A, from 15,15′-cis-β-carotene (270). This process involves the
cleavage of 15,15′-cis-β-carotene (271) by carotenoid 15,15′-oxygenases, which are enzymes
found in mammals, chickens, fruit flies, zebrafish, and the fungus Fusarium fujikuroi, as
well as apo-carotenoid 15,15′-oxygenases found in cyanobacteria. The end product of these
cleavage reactions is retinal (272) [304–306]. In both Schemes 20 and 21, the transformation
of β-carotene to retinal is central, showcasing the importance of these pathways in vitamin
A biosynthesis.

5.1.15. Synthesis and Biological Activities of Chromones

Chromones are a class of organic compounds characterized by a benzo-γ-pyrone
structure. This structure features a benzene ring fused to a pyrone ring, making chromones
a subset of the larger chemical family known as benzopyrones. They are of significant
interest in chemistry and pharmacology due to their wide range of biological activities
and potential therapeutic applications. The core structure of chromones consists of a four-
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chromone backbone. The general formula is C9H6O2, where a benzene ring is fused with a
four-membered lactone (a cyclic ester) ring [307,308].
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Chromones are naturally occurring compounds found in a variety of plants, including
species in the Asteraceae and Fabaceae families. They are also identified in certain types of
fungi and bacteria. In plants, chromones are often involved in chemical defense mechanisms
against pests and diseases [309–311].

Furocoumarins, particularly psoralens, undergo photolysis when exposed to UVA ra-
diation in solution, leading to a variety of products depending on their molecular structure
and the specific reaction conditions [312,313]. This photoreaction is significant because
it influences the phototherapeutic uses of psoralens in medical treatments. One of the
best-known chromones in medical use is cromolyn sodium, a medication used primarily to
treat asthma and allergic reactions. It works by preventing the release of substances in the
body that cause inflammation, such as histamine and leukotrienes.

Viola and colleagues have specifically investigated the products of furocoumarin
photolysis induced by UV irradiation, focusing on their biological impact [314]. Their study
on 8-methoxypsoralen (273) revealed that its oxidation under UV light produces a dioxetane
intermediate (274). In a methanol solution, this intermediate transforms into product
(275) and further decomposes to yield two distinct molecules (276 and 277, as shown
in Scheme 22). Importantly, the irradiated solution of 8-methoxypsoralen significantly
induces erythroid differentiation in K562 cells, a human leukemia cell line, suggesting
potential applications in medical research and therapy involving erythroid differentiation.
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This example highlights the complex chemistry and biological relevance of furocoumarins
under specific environmental conditions like UV exposure.
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Scheme 23 shows the photolysis of furochromones and the formation of endoperoxides
(279, dioxetane, and 280), during the decomposition of which the products of photolysis
are formed (281–284) [312,313,315].
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5.1.16. The Photo-Oxidation of Psoralen

Psoralen is a naturally occurring compound that belongs to a group of substances
known as furocoumarins. Furocoumarins are a class of organic chemical compounds
that are derived from a fusion of a furan ring and a coumarin structure. Psoralens are
particularly notable for their photosensitizing properties, which have been utilized in
medicine, especially in treating skin disorders. Psoralen itself consists of a coumarin
nucleus fused with a furan ring. The basic chemical formula is C11H6O3. This structure
allows psoralen to absorb ultraviolet (UV) light, leading to a photochemical reaction that
can form cross-links with DNA, altering its structure [316–319]. Psoralen is found in
several plant species, particularly those belonging to the Apiaceae family, such as celery,
parsley, and figs. It is also present in the seeds of the Psoralea corylifolia plant, commonly
known as Babchi, a plant used in traditional Indian and Chinese medicine [317–320]. The
photo-oxidation of psoralen (285) in solutions has been extensively studied, with findings
documented across several publications [316–320]. Psoralen, when photo-oxidized, can
lead to products with split pyrone rings through two primary mechanisms.

