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1. Introduction

Different formulations can be chosen to represent the Toda equation. In the original
work of 1967 [1], the vibration of a uniform chain of particles with nonlinear interaction
was studied, and Toda considered the following equation for the n-th particle in the chain:

magzc(un) = _ar((p)(un - un—l) + ar((p)(un-H - un)/ 1)

where m stands for the mass of the particles, and ¢(r) is the interaction energy between
adjacent particles. Some solutions were constructed for particular interactions ¢.

The same equation was considered with m = 1 by Date and Tanaka in 1976 [2], and
they constructed some general solutions but in terms of integrals that are difficult to use.

In the appendix of the paper of Dubrovin [3], published in 1981, Krichever considered
the non-abelian version of this equation and provided solutions in terms of the theta
function on Riemann surfaces.

In 1995, Matveev and Stahlhoffen [4] considered the following version of the Toda equation:

02 (1) = exp(ty_1 — un) —exp(y — thyy1). ()

They used the Darboux transformation to contruct solutions to this equation in terms
of Casoratis.
In 2014, Zhang and Zhou [5] used the following representation of the Toda equation

950 (1) = (9 (1) + o(#)) (p—1 = 2t + th 1) 3)

They used the generalization of the exp-function to contruct multiwave solutions to
this equation.

More recently, Sun, Ma, and Yu [5] examined the following representation of the
Toda equation:

A(uy) = 4(exp(uy—1 — un) — exp(n — tty11)). 4)
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They used a logarithmic transformation to obtain some particular solutions in terms
of logarithms.
In 2020, Duarte [6] considered the following representation of the Toda equation:

a0 (u(x, y,m)) + o (u(x,y,n))
=exp(u(x,y,n—1) —u(x,y,n)) —exp(u(x,y,n) —u(x,y,n+1)).

He used a particular ansatz combined with the properties of Laplace’s equation to
contruct some solutions in terms of trigonometric functions.

Also in 2020, Schiebold and Nilson [7] studied another version of the Toda equation in
the form

a,zcy(log(l +uy)) =ty — 2uy + Uy (5)

They constructed solutions in the frame of linear algebra by means of determinants.
Here, we consider the Toda equation in the following representation [8-11]:

r

r
- V C"anJrl =+ Uann + 77!\/ Cnfllpnfl = /\an
g7 | n—1 r (6)
n

r
9y Pn = ﬁvcnlpnﬂ + 0 (In 7y )P — Ven—1¥n-1,
n

2rp—1
with
o e?g2(tV" +nD + Z) )
TtV +(n+1)D+Z)0(tV" + (n—1)D + Z)
o(tv” ~1)D+Z
vy = —Rp+0¢1In ( +(Tl ) + ) 8)

O(tV"+nD+2Z) '

where 0 is the classical Riemann theta function.

We know that the degeneracy of the solutions to PDEs given in terms of Riemann theta
functions provides some important particular solutions. In the case of the NLS equation,
we have managed to construct a quasi-rational solution involving the determinant of order
N for each positive integer N depending on 2N — 2 real parameters [12]. In the case
of the KdV equation, we constructed solutions in terms of Fredholm determinants and
Wronskians [13], from Baker—Akhiezer functions.

In this study, we recovered Sato formulas for the Toda equation using this method.

From finite gap solutions given in terms of Riemann theta functions, we constructed
some quasi-rational solutions and recovered the Sato formulas, using degeneracy, as given
in the frame of the NLS equation [14].

Precisely, we derived multisoliton solutions from finite gap solutions by a limit tran-
sition, i.e., by making gaps tend toward points in a certain Riemann surface. This was
accomplished in the spirit of [14] or more recently [13]. One strength of this approach is
that it does not rely on inverse scattering theory or geometric and representation theoretic
methods, which offers a fresh perspective on the problem.

