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Abstract: The motions of nuclei in a molecule can be mathematically described by using normal
modes of vibration, which form a complete orthonormal basis. Each normal mode describes oscil-
latory motion at a frequency determined by the momentum of the nuclei. Near equilibrium, it is
common to apply the quantum harmonic-oscillator model, whose eigenfunctions intimately involve
combinatorics. Each electronic state has distinct force constants; therefore, each normal-mode basis is
distinct. Duschinsky proposed a linearized approximation to the transformation between the normal-
mode bases of two electronic states using a rotation matrix. The rotation angles are typically obtained
by using quantum-chemical computations or via gas-phase spectroscopy measurements. Quantifying
the rotation angles in the condensed phase remains a challenge. Here, we apply a two-dimensional
harmonic model that includes a Duschinsky rotation to condensed-phase femtosecond coherence
spectra (FCS), which are created in transient–absorption spectroscopy measurements through im-
pulsive excitation of coherent vibrational wavepackets. Using the 2D model, we simulate spectra
to identify the signatures of Duschinsky rotation. The results suggest that peak multiplicities and
asymmetries may be used to quantify the rotation angle, which is a key advance in condensed-phase
molecular spectroscopy.

Keywords: combinatorics; harmonic oscillator; vibronic coupling; Duschinsky mixing; femtosecond
spectroscopy
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1. Introduction

Vibronic coupling is the interaction between the motions of a molecule’s electrons and
nuclei. This is an important effect in both molecular quantum mechanics and molecular
spectroscopy [1]. Typically, one treats vibronic coupling via approximations at varying
levels of sophistication [2]. A potential-energy surface describes how the energy of an
electronic state varies as a function of the nuclear motion [3]. In spectroscopy, one most
often uses the absorption or emission of light to probe molecules near their equilibrium
configurations, where nuclear motions are typically considered to be harmonic [4]. Hence,
the one-dimensional displaced harmonic-oscillator model, which is shown in Figure 1, is
one of the most widely used models for interpreting both steady-state and time-resolved
spectra. In this model, the potential energy surface for each electronic state S0 or S1
is characterized as a harmonic oscillator with a certain equilibrium position, and the
difference in equilibrium positions, ∆, is a result of the bond-length change that arises from
the deposition of energy by the light.

Impulsive spectroscopy measurements—such as transient–absorption spectroscopy—that
are conducted with femtosecond laser pulses can provide a detailed view of the effects of
vibronic coupling. Transient–absorption spectroscopy involves two laser pulses—a pump
pulse and a probe pulse—that are focused together onto a sample, and, as the name suggests,
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the technique uses the change in the absorption spectrum of the sample due to its interaction
with the pump pulse to acquire microscopic information about the sample [5]. The two
pulses are separated by a user-controlled time-delay interval that resolves the dynamic
response of the sample to the pump-pulse excitation. Transient–absorption spectroscopy
can provide insight into the vibronic coupling of an isolated molecule by creating and time
resolving coherent vibrational wavepacket oscillations on the ground or excited electronic
state of a molecule [6,7].
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Figure 1. (left) One-dimensional displaced harmonic-oscillator (1D DHO) model characterized by
the vibrational frequency ω0 and displacement ∆. (center) Two-dimensional displaced harmonic-
oscillator (2D DHO) model with the Duschinsky rotation angle, θ. (right) Femtosecond coherence
spectroscopy (FCS) is the analysis of the excited-state vibrational wavepacket oscillations in transient–
absorption spectroscopy. Fourier transformation of the intensity oscillations leads to an amplitude
profile as a function of detection frequency, A(ω), which typically contains two main peaks separated
by a sharp node.

