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Abstract: We know that the degeneracy of solutions to PDEs, given in terms of theta functions
on Riemann surfaces, provides important results about particular solutions, as in the case of the
NLS equation. Here, we degenerate the so called finite gap solutions of the Toda lattice equation from
the general formulation in terms of abelian functions when the gaps tend to points. This degeneracy
allows us to recover the Sato formulas without using inverse scattering theory or geometric or
representation theoretic methods.
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1. Introduction

Different formulations can be chosen to represent the Toda equation. In the original
work of 1967 [1], the vibration of a uniform chain of particles with nonlinear interaction
was studied, and Toda considered the following equation for the n-th particle in the chain:

m∂2
x(un) = −∂r(ϕ)(un − un−1) + ∂r(ϕ)(un+1 − un), (1)

where m stands for the mass of the particles, and ϕ(r) is the interaction energy between
adjacent particles. Some solutions were constructed for particular interactions ϕ.

The same equation was considered with m = 1 by Date and Tanaka in 1976 [2], and
they constructed some general solutions but in terms of integrals that are difficult to use.

In the appendix of the paper of Dubrovin [3], published in 1981, Krichever considered
the non-abelian version of this equation and provided solutions in terms of the theta
function on Riemann surfaces.

In 1995, Matveev and Stahlhoffen [4] considered the following version of the Toda equation:

∂2
x(un) = exp(un−1 − un)− exp(un − un+1). (2)

They used the Darboux transformation to contruct solutions to this equation in terms
of Casoratis.

In 2014, Zhang and Zhou [5] used the following representation of the Toda equation

∂x∂t(un) = (∂t(un) + α(t))(un−1 − 2un + un+1). (3)

They used the generalization of the exp-function to contruct multiwave solutions to
this equation.

More recently, Sun, Ma, and Yu [5] examined the following representation of the
Toda equation:

∆(un) = 4(exp(un−1 − un)− exp(un − un+1)). (4)
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They used a logarithmic transformation to obtain some particular solutions in terms
of logarithms.

In 2020, Duarte [6] considered the following representation of the Toda equation:

α∂2
x(u(x, y, n)) + β∂2

y(u(x, y, n))
= exp(u(x, y, n − 1)− u(x, y, n))− exp(u(x, y, n)− u(x, y, n + 1)).

He used a particular ansatz combined with the properties of Laplace’s equation to
contruct some solutions in terms of trigonometric functions.

Also in 2020, Schiebold and Nilson [7] studied another version of the Toda equation in
the form

∂2
xy(log(1 + un)) = un+1 − 2un + un+1. (5)

They constructed solutions in the frame of linear algebra by means of determinants.
Here, we consider the Toda equation in the following representation [8–11]:

rn

rn+1

√
cnψn+1 + vnψn +

rn

rn−1

√
cn−1ψn−1 = λψn

∂tψn =
rn

2rn+1

√
cnψn+1 + ∂t(ln rn)ψn −

rn

2rn−1

√
cn−1ψn−1,

(6)

with

cn =
e2I0 θ2(tV′′ + nD + Z)

θ(tV′′ + (n + 1)D + Z)θ(tV′′ + (n − 1)D + Z)
(7)

vn = −R0 + ∂t ln
θ(tV′′ + (n − 1)D + Z)

θ(tV′′ + nD + Z)
, (8)

where θ is the classical Riemann theta function.
We know that the degeneracy of the solutions to PDEs given in terms of Riemann theta

functions provides some important particular solutions. In the case of the NLS equation,
we have managed to construct a quasi-rational solution involving the determinant of order
N for each positive integer N depending on 2N − 2 real parameters [12]. In the case
of the KdV equation, we constructed solutions in terms of Fredholm determinants and
Wronskians [13], from Baker–Akhiezer functions.

In this study, we recovered Sato formulas for the Toda equation using this method.
From finite gap solutions given in terms of Riemann theta functions, we constructed

some quasi-rational solutions and recovered the Sato formulas, using degeneracy, as given
in the frame of the NLS equation [14].

