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Abstract: Voltage source converters (VSCs) have emerged as the key components in modern power
systems, facilitating efficient energy conversion and flexible power flow control. Understanding the
fundamental circuit model of VSCs is essential for their accurate modeling and analysis in power
system studies. A basic voltage source converter circuit model connected to an LC filter is essential
because it lowers the harmonic distortions and enhances the overall power quality of the micro-grid.
This guarantees a clean and steady power supply, which is necessary for the integration of multiple
renewable energy sources and sensitive loads. A comprehensive methodology for developing a basic
circuit model of VSCs, focusing on the key components and principals involved, is presented in this
paper. The methodology includes the modeling of space vector pulse-width modulation (SVPWM) as
well as the direct quadrature zero synchronous reference frame. Different design controls, including
the design of current control loop in the S-domain, the design of the direct current (DC) bus voltage
control loop in the S-domain, and the design of the alternating current (AC) voltage control loop in
the S-domain, are explored to capture the dynamic behavior and control strategies of VSCs accurately.
The proposed methodology provides a systematic framework for modeling VSCs, enabling engineers
and researchers to analyze their performance and assess their impact on power system stability
and operation. Future studies can be conducted by using case studies and simulation scenarios
to show the efficiency and applicability of the developed models in analyzing VSC-based power
electronics applications, including high-voltage direct current (HVDC) transmission systems and
flexible alternating current transmission systems (FACTS). The significance of this work lies in its
potential to advance the understanding and application of VSCs, contributing to more resilient and
efficient power systems. By providing a solid foundation for future research and development, this
study supports the ongoing integration of renewable energy sources and the advancement of modern
electrical infrastructure.

Keywords: voltage source converter; LC filter; current control; DC voltage control; AC voltage control

1. Introduction

Voltage source converters (VSCs) have become integral components in modern power
systems, playing a crucial role in facilitating efficient energy conversion and enabling
flexible power flow control [1]. As the demands for renewable energy integration, grid
stabilization, and improved grid reliability continue to grow, the accurate modeling and
analysis of VSCs have become paramount [2,3]. The primary power interface connecting
distributed generations (DGs) to micro-grids is the AC-DC converter. The voltage source
converter functions in two distinct modes, operating as an active rectifier for direct current
(DC) bus control and, as depicted in Figure 1, acting as an inverter during grid-feeding and
grid-forming operations using distinct control loops [4]. Understanding the basic circuit
model of VSCs, along with methodologies for their control and modeling, is essential
for engineers and researchers to effectively design, analyze, and optimize VSC-based
power electronics applications [5]. The aim of this paper is to present a comprehensive
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methodology overview, control strategies, and modeling techniques associated with the
basic circuit model of VSCs. This paper delves into the fundamental principles underlying
the operation of VSCs, focusing on the key components and their interactions within the
circuit. An emphasis is placed on elucidating different methodologies, such as space vector
pulse-width modulation (SVPWM), the direct quadrature zero synchronous reference
frame, and their integration into VSC circuits.
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A fundamental voltage source converter circuit model connected to the LC filter is
crucial because it helps in reducing harmonic distortions and improving the overall power
quality in the micro-grid. This ensures a stable and clean power supply, which is essential
for sensitive loads and the integration of various renewable energy sources. It also plays
a key role in converting DC power from renewable sources like solar panels or batteries
to AC power, which is required for most loads and for synchronization with the main
grid. The LC filter aids in smoothing out the output, making the conversion process more
efficient. Understanding the VSC circuit model and its interaction with the LC filter is
essential for designing systems that can seamlessly integrate with the main grid or operate
in island mode. This ensures that the micro-grid can handle fluctuations in supply and
demand without compromising stability. In essence, the significance of introducing the
fundamental VSC circuit model connected to the LC filter lies in its ability to address
key challenges in energy conversion, stability, integration, and the management of hybrid
renewable micro-grid systems.

Furthermore, this paper explores various control strategies employed in VSCs to
regulate the voltage, current, and power flow in both grid-connected and standalone
applications. Various control techniques using pulse width modulation (PWM) and pro-
portional integral (PI) control are discussed. Moreover, the modeling aspects of the design
and control of VSCs are also introduced to develop accurate and dynamic models that
capture the transient and steady-state behavior of these devices. To ensure the relevance
and applicability of the presented models in real-world scenarios, practical considerations,
such as parameter estimation, validation, and implementation challenges, need to be ad-
dressed. Case studies and simulations are recommended to be conducted to shown the
efficiency and accuracy of the presented methodologies and control strategies in analyzing
VSC-based power electronics applications, such as flexible alternating current transmis-
sion systems (FACTS), grid-connected renewable energy systems, and high-voltage direct
current (HVDC) transmission systems.