Mechanism A: Upon the absorption of a photon, an electronically excited psoralen
molecule may undergo solvolysis with water, leading to the formation of furocoumaric
acid (289). This initial reaction can be followed by the further oxidation of the opened
pyrone ring double bond by oxygen dissolved in the water, resulting in the formation of
5-formyl-6-hydroxybenzofuran (290), as illustrated in Scheme 24. This pathway emphasizes
the role of water as a solvent in facilitating the breakdown of the psoralen structure into
more oxidized derivatives.
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Mechanism B: Another pathway involves the action of singlet oxygen, which is gen-
erated during the photo-oxidation of psoralen in solution. This reactive oxygen species
attacks the double bond of the furan ring, leading to the formation of an intermediate
dioxetane (286). The subsequent simultaneous cleavage of the O–O and C–C bonds within
the dioxetane structure results in the production of a dialdehyde (287). Further hydrolysis
of the ether bond within this compound then yields 6-formyl-7-hydroxycoumarin (288).
This mechanism highlights the role of singlet oxygen in driving the oxidative cleavage that
results in significant structural changes to the psoralen molecule.

Both mechanisms demonstrate the complex chemical transformations psoralen can
undergo under photo-oxidative conditions, leading to various products that differ sig-
nificantly from the original compound. These transformations are not only of interest
chemically but could also have implications in biological systems where psoralen and its
derivatives are known to have significant effects.

5.1.17. Oxidation of Quercetin

Quercetin is a flavonoid, a type of naturally occurring plant pigment that is part of a
larger group of compounds known as polyphenols. It is widely recognized for its potent
antioxidant properties and a range of other health benefits [321–324]. Quercetin is found in
many fruits, vegetables, leaves, and grains; it is one of the most abundant antioxidants in
the human diet and plays a significant role in fighting free radical damage. Quercetin is
commonly found in onions (especially red onions), capers, apples, berries (like blueberries
and blackberries), grapes, red wine, green tea, and buckwheat [325–330].

In the oxidative transformation of quercetin (291), an intramolecular nucleophilic
attack by the peroxide function at either the C3 or C4 position can lead to the formation of
unstable intermediates such as a 1,3-endoperoxide (294) or a 1,2-dioxetane (295), via 292
and 293, as depicted in Scheme 25. These intermediates are inherently unstable and rapidly
decompose, leading to further reaction products.

The 1,3-endoperoxide (294) undergoes ring fission and decarbonylation to directly
form a compound (297). In the case of the 1,2-dioxetane (295), it has been reported to trans-
form into 2-(2-((3,4-dioxocyclohexa-1,5-dienyl)(hydroxyl)methoxy)- 4,6-dihydroxy-phenyl)-
2-oxoacetic acid (296) [325]. The further hydrolysis of compound 297 results in the formation
of various benzoic acid derivatives. Notably, this includes 2,4,6-trihydroxybenzoic acid
(298, also known as phloroglucinol carboxylic acid) and 3,4-dihydroxybenzoic acid (299,
known as protocatechuic acid) [326–330]. These transformation products underline the
extensive metabolic pathways of quercetin and similar polyphenols, which contribute
significantly to their biological activities and potential health benefits.

5.1.18. Oxidation of Chalcones Derivatives by Peroxidase

Chalcones are aromatic ketones and enones that form the central core of a variety of
important biological natural metabolites [331–333]. They are essential precursors for the
biosynthesis of flavonoids in plants and exhibit a broad spectrum of biological activities.
These include antioxidative, antibacterial, antihelmintic, amoebicidal, antiulcer, antiviral,
insecticidal, antiprotozoal, anticancer, cytotoxic, and immunosuppressive effects [334,335].

The oxidative mechanism of methoxy chalcone (300) involves the formation of an
unstable dioxetane (301), which, upon the hydration of a hydroperoxide intermediate (302),
leads to the formation of the final product (303), as depicted in Scheme 26 [336].

Further investigations into chalcone transformations have been conducted using cell-
free extracts from garbanzo (Cicer arietinum) and soya (Glycine max). These extracts have
been shown to catalyze the oxidation of 4,2′,4′-trihydroxychalcone (304, isoliquiritigenin)
into dihydroflavonol (306) and what is termed “hydrated aurone” (309a), along with
another compound (309b) [337,338]. Additionally, the dioxetane derivative of 2′,4,4′-
trihydroxychalcone (305) was previously identified as a product from peroxidase-catalyzed
oxidation and detected in the dye-sensitized photo-oxygenation of the same chalcone,
indicating that it plays a role in the formation of several products.
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In contrast, studies utilizing purified enzymes from garbanzo or horseradish peroxi-
dase revealed that the main isolatable oxidation product of isoliquiritigenin (304) under
controlled conditions was an unstable compound, later characterized as benzoxepinone-
spiro-cyclohexadienone (307). This novel compound, isomeric with 7,4′-dihydroxyflavonol
(306)—also found as a minor product—highlights the complex oxidation pathways of
chalcones. Additionally, under specific experimental conditions, the epoxide tautomer of
(308) was also isolated. Subsequent research uncovered the existence of compounds other
than (307) as initial products of the enzymatic reaction, revealing various stereochemical
modifications of the four-membered cyclic peroxide (1,2-dioxetane) structure (305), which
were isolated and are characterized in Scheme 27.
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5.1.19. Photo-Oxidation Products of Ellagic Acid