Precisely, we derived multisoliton solutions from finite gap solutions by a limit tran-
sition, i.e., by making gaps tend toward points in a certain Riemann surface. This was
accomplished in the spirit of [14] or more recently [13]. One strength of this approach is
that it does not rely on inverse scattering theory or geometric and representation theoretic
methods, which offers a fresh perspective on the problem.

We consider the Riemann surface Γ represented by ∪g
k=1akbka−1

k b−1
k of the algebraic

curve defined by [8,9]

ω2 =
2g+2

∏
j=1

(z − Ej),

with Ej ̸= Ek, j ̸= k.
Let us consider Ω′′

1 and Ω′
0 [11] abelian integrals, verifying∫

ak

dΩ′′
1 (P) =

∫
ak

dΩ′
0(P) = 0 k = 1, . . . , g, (9)

with the following asymptotic behavior for P = (ω, z) ∈ Γ [11],
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Ω′′
1 (P) = ±1

2
(z + R0 + O(z−1)), P → P±

∞ (10)

Ω′
0(P) = ±(ln z − I0 + O(z−1)), P → P±

∞ , (11)

ω = ±(zg+1 + O(zg)), P → P±
∞ . (12)

The vectors V′′, D, X, and Z are defined by

V′′
j =

1
2πi

∫
bj

dΩ′′
1 , (13)

D = U(P+
∞ )− U(P−

∞ ), (14)

X = K +
g

∑
j=1

U(Pj), Z = U(P+
∞ )− X, (15)

where K is the vector of Riemann constants.
U(P) is the classical abelian integral

∫ P
P0

dU.
The solutions to the system (6) can be written [10,11] as

ψn(P, t) = r̃n(t)enΩ
′
0(P)+tΩ

′′
1 (P)(

θ(U(P) + tV′′ + nD − X)

θ(U(P)− X)
), (16)

with

r̃n(t) = rn(t)
(

θ(Z)θ(Z − D)

θ(tV′′ + nD + Z)θ(tV′′ + (n − 1)D + Z)

) 1
2
. (17)

2. Degeneracy of Solutions

Let us suppose that Ej are real, Em < Ej if m < j, and try to evaluate the limits of all
objects in Formula (16) when E2m, E2m−1 tends to −αm, αm = κ2

m, κm > 0, for 1 ≤ m ≤ g.
As in the previous section, θ is constructed from the matrix of the B-periods of the

surface Γ, the coefficients cjk are related with abelian differentials dUj by

dUj =
∑

g
k=1 cjkzg−k√

∏
2g+2
k=1 (z − Ek)

dz, (18)

and the coefficients cjk can be obtained by solving the system of linear equations∫
ak

dUj = δjk, 1 ≤ j ≤ g, 1 ≤ k ≤ g.

In the remainder of this article, we use the following notations:

κmj =
√
(αm + E2g+1)(αj + E2g+2), κjm =

√
(αj + E2g+1)(αm + E2g+2),

Ck(z) =
√
(z − E2g+1)(αk − E2g+2), Dk(z) =

√
(z − E2g+2)(αk − E2g+1),

Lk =
√

αk + E2g+1, Mk =
√

αk + E2g+2,
F(z) =

√
z − E2g+1, G(z) =

√
z − E2g+2.

(19)

2.1. Limit of P(z) = ∏
2g+2
j=1 (z − Ej)

Now, we study the limit of P(z) = ∏
2g+2
j=1 (z − Ej).
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The limit of P(z) = ∏
2g+2
j=1 (z − Ej) is obviously equal to P̃(z) = ∏

g
j=1(z + αj)

2(z −
E2g+1)(z − E2g+2) or, with (19),

P̃(z) =
g

∏
j=1

((z + αj)F(z)G(z))2. (20)

2.2. Limit of dUm =
∑

g
k=1 cmkzg−k√

∏
2g+2
k=1 (z−Ek)

dz

Now, we study the limit of dUm =
∑

g
k=1 cmkzg−k√

∏
2g+2
k=1 (z − Ek)

dz.