An analysis method for transient–absorption spectroscopy known as femtosecond
coherence spectroscopy (FCS) is beginning to reveal new insights into molecular vibronic
coupling through a Fourier-domain analysis of the amplitude and phase profiles of these
oscillatory signals. FCS is rooted in pioneering condensed-phase studies beginning in
the 1980s [7–13], and FCS has gained a recent resurgence through the use of quantum-
mechanical models to fit measured spectra, moving the level of analysis from qualitative
to quantitative [14–16]. Figure 1 depicts the wavepacket oscillations and the amplitude
profile created via Fourier transformation. The quantum-mechanical models for FCS are
based on Franck–Condon coefficients, which are values that quantify the degree of overlap
between vibrational levels of distinct electronic states. For example, the value representing
the overlap between the nth (mth) vibrational sublevel of the electronic excited (ground)
state is given symbolically by

FCn
m(∆) =

∫
ψn(q; ∆)ψm(q)dq , (1)

where ψ(q) are the eigenfunctions and q represents a generic internuclear displacement.
Some models lead to analytic expressions for the eigenfunctions and Franck–Condon coef-
ficients, while in other models, these must be computed numerically. A vibrational mode
that lacks a relative displacement between the two electronic states is not considered to
be Franck–Condon active because the orthonormal basis of harmonic-oscillator eigenfunc-
tions gives FCn

m(∆̃ ∼ 0) ≈ 0 for n 6= m, meaning that excitation via light will not lead to
wavepacket oscillations in most cases.
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In previous work, we applied three distinct one-dimensional vibrational models to
simulate and later fit measured FCS profiles, but in all instances, the microscopic values ex-
tracted from the fits were un-physically large relative to values arising from numerous prior
computational and gas-phase spectroscopy studies [16]. While the purely one-dimensional
vibrational models served as an important starting point, the molecules under study had
dozens of normal modes, more than 10 of which were Franck–Condon active and, there-
fore, relevant to the measurement technique. In this work, we attempt to address the
disparity between FCS measurements and theory by developing an FCS model using a two-
dimensional harmonic oscillator that includes Duschinsky rotation [17] of the electronic
excited-state potential-energy surface; see Figure 1. Duschinsky rotation can account for
changes in the potential energy surface on the electronic excited state that create mixing
between vibrational modes. Studies of Duschinksy rotation are relatively common in com-
putational or gas-phase spectroscopy studies, but are understudied in condensed-phased
spectroscopy due to a variety of complications [18].

In this contribution, we first define the FCS model and the Franck–Condon coefficients
appropriate for a two-dimensional harmonic-oscillator model that includes a Duschinsky
rotation angle between the two electronic states. We then present a series of simulated spec-
tra that demonstrate the peak multiplicities, and asymmetries may offer spectral signatures
for the quantification of Duschinksy rotation angles in condensed-phase spectroscopy mea-
surements.

2. Theoretical Background

A quantum-mechanical harmonic oscillator is defined by one parameter—its angular
normal-model frequency, ω0, which is related to the curvature by α =

√
mω0/h̄, where h̄

is Planck’s constant and m represents the reduced mass. The two-dimensional harmonic
oscillator eigenfunctions defined by quantum numbers n1 and n2 are product states that
can be written as

ψn1,n2(q1, q2) =
2

∏
j=1

Nnj Hnj(αjqj)e
− 1

2 α2
j q2

j , (2)

where, for each mode, the normalization constant is Nnj = π−1/4
√

αj/(2
nj n!), and the

Hermite polynomials are represented by Hnj(αq) of order nj. The Hermite polynomials
explicitly involve binomial coefficients, and the normalization constants involve factorials,
which leads to extensive combinatorial analysis when dealing with analytic expressions for
these models.

The Franck–Condon coefficients for displaced 1D and 2D harmonic oscillator models
have analytic forms [19–21]. For example, the FC coefficient for the 1D harmonic model
when the curvatures of the ground and excited states are identical simplifies to

FCn
m(∆̃) = (−1)me−∆̃2/4

√
n!m!
2n+m ∆̃n+m

min[n,m]

∑
l=0

(
− 2

∆̃2

)l 1
l!(n− l)!(m− l)!

(3)

where the unitless displacement between the equilibrium positions of the two potentials is
given by ∆̃ = α∆ and variables m and n index the ground-state and excited-state vibrational
levels, respectively.