We consider the Riemann surface I' represented by Ui':lakbkak_ 1bk_ 1 of the algebraic
curve defined by [8,9]

with E] # Ekrj 75 k.
Let us consider Qf and Q) [11] abelian integrals, verifying

/akdng’(p):/ﬂkdng(m:o k=1,...,3, )

with the following asymptotic behavior for P = (w, z) € T'[11],
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O (P) = +5(z+Ro+ o(z™1)), P — P3 (10)
O4(P) = +(Inz — Iy + O(z 1)), P — P2, (11)
w =+ +0(2%)), P — PZ. (12)

The vectors V”, D, X, and Z are defined by

" __ L/ "
Vi = 2t y, a0y, (13)
D = U(P%) - U(Pg), (14)
8
X=K+) U(P), Z=U(P)-X, (15)
=1
where K is the vector of Riemann constants
U(P) is the classical abelian integral f p, 4U.
The solutions to the system (6) can be wrltten [10,11] as
n 7 n G(U(P) - X) 7
with
) 6(2)6(2 - D) :

£) =1yt . 17
Fult) = ra )<9(tV”+nD—|—Z)9(tV”—|—(n—l)D+Z) 17)

2. Degeneracy of Solutions
Let us suppose that E; are real, E,, < E; if m < j, and try to evaluate the limits of all
objects in Formula (16) when Ey,,, Ez;,—1 tends to —ay,, ay, = Kfn, km >0,forl1 <m<g.
As in the previous section, 0 is constructed from the matrix of the B-periods of the
surface I, the coefficients Cjk are related with abelian differentials d Uj by

8 g—k
Z
du; = L1 Gk dz, (18)

1542z - Ey)

and the coefficients cj; can be obtained by solving the system of linear equations

/ukduj:(s]-k, 1<j<g 1<k<g

In the remainder of this article, we use the following notations:

Kmj = \/(Ixm + E2g+l)(lxj + E2g+2)/ Kim = \/(“j + E2g+1)(0ém + E2g+2),
Cilz) = \/(z = Eage1) (@i — Engia),  Di(z) = /(2 — Eagi) (x — Ezg1),  (19)

Ly = /o F Eagr1, My = /ar + Epg o,
F(z) = \/z— Exg41, Gl(2) = /2~ Egg12.
2.1. Limit of P(z) = szngZ( z—Ej)

Now, we study the limit of P(z) = I—[sz{z (z—Ej).
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The limit of P(z) = H?i?z(z — E;) is obviously equal to P(z) = H}ll (z+aj)%(z —

Ezq11)(z — Ezg2) or, with (19),

8
P(z) = [ (= + o) F(:)G () (20)
j=1
.. 287 kazg_k
2.2. Limit of dU,,, = —Sk=Lm=
= e
8 g_k
CoukZ
Now, we study the limit of dU,, = Zkz:lJr 2mk iz,
I8 (z — Ex)
The limit of dU,, is equal to dU,, = om(z) 42, where

[T (2 + &)/ (2 = Eag 1) (2 — Eggs2)
om(z) = Zi’:l &ukz8 ¥, The normalization condition takes the form in the limit
27Ti4)]'(—0ék)
ag Hm?ék(lxm — zxk)\/(zxk + E2g+1><‘xk + E2g+2)

= Okj, (21)

which proves that the numbers —a,,, m # k are the zeros of the polynomials ¢ (z); hence,
¢k (z) can be written as ¢y (z) = &1 [Tnzk(z + am)-
By (21), we obtain in the limit

\/("‘k + Eg+1)(a + Exg+2)

k1 = 27t
So,
\/(“k + Eggt1)(ax + Ezg+2)
pi(z) = . [+ am).
2711 ik
Moreover,

V(& = Ezgi1)(z = Ezgua) T3, (2 + )

in other words,

3 \/(‘Xk + Egg+1) (ax + Eng+2)
dU(z) =

- 27Ti\/(z — Epg+1)(z — Ezgi2)(z + )

dz,

and with (19),
_ . LMy ,
27iF(z)G(z)(z + ag)

dlj[k (Z) (22)