The limit of dUm is equal to ˜dUm =
φm(z)

∏
g
j=1(z + αj)

√
(z − E2g+1)(z − E2g+2)

dz, where

φm(z) = ∑
g
k=1 c̃mkzg−k. The normalization condition takes the form in the limit

∫
ak

dUj →
2πiφj(−αk)

∏m ̸=k(αm − αk)
√
(αk + E2g+1)(αk + E2g+2)

= δkj, (21)

which proves that the numbers −αm, m ̸= k are the zeros of the polynomials φk(z); hence,
φk(z) can be written as φk(z) = c̃k1 ∏m ̸=k(z + αm).

By (21), we obtain in the limit

˜ck1 =

√
(αk + E2g+1)(αk + E2g+2)

2πi
.

So,

φk(z) =

√
(αk + E2g+1)(αk + E2g+2)

2πi ∏
m ̸=k

(z + αm).

Moreover,

dŨk(z) =
φk(z)dz√

(z − E2g+1)(z − E2g+2)∏
g
m=1(z + αm)

;

in other words,

dŨk(z) =

√
(αk + E2g+1)(αk + E2g+2)

2πi
√
(z − E2g+1)(z − E2g+2)(z + αk)

dz,

and with (19),

dŨk(z) =
Lk Mk

2πiF(z)G(z)(z + αk)
dz. (22)

2.3. Limit of Bmk

The subject of this subsection is the study of the limit of Bmk.
We have

I =
∫ E2g+2

αm
dUk →

1
2

B̃mk.

The integral I can be easily evaluated along the real axis on the upper sheet of surface
Γ, and we obtain
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B̃mk =
i
π

ln

∣∣∣∣∣∣
√
(αm + E2g+1)(αk + E2g+2) +

√
(αk + E2g+1)(αm + E2g+2)√

(αm + E2g+1)(αk + E2g+2)−
√
(αk + E2g+1)(αm + E2g+2)

∣∣∣∣∣∣,
or with the previous notations (19),

B̃mk =
i
π

ln
∣∣∣∣κmk + κkm
κmk − κkm

∣∣∣∣. (23)

So, iBkk tends to −∞.
Moreover, we have

∫ P

E2g+2

dŨk =
−i
2π

ln

∣∣∣∣∣∣
√
(z − E2g+1)(αk + E2g+2) +

√
(z − E2g+2)(αk + E2g+1)√

(z − E2g+1)(αk + E2g+2)−
√
(z − E2g+2)(αk + E2g+1)

∣∣∣∣∣∣,
or with the previous notations (19),∫ P

E2g+2

dŨk =
−i
2π

ln
∣∣∣∣Ck(z) + Dk(z)
Ck(z)− Dk(z)

∣∣∣∣. (24)

2.4. Limit of Ω
′′
1

In this subsection, we study the limit of Ω
′′
1 .

Ω
′′
1 is an abelian integral of the second kind satisfying the conditions∫

ak

dΩ
′′
1(P) = 0, 1 ≤ k ≤ g,

such that
Ω′′

1 (P) = ±1
2
(z + R0 + O(z−1)), P → P±

∞

The limit of dΩ′′
1 (P) is equal to dΩ̃′′

1 (P) =
ϕ(z)

∏
g
j=1(z + αj)

√
(z − E2g+1)(z − E2g+2)

dz,

where ϕ(z) = ∑
g+1
k=0 c̃kzg+1−k.

For Ω′′
1 (P), satisfying the condition Ω′′

1 (P) = ± 1
2 z + O(1) when z → ±∞, we have

c̃0 = 1
2 . Moreover, the conditions∫

ak

dΩ′′
1 (P) = 0, 1 ≤ k ≤ g

prove that −α1, . . . ,−αg are the zeros of ϕ; thus, ϕ(z) = 1
2 ∏

g
m=1(z + αm)(z − β).

We have that P(z) =
√

∏
2g+2
k=1 (z − Ek) tends to P̃(z) =

√
(z − E2g+1)(z − E2g+2)∏

g
m=1

(z + αm), and we obtain

dΩ̃′′
1 (z) =

z

2
√
(z − E2g+1)(z − E2g+2)

dz;

Ω′′
1 (P) tends to

Ω̃′′
1 (P) =

∫ z

E2g+2

u

2
√
(u − E2g+1)(u − E2g+2)

du.
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This can be evaluated, and it gives

Ω̃′′
1 (P) =

E2g+1 + E2g+2

4
ln

∣∣∣∣∣
√

z − E2g+1 +
√

z − E2g+2√
z − E2g+1 −

√
z − E2g+2

∣∣∣∣∣+ 1
2

√
(z − E2g+1)(z − E2g+2).