For the 2D model, there are now two coordinates, q1 and q2, each with ground-state
and excited-state vibrational quantum numbers that need to be tracked, {m1, m2, n1, n2}.
Here, we cast the result of Lee et al. [20] into our notation as follows:

FCn1,n2
m1,m2(∆̃, J) = E

(
α1α′1α2α′2

A1 A2n1!m1!n2!m2!2n1+n2+m1+m2

)1/2 ui

∑
ki=0

F1F2F3, (4)
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where J is the Duschinsky rotation matrix defined via a rotation angle θ as

J =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (5)

and where the transformation from the excited-state coordinates q′ = (q′1, q′2) to ground-
state coordinates q = (q1, q2) is accomplished by q′ = Jq + ∆. The auxiliary functions of
Equation (3) are given by

A1 =
1
2

(
α2

1(1 + J2
11) + (α′2)

2 J2
21

)
(6a)

B1 =
1

2A1

(
(α′1)

2 J11 J12 + (α′2)
2 J21 J22

)
(6b)

C1 =
1

2A1

(
α′1 J11∆̃1 + α′2 J21∆̃2

)
(6c)

A2 =
1
2

(
α2

2 + (α′2)
2 J2

22 + (α′1)
2 J2

12

)
− A1B2

1 (6d)

C2 =
1

2A2

(
α′1 J12∆̃1 + α′2 J22∆̃2 − 2A1B1C1

)
(6e)

E = exp
[(
−1

2
∆̃2

1 + A1C2
1

)
×
(
−1

2
∆̃2

2 + A2C2
2

)]
(6f)

F1 =
7

∏
i=1

aki
i

(
ui
ki

)
(6g)

F2 = Hη1(d1)Hη2(d2)Hη3(d3)Hη4(d4) (6h)

F3 =

(
2

A1

)K1/2( 2
A2

)K2/2

(K1 − 1)!!(K2 − 1)!!, (6i)

where !! indicates a double factorial, and where

u1 = m1, u2 = n1, u3 = n2, u4 = m1 − k1, u5 = m2, u6 = n1 − k2, u7 = n2 − k3 (7)

K1 = k1 + k2 + k3, K2 = k4 + k5 + k6 + k7, (8)

where {K1, K2} ∈ {2Z},

η1 = m1 − k1 − k4, η2 = m2 − k5, η3 = n1 − k2 − k6, η4 = n2 − k3 − k7 (9)

a1 = α1, a2 = α′1 J11, a3 = α′2 J21,

a4 = −α1B1, a5 = α2, a6 = α′1(J12 − J11B1),

a7 = α′2(J22 − J21B1)

(10)

and

d1 = α1(B1C2 − C1), d2 = −α2C2,

d3 = α′1(J11B1C2 − J11C1 − J12C2) + ∆̃1,

d4 = α′2(J21B1C2 − J21C1 − J22C2) + ∆̃2.

(11)

We note several clarifications. The variables ki are the indices of the summation
in Equation (4). The values of K1 and K2 must be even, so any term with odd values
of K1 or K2 is forced to zero. The normalized displacements use the excited-state cur-
vatures, ∆̃i = ∆iα

′
i, not the ground-state curvatures, αi. The product of auxiliary func-

tions, F1F2F3, is a seven-dimensional quantity where each dimension is indexed by ki
and then summed in Equation (4). The Hermite polynomials are of the ‘physicist’ type,
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{H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, . . . }. Parameter a3 includes a factor of J21 that
is necessary for the coordinate transformation that was missing in [20]. Finally, a coefficient
computed using Equation (4) may be negative, and the formal Franck–Condon factor is the
square of this coefficient.