2.3. Limit of By
The subject of this subsection is the study of the limit of B,.

We have
E2g+2
I = / duk —
&m

The integral I can be easily evaluated along the real axis on the upper sheet of surface
I', and we obtain

Bk

N =
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I \/(“m + Ezgi1) (ax + Exgy2) + \/("‘k + Eag+1) (@m + Eng2)

~ 1
Bmk =
T \/(“m + Egg11)(ax + Eag2) — \/("‘k + Eg+1) (am + Eng12)

7

or with the previous notations (19),

~ i K + K
B, =  In|omk ™ M | 2
mk T n Kok — Kk ( 3)
So, iByy tends to —oo.
Moreover, we have
/P i —i | \/(Z — Epgi1)(ax + Ezgi2) + \/(Z — Eagy2)(ax + Ezg11)
k= ~— n 7
Eagia 27 \/(Z — Epgi1)(ag + Exgq2) — \/(Z — Eagi2)(ak + Engy1)
or with the previous notations (19),
P .
[ = Cilz) + Dilz) (24)
Ezgi2 21t | Ci(z) — Di(2)
2.4. Limit of QO]
In this subsection, we study the limit of Q/l/
0/1/ is an abelian integral of the second kind satisfying the conditions
A0 (P) =0, 1<k<gyg,
g
such that .
Q}(P) :ii(z+R0+O(z*1)), P — PE
The limit of dQY//(P) is equal to dQY/(P) = 9(z) d
1 qual to dO)(P) = z,

T, (z + )/ (z = Exgs1) (2 — Exgs2)
where ¢(z) = Zkié G281k,
For Qf (P), satisfying the condition Qf (P) = +1z+ O(1) when z — oo, we have
&= % Moreover, the conditions

/udQ’l’(P):O, 1<k<g
k

prove that —a;, ..., —ag are the zeros of ¢; thus, ¢(z) = 1 [T5_, (z + am)(z — B).
We have that P(z) = ig;Z(Z — E;) tendsto P(z) = \/(z — Eogy1)(z — Eagy2) IE,_,

(z + am ), and we obtain

a0 (z) = z dz;

2\/(2 — Exg11)(z — Eng2)

Qf (P) tends to

- v4
ay(p) = / u du.
Fag+2 2\/(” — Eggi1) (u — Eng2)
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This can be evaluated, and it gives

O (P) = Ezgi1+ Eng+2 In VZ— B+ /2 - E2g+2
4 \/Z—E2g+l - \/Z_E2g+2

With the notations defined in (19), it can be rewritten as

+t5 \/ — Epgy1)(z — Exgy2)-

n %F(Z)G(z). (25)

~ ~ Exgr1+Exgpo

Q/ll(P) In F(z) + G(2)

4 ’F(Z) -G(2)

2.5. Limit of Q)
We consider QE), and we study its limit.
QE) is an abelian integral of the third kind satisfying the conditions

/ dQy(P) =0, 1<k<g,
3

such that
OH(P) = +(Inz — Iy + O(z 1)), P — PZ.

The limit of Q) (P) is equal to
~ ZI%:O 5k2g7k

dQ/O(P) = dz.
H}g:l (z+ D‘j)\/(z — Epe11)(z — Eag12)

QO (P) satisfies the condition ) (P) = +1n(z) + O(1), and when z — +co, we have
=1
Moreover, the conditions

/ dOy(P) =0, 1<k<g
ay
prove that —ay, ..., —ay are the zeros of ¢; thus, ¢(z), defined by ¢(z) = ¥5_, &z8¥, can

be written as ¢(z) = [T5,_; (z + am).

As P(z) = \/TL¥ % (2 — E;) tends to P(z) = \/ (2 — Eag1)(z — Eagy2) Ty (2 + ),
we obtain

dﬁlo (Z) == 1 dZ,

\/ (z — Eng41)(z — Eng2)
1

and Q) (P) tends to (/4 (P) du.