With the notations defined in (19), it can be rewritten as

Ω̃′′
1 (P) =

E2g+1 + E2g+2

4
ln
∣∣∣∣ F(z) + G(z)

F(z)− G(z)

∣∣∣∣+ 1
2

F(z)G(z). (25)

2.5. Limit of Ω
′
0

We consider Ω
′
0, and we study its limit.

Ω
′
0 is an abelian integral of the third kind satisfying the conditions∫

ak

dΩ
′
0(P) = 0, 1 ≤ k ≤ g,

such that
Ω′

0(P) = ±(ln z − I0 + O(z−1)), P → P±
∞ .

The limit of dΩ′
0(P) is equal to

dΩ̃′0(P) =
∑

g
k=0 c̃kzg−k

∏
g
j=1(z + αj)

√
(z − E2g+1)(z − E2g+2)

dz.

Ω′
0(P) satisfies the condition Ω′

0(P) = ± ln(z) + O(1), and when z → ±∞, we have
c̃0 = 1.

Moreover, the conditions ∫
ak

dΩ′
0(P) = 0, 1 ≤ k ≤ g

prove that −α1, . . . ,−αg are the zeros of ϕ; thus, ϕ(z), defined by ϕ(z) = ∑
g
k=0 c̃kzg−k, can

be written as ϕ(z) = ∏
g
m=1(z + αm).

As P(z) =
√

∏
2g+2
k=1 (z − Ek) tends to P̃(z) =

√
(z − E2g+1)(z − E2g+2)∏

g
m=1(z + αm),

we obtain
dΩ̃′0(z) =

1√
(z − E2g+1)(z − E2g+2)

dz,

and Ω′
0(P) tends to Ω̃′

1(P) =
∫ z

E2g+2

1√
(u − E2g+1)(u − E2g+2)

du.

This can be calculated, and it gives

Ω̃′
0(P) = ln

∣∣∣∣∣
√

z − E2g+1 +
√

z − E2g+2√
z − E2g+1 −

√
z − E2g+2

∣∣∣∣∣.
It can be written with (19) as

Ω̃′
0(P) = ln

∣∣∣∣ F(z) + G(z)
F(z)− G(z)

∣∣∣∣. (26)

2.6. Limit of X

We deduce the limit of X.
From the previous sections,

B̃mk =
i
π

ln
∣∣∣∣κmk + κkm
κmk − κkm

∣∣∣∣,
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Ũk(P) =
i

2π
ln
∣∣∣∣Ck(z) + Dk(z))

Ck(z)− Dk(z)

∣∣∣∣.
As K is defined by Km = ∑

g
j=1 Bjm − m

2 , and X = K + ∑
g
j=1 U(Pj), we can write

Xm → X̃m =
i
π

g

∑
j=1, j ̸=m

ln

∣∣∣∣∣κmj + κjm

κmj − κjm

∣∣∣∣∣− m
2
+

i
2π

g

∑
j=1

ln

∣∣∣∣∣Cm(zj) + Dm(zj)

Cm(zj)− Dm(zj)

∣∣∣∣∣+ i∞. (27)

2.7. Limit of U(P+
∞ ), U(P−

∞ ), D and Z

In this subsection, we study the limit of U(P+
∞ ), U(P−

∞ ), D, and Z.
From the previous sections, it is easy to obtain the limits of Ũk as

lim
P→P+

∞

Ũk(P) =
−i
2π

ln

∣∣∣∣∣
√

αk + E2g+2 +
√

αk + E2g+1√
αk + E2g+2 −

√
αk + E2g+1

∣∣∣∣∣,
or

lim
P→P+

∞

Ũk(P) =
−i
2π

ln
∣∣∣∣Mk + Lk

Mk + Lk

∣∣∣∣. (28)