With these Franck–Condon coefficients, we can then move to the FCS model. Be-
fore describing the model, it is instructive to first consider how the FCS profiles arise in
measurements. Transient–absorption spectroscopy measurements resolve the fractional
change in probe intensity induced by first photo-exciting the sample with a pump pulse
as a function of the user-controlled delay between the pump and probe pulses, ∆I(τ)/I0.
In typical measurements, the probe pulse spectrum is frequency resolved in a spectrometer
before detection such that the signal is given by ∆I(ω, τ)/I0. In general, there are several
mechanisms that can contribute to the dynamics of the signal—including energy transfer,
quantum beats, quenching, intersystem crossing, radiative decay, etc.—all of which lead to
a decay, growth, or oscillations in signal intensity at varying detection frequencies. For the
FCS profiles, we focus only on the oscillations in the signal intensity, so we first subtract the
relatively slow non-oscillatory dynamics from the detected signal, which leaves residual
oscillations in the signal intensity. Figure 1 depicts illustrative residual oscillations, where
the amplitude and initial phase of the oscillations vary with the detection frequency. Fourier
transformation of the residuals of the signal intensity along the delay time dimension, τ,
produces a two-dimensional map, M(ω, ω2), where M is a complex-valued quantity con-
taining the amplitude and phase of the residual oscillations as a function of the detection
frequency, ω, and the oscillation frequency, ω2. Generally, the detection frequency values
correspond to optical frequencies (300–600 THz), and the oscillation frequency values
correspond to vibrational frequencies (1–100 THz). In many molecules, there are strong
peaks at multiple oscillation frequency values that arise from the vibrational quantum beats.
We are particularly interested in investigating how the amplitude of a particular oscillation
varies as a function of detection frequency.

In transient–absorption measurements, the radiated signal field, Esig, interferes with
the probe electric field, Eprobe, at the detector so that ∆I(ω, τ) is given in the frequency
domain by

∆I(ω, τ) = 2<
[

Eprobe(ω)Esig(ω; τ)
]
, (12)

where the signal field depends on the delay time between the pump and probe, τ. It
is typically assumed that the signal field is produced by a nonlinear polarization of the
medium, Esig ∝ PNL; specifically, the polarization is the result of a third-order process
such that the polarization depends on two field interactions from the pump and one from
the probe.

There are standard approaches to calculating the polarization and the resulting signal
field and intensity [22], one of which is referred to as the doorway–window formalism [9],
which is appropriate in the limit in which the pump and probe pulses are well separated in
time. The doorway–window method has a relatively intuitive physical interpretation [23]:
The pump pulse prepares the sample in a non-equilibrium state, which then evolves,
and the probe pulse acts as a window to the state of the sample. This allows one to
introduce models of the dynamics of interest, which, in the present work, are vibrational
quantum beats.

In the doorway–window approach used here, the pump pulse creates a wavepacket in
the excited electronic state that can be described by a density matrix given by

ρ(τ) =
N,N

∑
{n,n′}

FC{n}0 FC∗,{n
′}

0 e−i(E{n′}−E{n})τ/h̄|e, {n}〉
〈
e, {n′}

∣∣, (13)

where ∗ represents a complex conjugate, τ is the time delay after initial excitation, |e, {n}〉
represents the state of the {n}th vibrational level on the electronic excited state with energy
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E{n}, and N vibrational levels are assumed. The curly braces indicate that the model
may have multiple dimensions, and the primed index indicates a second, independent
vibrational state. In deriving this expression, we have assumed that the transition-dipole
moment is independent of the nuclear displacement and that the pump pulse has infinite
bandwidth, which is appropriate for situations where the pump-pulse bandwidth is broader
than the sample absorption. The probe pulse provides a “window” to the state of the
evolving wavepacket. We use a window operator of the form [15,24]:

W(ω) =
N,N

∑
{n,n′}

|e, {n}〉
〈
e, {n′}

∣∣ N

∑
{m}

FC{n}{m}FC∗,{n
′}

{m}

[
1

ω−ω{n′ ,m} + iγ/2
− 1

ω−ω{n,m} − iγ/2

]
, (14)

where ω is the detection frequency variable, the primed indices indicate the involvement
of a second, independent excited-state vibrational state, the curly braces indicate the
collective dimensions of the quantum-mechanical model, and γ is a phenomenological
line-broadening parameter capturing the microscopic solvation dynamics of the system [22].
The calculated transient absorption signal (S ∝ ∆I) as a function of detection frequency ω
and the delay between the pump and probe τ can be found from