= Jg
28+2 \/(u — E2g+1)(u - E2g+2)

This can be calculated, and it gives

A(P) = \/Z Eygt1+ \/z — Exgi2
0 \/Z - E2g+1 - \/Z - E2g+2

It can be written with (19) as

~ F(z) + G(z)
Oy(P) =1 . 26
O( ) n (Z) _ G(Z) ( )
2.6. Limit of X
We deduce the limit of X.
From the previous sections,
~ i Kk + Kk
" T " Kmk — Kkm ’
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Zk—>Z~k:—Z

Ci(2) + Di(2))

) = 3 B

As K is defined by K, = E] 1 Bjm — %,and X = K+ Z]g:] U(P;), we can write

& K+ K

' +Dm(Z‘

]) —+ ico.

i 8
_ TZ

Xy — X = % Y In
=t

ij — ij

2.7. Limit of U(PS;), U(Pg), D and Z

Z;) Din(z))

In this subsection, we study the limit of U(P5), U(Pg), D, and Z.

From the previous sections, it is easy to obtain the limits of U, as

ar + E + /o + E
lim T1,(P) = \/ kT Exg+2 + /& + Eag1
PP \/ ag + Engyo — \/ax + Exg ||

or

—i | Mg+ Lg
li L P e a3
et U(P) = oIl 50 =7

] M L
Dy = Ug(Pg) — Uy (Pg) — Dy = —— £t

Thus,

\/D‘k + Egg2 + \/ax + Engt1
\/le + Eogi2 — /% + Exg 11

or
—1 Mk+Lk
lim U, (P 1
PP K(P) = M+ L

Therefore, the limit of Z = U(P) — X is given by

i My +iLy

g

Zln

=1k

k i S
T2 A

=

Kgj + Kjk Ck(zj) + Dk (z))

Ci(zj) — Dx(2))

- zoo——l
T

Kkj — Kjk

2.8. Limit of V"

In this paragraph the limit of V" is studied.
V=L fb dQ) is defined in (13).

~ I

We have I = f_zg” dQ -3 fb dQy,.

As in the determination of the limit of Qll/, we have

My +ilg |

Mk+Lk
Mk—

2 My — il

— Dy,

In

Ve + Exgi1 + /o + Exgyo

Exgi2 E + E
/ g+ dQlll(P)*— 2g+1 28+2

—ay B 4 \/Dék + Ezgt1 — \/‘Xk + Epgt2

1

3 (ag + Eng1)(ax + Ezg+2).

So,

Exgi1 + E2g+2 \/ ap+ Exgy1 +

Vk + Exgi2

1 .
V// = / dQN N V// I .
k 271 Jp, 1 471i \/Dck + Epg 1 —

1
o \/(“k + Engt1) (a + Eng42),

1
27Ti

Ly — My |
Ly + My

~  Eogr1+ Eggio

1
47ri n

Le M.

Vak + Exgi2

(27)

(28)

(29)

(30)

(31)

(32)
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2.9. Limit of 6(p)

We determine the limit of 8(p).
Let us denote A as the argument of 6(p)
A can be rewritten in the form

—mZBJJJ

= Y keze exp{ti(Bk|k) 4+ 27i(k|p)}.

)+ 27 Y Bykuk; + Z 7ti(2p; + Bjj)k;.
j>m =

Using the inequality k;(k; — 1) > 0 for all k € Z¢ and the fact that iBj; tends to —oco,
we can reduce the limit 8 of 6(p) to a finite sum taken over vectors k € Z8, such that each
k;j must be equal to 0 or 1.

In this section, we compute the limit of all the terms in the expression of the solution
(P, t) in 6. We denote p; as the arguments of these different expressions.

We first study the terms of 7, corresponding to the arguments p; = Z = U(P) —
pp=2-D,p3=tV"+nD—-Z,py =tV"+(n—-1)D — Z.

Then, we study the remaining terms of ¢, corresponding to the arguments
ps = U(P) — X, pe = U(P) +tV" +nD — X.