Dk = Uk(P+
∞ )− Uk(P−

∞ ) → D̃k = − i
2π

ln
Mk + iLk
Mk − iLk

. (29)

Thus,
lim

P→P−
∞

Ũk(P) =
−i
2π

ln

∣∣∣∣∣
√

αk + E2g+2 +
√

αk + E2g+1√
αk + E2g+2 −

√
αk + E2g+1

∣∣∣∣∣− Dk,

or

lim
P→P−

∞

Ũk(P) =
−i
2π

ln
∣∣∣∣Mk + Lk

Mk + Lk

∣∣∣∣+ i
2π

ln
∣∣∣∣Mk + iLk

Mk + iLk

∣∣∣∣. (30)

Therefore, the limit of Z = U(P+
∞ )− X is given by

Zk → Z̃k = − i
π

g

∑
j=1, j ̸=k

ln

∣∣∣∣∣κkj + κjk

κkj − κjk

∣∣∣∣∣+ k
2
− i

2π

g

∑
j=1,

ln

∣∣∣∣∣Ck(zj) + Dk(zj)

Ck(zj)− Dk(zj)

∣∣∣∣∣− i∞ − i
2π

ln
∣∣∣∣Mk + Lk

Mk − Lk

∣∣∣∣ (31)

2.8. Limit of V′′

In this paragraph, the limit of V′′ is studied.
V′′

k = 1
2πi
∫

bk
dΩ′′

1 is defined in (13).

We have I =
∫ E2g+2
−αk

dΩ
′′
1 → 1

2

∫
bk

dΩ̃
′′
1 .

As in the determination of the limit of Ω
′′
1 , we have

∫ E2g+2

−αk

dΩ̃′′
1 (P) = −

E2g+1 + E2g+2

4
ln

∣∣∣∣∣
√

αk + E2g+1 +
√

αk + E2g+2√
αk + E2g+1 −

√
αk + E2g+2

∣∣∣∣∣
−1

2

√
(αk + E2g+1)(αk + E2g+2).

So,

V′′
k =

1
2πi

∫
bk

dΩ′′
1 → Ṽ′′ = −

E2g+1 + E2g+2

4πi
ln

∣∣∣∣∣
√

αk + E2g+1 +
√

αk + E2g+2√
αk + E2g+1 −

√
αk + E2g+2

∣∣∣∣∣
− 1

2πi

√
(αk + E2g+1)(αk + E2g+2),

Ṽ′′
k =

E2g+1 + E2g+2

4πi
ln
∣∣∣∣ Lk − Mk

Lk + Mk

∣∣∣∣− 1
2πi

Lk Mk. (32)
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2.9. Limit of θ(p)

We determine the limit of θ(p).
Let us denote A as the argument of θ(p) = ∑k∈Zg exp{πi(Bk|k) + 2πi(k|p)}.
A can be rewritten in the form

A = πi
g

∑
j=1

Bjjk j(k j − 1) + 2πi ∑
j>m

Bmjkmk j +
g

∑
j=1

πi(2pj + Bjj)k j.

Using the inequality k j(k j − 1) ≥ 0 for all k ∈ Zg and the fact that iBkk tends to −∞,
we can reduce the limit θ̃ of θ(p) to a finite sum taken over vectors k ∈ Zg, such that each
k j must be equal to 0 or 1.

In this section, we compute the limit of all the terms in the expression of the solution
ψ(P, t) in θ. We denote pi as the arguments of these different expressions.

We first study the terms of r̃n corresponding to the arguments p1 = Z = U(P+
∞ )− X,

p2 = Z − D, p3 = tV′′ + nD − Z, p4 = tV′′ + (n − 1)D − Z.
Then, we study the remaining terms of ψn corresponding to the arguments

p5 = U(P)− X, p6 = U(P) + tV′′ + nD − X.
With these notations, the solution ψ(n, , t, z) can be written as

ψn(P, z) = rn(t)
(

θ(p1)θ(p2)

θ(p3)θ(p4)

) 1
2 θ(p6)

θ(p5)
enΩ′

0(P)+tΩ′′
1 (P).

2.10. Limit of θ(p1)

We denote p1 as the term Z = U(P+
∞ )− X.