S(ω, τ) = Tr [W(ω)ρ(τ)]. (15)

In determining FCS profiles, we focus on the amplitude and phase of the oscillations
in the signal intensity as a function of detection frequency; therefore, we define S̃(ω, ω2) =
Fτ [S(ω, τ)], where Fτ is a Fourier transform along the delay time axis. This is analogous
to the analysis of measurements wherein one takes a Fourier transform of the intensity
oscillations along the delay time axis. This model assumes that the transition-dipole
moment has no dependence on the coordinate, and it neglects more complicated relaxation
mechanisms, such as nonadiabatic coupling or energy transfer. The general frequency-
dependent signal based on the Franck–Condon coefficients is given by

S̃(ω, ω2) =
N

∑
{n,n′ ,m}

FC{n}{m}FC∗,{n
′}

{m} FC{n}{0}FC∗,{n
′}

{0}

[
1

ω−ω{n′ ,m} + iγ/2
− 1

ω−ω{n,m} − iγ/2

]

× 2πδ
(

ω2 − (E{n′} − E{n})/h̄
)

,

(16)

where ω2 is the oscillation frequency variable that arises from Fourier transformation of
the measured oscillations in a signal intensity [15]. This expression arose from a doorway–
window treatment of the coherent wavepackets produced by broadband laser pulses
in transient–absorption spectroscopy [23,25,26]. In a transient–absorption spectroscopy
measurement, the vibrational oscillations dephase, often on picosecond timescales, which
adds a finite width to the peak along the oscillation frequency axis, ω2.

In this work, we study oscillations at the fundamental frequency of one mode. With-
out loss of generality, we study the excited-state wavepacket oscillations exclusively
at the frequency of the mode on the ground-state coordinate q1, which is ω01 , by inte-
grating over a small spectral window near ω2 = ω01 to produce a mode-specific FCS

profile M(ω, ω01) =
∫ ω01+δω

ω01−δω S̃(ω, ω2)dω2. This constrains the indices in the sums to

n′1 = n1 + 1 and n′2 = n2. This model requires the product of the four coefficients,

FCn1,n2
m1,m2FC∗,n

′
1,n′2

m1,m2 FCn1,n2
0,0 FC∗,n

′
1,n′2

0,0 , with the constraints on n′1 and n′2. Hence, the relevant
expression is given by

M(ω, ω01) =
N

∑
n1,n2,
m1,m2

FCn1,n2
m1,m2FCn1+1,n2

m1,m2 FCn1,n2
0,0 FCn1+1,n2

0,0

×
[

1
ω−ωn1+1,n2,m1,m2 + iγ/2

− 1
ω−ωn1,n2,m1,m2 − iγ/2

]
,

(17)
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where, because the Franck–Condon coefficients are real-valued, we drop the complex-
conjugate notation. With these considerations, the simulations of M(ω, ω01) with six
Franck–Condon coefficients for each index required about 30 s of computation time on
a standard personal computer. As confirmation, we compared several arbitrary Franck–
Condon coefficients and the spectra simulated using Equation (17) to those arising from
explicit integration of real-space eigenfunctions and found them to be identical.

3. Results and Discussion

The purpose of this work is to study the effect of a Duschinsky rotation on spectral
features in simulated FCS. In prior work, we found that all 1D models produced a sharp
node separating two peaks of differing amplitudes, such as those shown in Figure 1.
The 1D models generally predict, at most, a weak asymmetry between the peak amplitudes
in the simulated FCS, and they predict that the peak at lower detection frequencies is
always weaker, assuming physically relevant conditions. By contrast, FCS arising from
measurements often show a strong asymmetry. Specifically, in many measurements, the
peak at a lower detection frequency has a substantially reduced amplitude relative to that of
the peak at a higher detection frequency. We found that fitting the measured FCS amplitude
profiles using the 1D models required un-physically large parameters [27]. Hence, here,
we aim to simulate FCS with the 2D model and identify a distinct signature that will allow
us to quantify the rotation angle value, θ. We also aim to demonstrate that the model
can produce peaks with strongly asymmetric peak amplitudes. In both simulations and
measurements, M(ω, ω01) is a complex-valued quantity that has both amplitude and phase
profiles. In prior works, we found it most productive to focus on the amplitude profiles.
Therefore, the figures display the amplitude profiles defined by