Ellagic acid (310), the dilactone of hexahydroxydiphenic acid, is recognized as a potent
natural phenolic antioxidant and exhibits a wide array of biological activities, notably
antiproliferative, antibacterial, and anticancer properties [339–343]. It is predominantly
found in various fruits and nuts, with particularly high concentrations in strawberries,
raspberries, blackberries, cherries, and walnuts [344–346].

The photoreaction of ellagic acid has been extensively studied, including work by
Tokutomi and co-authors [347], who observed a notable color change in the solution from
colorless to yellow when ellagic acid was irradiated in aerated tetrahydrofuran (THF). This
change corresponds to a new absorption band at 405 nm, indicating significant molecular
transformations due to the photoreaction. The crystalline π-structures analysis suggests
that the photo-oxidation products of ellagic acid are various peroxides, which result from
the interaction of ellagic acid with singlet oxygen followed by subsequent stages of splitting
and rearrangements.

This photoreaction of π-molecules with singlet oxygen (1O2) has been identified to
proceed through either [4+2] or [2+2] cyclization reactions, as illustrated in Scheme 28. The
most stable singlet oxygen adduct identified for ellagic acid was the reaction intermediate
of the [2+2]-1 structure (312), which was found to be energetically more favorable by 61.0
and 73.6 kJ/M than the [2+2]-2 (314) and [4+2] (315) cyclization products, respectively.
The high stability of the [2+2]-1 (312) adduct is attributed to effective conjugation, which
imparts relatively high stability, while the destruction of this π-conjugation in the [4+2]
(315) cyclization process leads to a destabilized intermediate structure. Notably, the pho-
togenerated dioxetane intermediate [2+2]-1 (313) is unstable and easily cleaves to form
a tricycle intermediate (314) featuring a terminal conjugated enol carboxylic acid group.
When ellagic acid is directly oxidized under UV light in THF, the reaction typically yields
the final product (312). This detailed understanding of the photochemical behavior of
ellagic acid underlines its complex reactivity and potential pathways leading to biologically
active products.
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6. Conclusions

The study of natural products containing oxetane and 1,2-dioxetane rings within
the broader scope of highly oxygenated cyclobutane rings offers profound insights into
the structural intricacies and biochemical properties that confer distinct biological activ-
ities. These compounds, often biosynthesized by an array of microorganisms and also
sourced from plant, fungal, and marine invertebrate extracts, demonstrate a wide range of
pharmacological potentials that are essential for innovative drug development.

Our review has highlighted the substantial role that the structural features of oxetane
and 1,2-dioxetane rings play in achieving molecular stability and enhancing pharmacologi-
cal effectiveness. This underscores the importance of these structures in contributing to the
molecular diversity seen in natural products, which in turn supports ongoing research into
their applications in medicine, particularly in the development of anti-inflammatory and
antiprotozoal therapies.

Furthermore, the instability and reactivity of 1,2-dioxetane rings as intermediates in
oxidation reactions suggest new areas for chemical research, including the exploration of
their breakdown products and their roles in biological processes. This opens up potential
pathways for the synthesis of novel compounds with desirable properties.

However, synthesizing these complex ring structures in the laboratory remains a sig-
nificant challenge. The intricate nature of their formation in natural biosynthetic pathways
often presents difficulties in replicating these conditions synthetically. Addressing these
challenges will require innovative approaches in synthetic chemistry, possibly integrating
biotechnological methods to mimic natural processes more closely.

Moving forward, research in this field should continue to explore the mechanistic
underpinnings of how these oxygenated rings influence the activity of the molecules they
are part of. Understanding these mechanisms can lead to more targeted drug design
and synthesis strategies that harness the full potential of these fascinating natural struc-
tures. Thus, continued interdisciplinary research is essential, bringing together organic
chemists, biochemists, and pharmacologists to delve deeper into the secrets of nature’s
molecular arsenal.
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