We study its limit.
Then, θ(p1) → θ̃1:

θ̃1 = ∑
k∈Zg , kj= 0 or 1

exp

{
∑
j>l

2 ln

∣∣∣∣∣κl j − κjl

κl j + κjl

∣∣∣∣∣k jkl +
g

∑
j=1

k j

(
ln

∣∣∣∣∣Mj + Lj

Mj − Lj

∣∣∣∣∣
+ ∑

l ̸=j
2 ln

∣∣∣∣∣κjl + κl j

κjl − κl j

∣∣∣∣∣+ jπi +
g

∑
l=1

ln

∣∣∣∣∣Cj(zl) + Dj(zl)

Cj(zl)− Dj(zl)

∣∣∣∣∣
)}

.

2.11. Limit of θ(p2)

We consider p2 = Z − D. We study its limit.
Then, θ(p2) → θ̃2. As Dj → D̃j, it is easy to see that

θ̃2 = ∑
k∈Zg , kj= 0 or 1

exp

{
∑
j>l

2 ln

∣∣∣∣∣κl j − κjl

κl j + κjl

∣∣∣∣∣k jkl +
g

∑
j=1

k j

(
ln

∣∣∣∣∣Mj + Lj

Mj − Lj

∣∣∣∣∣
+ ∑

l ̸=j
2 ln

∣∣∣∣∣κjl + κl j

κjl − κl j

∣∣∣∣∣+ jπi +
g

∑
l=1

ln

∣∣∣∣∣Cj(zl) + Dj(zl)

Cj(zl)− Dj(zl)

∣∣∣∣∣+ g

∑
j=1

ln

∣∣∣∣∣Mj + iLj

Mj − iLj

∣∣∣∣∣
)}

.

2.12. Limit of θ(p3)

Let p3 be tV′′ + nD + Z. We study its limit.
Then, θ(p3) → θ̃3:

θ̃3 = ∑
k∈Zg , kj= 0 or 1

exp

{
∑
j>l

2 ln

∣∣∣∣∣κl j − κjl

κl j + κjl

∣∣∣∣∣k jkl +
g

∑
j=1

k j

(
ln

∣∣∣∣∣ Lj + Mj

Lj − Mj

∣∣∣∣∣
+t

((
Eg+1 + E2g+2

2

)
ln

∣∣∣∣∣ Lj − Mj

Lj + Mj

∣∣∣∣∣− Lj Mj

)
+ n ln

∣∣∣∣∣Mj + iLj

Mj − iLj

∣∣∣∣∣
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+ ∑
l ̸=j

2 ln

∣∣∣∣∣κjl + κl j

κjl − κl j

∣∣∣∣∣+ jπi +
g

∑
l=1

ln

∣∣∣∣∣Cj(zl) + Dj(zl)

Cj(zl)− Dj(zl)

∣∣∣∣∣
)}

.

2.13. Limit of θ(p4)

We consider p4 = tV′′ + (n − 1)D + Z; θ(p4) → θ̃4. We determine its limit.
As Dj → D̃j, it is easy to verify that

θ̃4 = ∑
k∈Zg , kj= 0 or 1

exp

{
∑
j>l

2 ln

∣∣∣∣∣κl j − κjl

κl j + κjl

∣∣∣∣∣k jkl +
g

∑
j=1

k j

(
ln

∣∣∣∣∣ Lj + Mj

Lj − Mj

∣∣∣∣∣
+t

((
Eg+1 + E2g+2

2

)
ln

∣∣∣∣∣ Lj − Mj

Lj + Mj

∣∣∣∣∣+ Lj Mj

)
+ (n − 1) ln

∣∣∣∣∣Mj + iLj

Mj − iLj

∣∣∣∣∣
+ ∑

l ̸=j
2 ln

∣∣∣∣∣κjl + κl j

κjl − κl j

∣∣∣∣∣+ jπi +
g

∑
l=1

ln

∣∣∣∣∣Cj(zl) + Dj(zl)

Cj(zl)− Dj(zl)

∣∣∣∣∣
)}

.