A(ω) =
∣∣M(ω, ω01)

∣∣ . (18)

As a first step, we set the line-broadening parameter to a value small enough to
discern individual transitions, γ/ω01 = 0.001. This could, for example, represent a gas-
phase spectroscopy measurement, which would have sharp transitions due to the lack of
solvation [22]. By identifying each transition in the spectrum, we can identify changes in
the multiplicity (peak splittings) as the Duschinsky angle varies. Because we inspect only
the FCS of mode 1, which we label as the ‘fundamental’ mode, we must simulate several
cases, depending on the relative frequency and displacement of mode 2, which we label as
the ‘spectator’ mode. There are four cases for capturing the possible relative values of the
frequency and displacement parameters. In each of those four cases, we examine the spectra
for rotation angles of {−20◦, 0◦,+20◦}. Computational studies indicate that rotations can
have nearly any angle, and hence, the values of ±20◦ demonstrate the perturbative effect
of the mixing rather than complete rotation.

The panel in the upper left of Figure 2 is the case of ω01 > ω02 and ∆̃1 > ∆̃2, when
the spectator mode has a frequency and displacement that are far less than those of the
fundamental mode. The simulated FCS reveal that in the spectrum with no rotation,
there are three strong peaks with a separation of ω01 , which fits the expectations from
our prior work [15]. Through close inspection, one can notice that the peak at ω = ωeg
has an amplitude that is slightly less than those of the peaks at ω = ωeg ±ω01 . The ±20◦

spectra are almost identical to each other: The spectator mode causes the main central
peak to slightly decrease in amplitude and causes each main peak to become a series
of progressively weaker peaks. This peak multiplicity is similar to a ‘triplet of triplets’
pattern found in nuclear magnetic resonance spectroscopy [28]. The peak spacing of each
progression is ω02 , and the additional peak progressions are dominantly shifted towards
lower detection frequencies.
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Figure 2. FCS simulated using γ/ω01 = 0.001, representing gas-phase measurements, for ωeg = 400.
A nonzero rotation angle leads to peak multiplicities that are not present in the θ = 0◦ spectra.

The lower-left panel of Figure 2 is the case of ω01 < ω02 and ∆̃1 > ∆̃2, when the
spectator mode has a frequency greater than and a displacement less than those of the
fundamental mode. The results are similar to those in the previous case: The 0◦ spectrum
is similar to a single-mode spectrum with dominant peaks separated by ω01 , and the ±20◦

spectra are nearly identical to each other. In each spectrum, the amplitude of the peak
at ω = ωeg − ω01 is reduced and additional clusters of peaks appear. The peaks within
a cluster are separated by ω01 , unlike the previous case, in which ω01 > ω02 . The center
frequency of each cluster is separated by ω02 , and the progression of clusters all shifts
towards lower detection frequencies. This case is unique among the simulations because it
is the only case in which—regardless of rotation angle—no peaks appear when ω > ωeg,
except for the single peak at ωeg + ω01 .