With these notations, the solution (n,, t,z) can be written as

X,

1

0(p1)0(p2) ) 20(P6) oy, (P)+t0 (P)
P,z) =r,(t e 1)
(p2) =t (G50 )
2.10. Limit of 0(p1)
We denote p; as the term Z = U(PY) — X.
We study its limit.
Then, 9(}71) — gli
~ Kij — Kjp 3 M] + L]
6, = ) exp{ZZln k-k,—i—Zk-(ln —t
kez8, k= 0or 1 j>1 K+ Kt | j=1 ! M; — L
Kji + Cj(z1) + Dj(z1)
+ 2In + jmti + In| ——F+—= .
I e ,:21 C(ar) D)

2.11. Limit of §(py)

We consider p, = Z — D. We study its limit.
Then, 8(py) — 0,. As D; — Dj, it is easy to see that

- M;+L;
o ]
Gz—kezglgo exp{ZZln - kkﬁ—Zk <ln VT
 ki=00r 1 >l ] ] ]
C; (Zl) JrD]'(Zl) g Mj+iLj
+221 —|—]7Tl—|—er1 + Y In|——| | 5.
I#] Jl — K = |Gl =D | F Myl

2.12. Limit of §(p3)

Let p3 be tV"” +nD + Z. We study its limit.
Then, 9(p3) — 931

0; = 21 kk k; !
S 5 (w75
Jki=00r 1 >l ] ] ] ]

E +E L.— M M; +iL;

g+1 28+2 j il 7oA j j

+t<( > )ln Lj+Mj L]M]> +nln 7Mj —iLj
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Ci(z
]m—i-Zln
I=

221

7]

Jl_ l]

2.13. Limit of 6(py4)
We consider py = tV" + (n —1)D + Z; 0(py) — 4. We determine its limit.
As Dj — Dj, it is easy to verify that

Li+ M;

kkl+2k <lnL

0y = 2 exp{ZZln
keZ8,k;i=00r 1

j>1

E E
+t<( g+1‘; 2g+2> In

Kji + Kij
Kji — Kij

Kij T K1 j j

Li—
L+

Mj + iL]'

M; — iL;

)}

M;

M;
+LiMj | +(n—1)In

Cj(z1) + Dj(z1)

L2 =)~ Dy(a)

I#]

+m+2m

2.14. Limit of 0(ps)
The term ps = U(P) — X tends to fis = U(P) — X.
We determine its limit.
Then, 6(ps) — 05:
Ci(z) — Dj(z)
C](Z) + D]'(Z)

2.15. Limit of (pe)

The term pg = U(P) + tV" +nD — X tends to pg = U(P) + tV" — X + nD.
Then, we determine its limit. 8(pg) — 0 :

Kji — K; 3
= Y exp{ZZln Tk + Y k; <ln
kez8,k;=0or 1 >l K1j =+ Kji j=1

C; (Z[ +D (z;
C]( 1= D](Zl

Kji T xij

+]7t1+21n
Jl_ K1j

=1

+221

7]

Li + M;

kk,+2k <1nL

j j

O = Z exp{ZZln
keZ8,k;i=0o0r 1

j>1

E E
+t<< g+1+2 2g+2) In

K‘l'f‘
ST i Zln
K]'Z*Kl]

Kij T Kji

L —M;

Li+ M;

M] + iLj
M]' — iL]'

LM) +nln

+D( )

+) 2In D,z

7]

2.16. Limit of Solutions ¥

From the previous section, we can give the limit i of ¢. It takes the following form:

166 } 0

F(z)+G(z)
F(z)-G(2)

e{"ln‘ F2)+6(e)

E +E
2¢+1T52¢+2

Nl—

5 ¥ (t) 9~1 9~2

Plzn,t)) == E; )
5

In the previous expression, 01, 6,, and 85 are independent of 1 and t.

Only 03, 04, and 6 depend on n and t.

We choose the particular case in which ¢ = 0.

We replace n by x.
We denote c as the coefficient defined by
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N|—=

c— n (0) (9~19~2)
7% .