2.14. Limit of θ(p5)

The term p5 = U(P)− X tends to p̃5 = Ũ(P)− X̃.
We determine its limit.
Then, θ(p5) → θ̃5:

θ̃5 = ∑
k∈Zg , kj= 0 or 1

exp

{
∑
j>l

2 ln

∣∣∣∣∣κl j − κjl

κl j + κjl

∣∣∣∣∣k jkl +
g

∑
j=1

k j

(
ln

∣∣∣∣∣Cj(z)− Dj(z)
Cj(z) + Dj(z)

∣∣∣∣∣
+ ∑

l ̸=j
2 ln

∣∣∣∣∣κjl + κl j

κjl − κl j

∣∣∣∣∣+ jπi +
g

∑
l=1

ln

∣∣∣∣∣Cj(zl + Dj(zl

Cj(zl − Dj(zl

∣∣∣∣∣
)}

.

2.15. Limit of θ(p6)

The term p6 = U(P) + tV′′ + nD − X tends to p̃6 = Ũ(P) + tṼ′′ − X̃ + nD̃.
Then, we determine its limit. θ(p6) → θ̃6 :

θ̃6 = ∑
k∈Zg , kj= 0 or 1

exp

{
∑
j>l

2 ln

∣∣∣∣∣κl j − κjl

κl j + κjl

∣∣∣∣∣k jkl +
g

∑
j=1

k j

(
ln

∣∣∣∣∣ Lj + Mj

Lj − Mj

∣∣∣∣∣
+t

((
Eg+1 + E2g+2

2

)
ln

∣∣∣∣∣ Lj − Mj

Lj + Mj

∣∣∣∣∣− Lj Mj

)
+ n ln

∣∣∣∣∣Mj + iLj

Mj − iLj

∣∣∣∣∣
+ ∑

l ̸=j
2 ln

∣∣∣∣∣κjl + κl j

κjl − κl j

∣∣∣∣∣+ jπi −
g

∑
l=1

ln

∣∣∣∣∣Cj(zl) + Dj(zl)

Cj(zl)− Dj(zl)

∣∣∣∣∣+ ln

∣∣∣∣∣Cj(z)− Dj(z)
Cj(z) + Dj(z)

∣∣∣∣∣
)}

.

2.16. Limit of Solutions Ψ

From the previous section, we can give the limit ψ̃ of ψ. It takes the following form:

ψ̃(z, n, t)) =
rn(t)

(
θ̃1θ̃2

) 1
2

θ̃5
× e

{
n ln

∣∣∣ F(z)+G(z)
F(z)−G(z)

∣∣∣+t
(

E2g+1+E2g+2
4 ln

∣∣∣ F(z)+G(z)
F(z)−G(z)

∣∣∣+ 1
2 F(z)G(z)

)}
θ̃6(

θ̃3θ̃4
) 1

2
.

In the previous expression, θ̃1, θ̃2, and θ̃5 are independent of n and t.
Only θ̃3, θ̃4, and θ̃6 depend on n and t.
We choose the particular case in which t = 0.
We replace n by x.
We denote c as the coefficient defined by
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c =
rn(0)

(
θ̃1θ̃2

) 1
2

θ̃5
.

We denote H as the function defined by

H(z) =
∣∣∣∣ F(z)− G(z)

F(z) + G(z)

∣∣∣∣.
In the different sums involving θ, only terms with k j = 1 remain. So, the sums

can be reduced only on the subsets J of [1; g] of integer N. We denote aj as the term

aj = − 1
2

∣∣∣Mj+iLj
Mj−iLj

∣∣∣. Then, the term θ̃6 can be written as

θ̃6 = ∑
J⊂{1,...,g}

∏
j,l∈J, j<l

ln

∣∣∣∣∣κl j − κjl

κl j + κjl

∣∣∣∣∣
2

∏
j∈J

∣∣∣∣∣ Lj + Mj

Lj − Mj

∣∣∣∣∣
∏

l∈Jl ̸=j
ln

∣∣∣∣∣κjl + κl j

κjl − κl j

∣∣∣∣∣
2

∏
j∈J

∣∣∣∣∣Cj(zl) + Dj(zl)

Cj(zl) + Dj(zl)

∣∣∣∣∣
∣∣∣∣∣Cj(z)− Dj(z)
Cj(z) + Dj(z)

∣∣∣∣∣e∑j∈J jπie−2x ∑j∈J aj .