In the right column of Figure 2, the fundamental mode has a small displacement, the
spectator mode has a large displacement (∆̃1 < ∆̃2), and the spectra at the fundamental
frequency are more sensitive to rotations because this causes mixing with a significantly
displaced mode. In the upper-right panel for ω01 > ω02 , the fundamental frequency is
large and the spectator mode frequency is small. Because the displacement of the spectator
mode is large, it even makes a contribution in the 0◦ spectrum, an effect that we had not
previously observed with 1D models. The three dominant peaks are spaced by ω01 and
look similar to those in the panel on the left, but three weak peaks are visibly shifted by
ω02 below each of the dominant peaks. Adding a nonzero rotation introduces clusters of
peaks similar to those in the left column. In contrast to the left column, the +20◦ and −20◦

spectra are quite distinct. For example, consider the central peak at ω = ωeg. For both
±20◦, the central peak splits into three peaks that are separated by ω02 . For +20◦, the
central peak and the peak shifted to a higher frequency are of roughly equal amplitudes,
and the peak shifted to a lower frequency is very weak. For a −20◦ rotation, the central
peak is the weakest of the three. In addition to the asymmetry between the ±20◦ spectra,
we note that unlike the left column, there is now significant amplitude in peaks shifted
toward higher detection frequencies.

Finally, in the lower-right panel, we show the case of ω01 < ω02 and ∆̃1 < ∆̃2. Similarly
to the upper-right panel, the ±20◦ spectra produce rather distinct FCS profiles. Now, there
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are entire clusters of peaks shifted to higher frequencies, where the shift in each cluster is,
of course, ω02 . Like all other cases in which the rotation angle is 0◦, here too, this spectrum
is identical to that produced by simulations using a 1D model.

In summary, these simulations indicate that, as expected, when the rotation angle is
zero, the simulations are nearly identical to those that would arise in simulations using
1D models. The primary signature of a nonzero rotation angle is strong peak splitting
at the frequency of the coupled mode. This effect is particularly pronounced when the
displacement of the spectator mode is much greater than the displacement of the funda-
mental mode, regardless of relative frequencies or the sign of rotation angle. Because we
are displaying only the amplitude profiles, A(ω), we are blind to the phase of each peak in
Figure 2. While in prior works, we examined the phase profiles, φ(ω), directly [15], they
can be extremely complicated. Instead, it is more productive to examine the interference
effects that arise when the peaks are broad and overlapping.

Therefore, we performed simulations for the same four cases as in Figure 2, where
the only change was the value of γ/ω01 , and we display the results in Figure 3. Increasing
γ causes the lines to broaden and overlap. At most detection frequencies, the overlap-
ping lines interfere constructively. At the main “node”, the lines interfere destructively.
For consistency with prior work, we choose here to define the broadening in terms of the
fundamental mode and choose γ/ω01 = 4 for all four cases. In the calculation of two-mode
FCS profiles, our choice of defining γ in terms of the fundamental mode has consequences
for the shape of the calculated profiles. In the top row of Figure 1, ω01 > ω02 , and γ is
larger than the spacing between either mode, so no distinct peaks are observed. In the
bottom row, γ is smaller than the spectator frequency mode spacing, and distinct peaks
are still observably separated by ω02 . This specific difference between the top and bottom
rows is merely a consequence of the ambiguity in defining γ in a consistent manner for
two-mode FCS profiles.
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Figure 3. Simulated FCS created using γ/ω01 = 4, representing condensed-phase measurements,
for ωeg = 400. A nonzero rotation angle leads to changes in relative peak amplitudes, node depths,
and nodal frequencies relative to those in the θ = 0◦ simulations.

In all four cases, 0◦ rotation produces an FCS profile that looks very similar to the FCS
profile for a single-mode calculation. There are also two trends that affect all four cases
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for the nonzero rotation angle. The first is a pronounced ‘softening’ of the node, which
arises from interference among the new peaks introduced from the nonzero rotation, which
yields an incomplete cancellation. The second is a shift in the detection frequency at which
the node is deepest, which arises from the change in amplitude of the transitions, observed
on an individual level in Figure 2.