We denote H as the function defined by

H(z) = 'P(z) TG

In the different sums involving 6, only terms with k; = 1 remain. So, the sums
can be reduced only on the subsets ] of [1;g] of integer N. We denote a; as the term

aj = —% ﬁj jzg ‘ Then, the term 0 can be written as
2

~ Kjj — K L; + M;

05 — Z In| 24— j j

) : K+ x| | Li — M;

Jc{1,...g}jlel, j<l ] | jeg| Tl ]
2

H In Kjl =+ Klj C](Zl) + D](Zl) C](Z) - D](Z) ngEIf”ie*ZijEI”j.
I€]I#] Kjl — Kij i€l Cj(zl)+Dj(Zl) C](Z)+D](Z)

We denote T as the function defined by
2

~ K;; — K L:+ M:
7(x) = f5(x) = ne o =1
Jc{1,...g} jl€] i<l L5 Geg| B j
2

[T Kji + Kij Cj(z1) + Dj(z1) oLje) J7i g =2x Tjey aj.

igjizg |5t K| jer| Gilz) = Djlz1)

Thus, the solution ¥ can be written as
¥(x,z) = Cexp(xH(z))x(x,z). (33)
T(x)T(x —1)

Here, we return to the Sato formulation of the solution, as given in [15].
This expression is very similar to the solution expressed on page 5830, and the expres-
sion of the solution is given by

- _exp(xz)x(x,z)
Y(x,z) = —T(X)T(x 5 (34)

The difference between these two statements comes from the fact that these two
equations are treated differently:
Van Diejen considers the equation

a(x)f(x+1)+b(x)f'x)+a(x—1)f(x —1) = Af(x);

here, we consider (1)
T'n

,
Verfuir + onfn + s eum1ue1 = A
-

g1

2.17. Limit of the Associated Potentials

In this subsection, we determine the limit of the associated potentials.
The potentials u,, = /¢, and v, are described in (6) and (7) as

e?@2(+V" +nD + Z)
0(tV"+ (n+1)D+ Z2)0(tV" + (n—1)D + Z)

Cp =
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0(tV" + (n—1)D + Z)

on = —Ro+ oI =ryr b + 2)

So, the limit of u, is equal to
(%)

e = k1 VTlx+Dt(x —1)°

which is the same as in [15] (p. 5830), up to the constant k;.
Denoting o(x) = 9:0(tV" + xD + Z);—, the limit of v, is equal to
clx—1) o(x)

O =kt T T )

which is similar to the one written in [15] (p. 5830), up to the constant k.

3. Conclusions

We have used the degeneracy of solutions of some PDEs given in terms of Riemann
theta functions to obtain some important solutions. In particular, in the case of the NLS
equation, we have managed to construct a quasi-rational solution involving the determinant
of order N for each positive integer N depending on 2N — 2 real parameters [12]. In the
case of the KdV equation, from abelian functions, we constructed solutions in terms of the
Fredholm determinants and Wronskians [13].

In this study, we have managed to recover Sato formulas using this method for the
Toda equation. From solutions given in terms of the Baker—Akiezer functions, we succeeded
to construct by degeneracy, as given in the frame of the NLS equation [14], some quasi-
rational solutions, and we recovered the Sato formulas for the Toda equation.

Precisely, we derived multisoliton solutions from finite gap solutions by a limit transi-
tion, i.e., by making gaps tend toward points in a certain Riemann surface. One strength
of this approach is that it does not rely on inverse scattering theory or geometric and
representation theoretic methods, which offers another perspective on the problem.

The degeneracy of the solutions to the NLS equation has allowed building new quasi-
rational solutions of order N depending on 2N — 2 real parameters and their construction
up to order 23, which were previously unknown. In the case of the KdV equation, the de-
generacy of the solutions made it possible to find the solutions given by the Darboux
method, which constituted a bridge between the geometric algebra approach and the Dar-
boux transformations framework. In this article, this is somewhat the same situation as that
of the KdV equation, where we linked the algebro—geometric approach to the framework
of the inverse scattering method.
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