We denote τ as the function defined by

τ(x) = θ̃3(x) = ∑
J⊂{1,...,g}

∏
j,l∈J, j<l

ln

∣∣∣∣∣κl j − κjl

κl j + κjl

∣∣∣∣∣
2

∏
j∈J

∣∣∣∣∣ Lj + Mj

Lj − Mj

∣∣∣∣∣
∏

l∈Jl ̸=j
ln

∣∣∣∣∣κjl + κl j

κjl − κl j

∣∣∣∣∣
2

∏
j∈J

∣∣∣∣∣Cj(zl) + Dj(zl)

Cj(zl)− Dj(zl)

∣∣∣∣∣e∑j∈J jπie−2x ∑j∈J aj .

Thus, the solution Ψ̃ can be written as

Ψ̃(x, z) = c
exp(xH(z))χ(x, z)√

τ(x)τ(x − 1)
. (33)

Here, we return to the Sato formulation of the solution, as given in [15].
This expression is very similar to the solution expressed on page 5830, and the expres-

sion of the solution is given by

Ψ̃(x, z) =
exp(xz)χ(x, z)√

τ(x)τ(x − 1)
. (34)

The difference between these two statements comes from the fact that these two
equations are treated differently:

Van Diejen considers the equation

a(x) f (x + 1) + b(x) f ′x) + a(x − 1) f (x − 1) = λ f (x);

here, we consider (1)
rn

rn+1

√
cnψn+1 + vnψn +

rn

rn−1

√
cn−1ψn−1 = λψn.

2.17. Limit of the Associated Potentials

In this subsection, we determine the limit of the associated potentials.
The potentials un =

√
cn and vn are described in (6) and (7) as

cn =
e2I0 θ2(tV′′ + nD + Z)

θ(tV′′ + (n + 1)D + Z)θ(tV′′ + (n − 1)D + Z)
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vn = −R0 + ∂t ln
θ(tV′′ + (n − 1)D + Z)

θ(tV′′ + nD + Z)
.

So, the limit of un is equal to

ũn = k1
τ(x)√

τ(x + 1)τ(x − 1)
,

which is the same as in [15] (p. 5830), up to the constant k1.
Denoting σ(x) = ∂tθ(tṼ′′ + xD̃ + Z̃)t=0, the limit of vn is equal to

ṽn = k2 +
σ(x − 1)
τ(x − 1)

− σ(x)
τ(x)

,

which is similar to the one written in [15] (p. 5830), up to the constant k2.

3. Conclusions

We have used the degeneracy of solutions of some PDEs given in terms of Riemann
theta functions to obtain some important solutions. In particular, in the case of the NLS
equation, we have managed to construct a quasi-rational solution involving the determinant
of order N for each positive integer N depending on 2N − 2 real parameters [12]. In the
case of the KdV equation, from abelian functions, we constructed solutions in terms of the
Fredholm determinants and Wronskians [13].

In this study, we have managed to recover Sato formulas using this method for the
Toda equation. From solutions given in terms of the Baker–Akiezer functions, we succeeded
to construct by degeneracy, as given in the frame of the NLS equation [14], some quasi-
rational solutions, and we recovered the Sato formulas for the Toda equation.

Precisely, we derived multisoliton solutions from finite gap solutions by a limit transi-
tion, i.e., by making gaps tend toward points in a certain Riemann surface. One strength
of this approach is that it does not rely on inverse scattering theory or geometric and
representation theoretic methods, which offers another perspective on the problem.

The degeneracy of the solutions to the NLS equation has allowed building new quasi-
rational solutions of order N depending on 2N − 2 real parameters and their construction
up to order 23, which were previously unknown. In the case of the KdV equation, the de-
generacy of the solutions made it possible to find the solutions given by the Darboux
method, which constituted a bridge between the geometric algebra approach and the Dar-
boux transformations framework. In this article, this is somewhat the same situation as that
of the KdV equation, where we linked the algebro–geometric approach to the framework
of the inverse scattering method.
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