To examine the effects of a nonzero rotation angle in more detail, we begin in the left
column, where the displacement of the fundamental mode is relatively large compared to
that of the spectator mode, (∆̃1 > ∆̃2). When γ is very small (Figure 2) in these two cases,
rotating to ±20◦ adds additional lines or clusters of lines shifted by the spectator mode
frequency in the direction of lower detection frequencies. Consequently, the high-frequency
peak of the corresponding spectrum in Figure 3 is nearly unchanged; the changes that arise
from the rotation are observed primarily in the low-detection-frequency portion of the
profile. The low-detection-frequency peaks for both cases in the left column of Figure 3 have
a reduced amplitude and are broadened. In the upper-left panel, the spectator mode spacing
is small; therefore, the effects are less pronounced. In the lower-left panel, the spectator
mode is a high frequency and the spacing between clusters of lines—which arise from
the mode mixing—is large compared to the spacing between lines in the fundamental
mode. This increases the broadening toward lower detection frequencies and increases the
asymmetry between the relative height of the high- and low-detection-frequency peaks in
the spectra. Similarly to the spectra in Figure 2, rotations in either direction produce nearly
identical spectra in Figure 3 for these two cases.

Next, we examine the cases in the right column of Figure 3, which show the effect of
rotation when the fundamental mode has a small displacement and the spectator mode has
a large displacement. For these cases in Figure 2, we observed that nonzero rotation angle
introduced new peaks—and clusters of peaks—shifted to both lower and higher detection
frequencies. The consequences of the interference among these new peaks are revealed
in Figure 3, where we observe significant changes in not only the low-frequency peaks,
but also the high-frequency primary peaks in the 0◦ spectrum. In nearly all simulations,
the spectrum is severely distorted relative to its corresponding 0◦ spectrum. In the top-right
case (ω01 > ω02 , ∆̃1 < ∆̃2), the −20◦ spectrum has a massive red shift in the node location
and an approximately 50% change in the relative amplitudes, and the +20◦ spectrum is even
more unusual, showing a blueshifted node and a 50% change in the relative amplitudes,
but with the previously unobserved effect that the lower-frequency peak has a greater
amplitude. In the bottom-right case (ω01 < ω02 , ∆̃1 < ∆̃2), the −20◦ spectrum now has
three peaks of varying heights and two nodes: a blueshifted primary node, a secondary
node to the red, and a peak where the 0◦ spectrum had a node. The +20◦ spectrum
shows at least four peaks with three regions of low amplitude. By comparing this with the
corresponding spectrum in Figure 2, the regions near 390 and 410 THz are nodes due to the
interference of overlapping out-of-phase transitions. The region at 380 THz appears to be
a dip arising from the absence of transitions at this detection frequency. Again, there is a
peak at the detection frequency where the 0◦ spectrum had a node.

The spectra in Figure 3 reveal that a nonzero Duschinsky rotation angle causes distor-
tions that range from subtle to severe, depending primarily on the relative displacements
of the two modes of the 2D model. When the fundamental mode has a larger displace-
ment than the spectator mode, the effects are subtle changes in the relative peak heights,
softening and frequency-shifting of the node location, and, in some cases, changes in the
peak widths. By contrast, when the spectator mode has a larger displacement than the
fundamental mode, the changes in the FCS profiles are dramatic. The nonzero rotation
generates multiple new peaks and nodes in both the blue and red frequencies and even
previously unobserved changes in the relative peak heights.

4. Conclusions

In this contribution, we have presented a 2D harmonic-oscillator model for use in
simulations of femtosecond coherence spectra. The expressions for the Franck–Condon
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coefficients are the crucial element in these simulations, and the coefficients involve sig-
nificant combinatorics. The model includes the possibility of a rotation between the two
electronic states, which is known as Duschinsky rotation. By examining the spectra that
arise purely from oscillations at one of the mode frequencies, we have shown that when the
Duschinksy rotation angle is zero, the simulations are nearly identical to those arising from
the corresponding 1D model. By contrast, a nonzero rotation angle yields new transitions
or clusters of transitions that can interfere to cause a range of changes. In some parameter
sets, the effects of nonzero rotation angle were subtle, whereas in other parameter sets, the
nonzero rotation angle caused quite dramatic changes in the spectrum. This model can
be used to fit measured spectra that previously produced un-physical values when fitted
by 1D models. Future work could include revisiting unequal curvature cases, which we
have not examined, or could make comparisons with quantum-chemical computations of
Duschinsky rotations.
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