The following sections describe the remaining paper parts: In Section 2, two-level
grid-connected VSC modeling with an LC filter is presented. The design of the current
control loop in the S-domain is introduced in Section 3. Section 4 presents the design of
a DC bus voltage control loop in the S-domain. In Section 5, the design of an AC voltage
control loop in the S-domain is provided. Section 6 gives a brief discussion, and Section 7
concludes the paper.
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2. Two-Level Grid-Connected VSC Modeling with LC Filter

A typical circuit model of a two-level inverter with an LC filter connected to a three-
phase load is presented in Figure 2. The signal applied to terminals a, à, b, b̀, c, and c̀
regulates the power of the six switches that form the output, denoted as S1 to S6. It is
assumed that switches S1 through S6 are complementary [7]. Typically, a voltage source
converter with an LCL filter is regulated by a conventional linear controller augmented
by a damping loop to ensure the stability of the system [8]. Furthermore, both the three-
phase AC system and the DC-side voltage source can directly receive power from the VSC.
Consequently, there are two different modes of operation for the VSC, either the inverter
(DC/AC) or rectifier (AC/DC) modes.
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To connect the distributed generation systems to the grid, three-phase pulse-width
modulation voltage source converters (PWM-VSCs) are commonly employed because of
their superior controllability and higher efficiency compared to the other converters [9]. To
enable DC-side voltage control and power factor at the point of common coupling (PCC), a
two-level PWM-VSC topology is used. However, the implementation of the PWM results
in baseband and sideband harmonics appearing in the AC voltage harmonic spectrum,
necessitating the use of filters to reduce the harmonics of the grid current [10].

2.1. Space Vector Pulse-Width Modulation (SVPWM) Methodology

Using the triangle comparison strategy simplifies the execution of this procedure.
Compared to triangle comparison PWM, it achieves a 15% increase in AC voltage and
reduces voltage and current total harmonic distortion (THD). A standard space vector
diagram of a two-level voltage source inverter (VSI) with switching states in the six sectors
is presented in Figure 3 [11]. Table 1 illustrates that a typical three-phase, two-level
voltage source inverter has eight switching states, with six active states producing voltage
vectors of either +Vdc or −Vdc, and two null states generating voltage vectors with zero
amplitude. In Figure 3, the switch states 000 and 111 represent the null states, while the
space vector plane is divided into six equal sectors by the active states. This methodology
employs a revolving reference vector, as depicted in Figure 3, sampled once during each
sub-cycle, Ts [12]. The main objective is to estimate the vector of the reference voltage Vre f
utilizing eight switching models.

Figure 3 illustrates that two of the potential output voltage vectors (
→
V1 and

→
V7) are

null or zero vectors, represented by equal values in all three phases (000 or 111). The

remaining six vectors (
→
V1, . . .,

→
V6) are non-zero and are all spatially separated by 60◦.

The null voltage vector time was arbitrary assumed to be divided equally between t0
and t7 for the SVPWM approach, meaning that T0 = T7.
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Table 1. Phase voltages, output line-to-line voltages, and switching vectors.

Voltage Vectors
Switching Vectors Line-to-Neutral Voltage Line-to-Line Voltage

S1 S2 S3 Van Vbn Vcn Vab Vbc Vca
→
V0 0 0 0 0 0 0 0 0 0
→
V1 1 0 0 2

3 VDC − 1
3 VDC − 1

3 VDC VDC 0 −VDC

→
V2 1 1 0 1

3 VDC
1
3 VDC − 2

3 VDC 0 VDC −VDC

→
V3 0 1 0 − 1

3 VDC
2
3 VDC − 1

3 VDC −VDC VDC 0
→
V4 0 1 1 − 2

3 VDC
1
3 VDC

1
3 VDC −VDC 0 VDC

→
V5 0 0 1 − 1

3 VDC − 1
3 VDC

2
3 VDC 0 −VDC VDC

→
V6 1 0 1 1

3 VDC − 2
3 VDC

1
3 VDC VDC −VDC 0

→
V7 1 1 1 0 0 0 0 0 0

The following is used to calculate the sampling interval:

Ts = T0 + T1 + T2 (1)

or
TS = T0 + Tmod (2)

with
Tmod = T1 + T2 (3)

where Tmod is the modulation time; T0, T1, and T2 are the time intervals; and Ts is the

sampling interval. When examining the first sector, the reference voltage vector
→
Vre f may

be presented as function vectors:

→
Vre f =

T1

TS

→
V1 +

T2

TS

→
V2 (4)

∣∣∣∣→Vre f

∣∣∣∣[cos α
sin α

]
=

T1

TS

∣∣∣∣→V1

∣∣∣∣[cos (0)
sin (0)

]
+

T2

TS

∣∣∣∣→V2

∣∣∣∣[cos (π/3)
sin (π/3)

]
(5)
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Equation (5) can be divided into two parts and expressed as follows:

TS

∣∣∣∣→Vre f

∣∣∣∣ cos α = T1

∣∣∣∣→V1

∣∣∣∣cos(0) + T2

∣∣∣∣→V2

∣∣∣∣cos(π/3) (6)

TS

∣∣∣∣→Vre f

∣∣∣∣ sin α = T1

∣∣∣∣→V1

∣∣∣∣sin(0) + T2

∣∣∣∣→V2

∣∣∣∣sin(π/3) (7)

The sample interval equations are obtained by solving for T2 using Equation (7), and
then substituting the results in Equation (6).

T1 = mTs
sin
(

π
3 − α

)
sin
(

π
3
) (8)

T2 = mTs
sin (α)

sin
(

π
3
) (9)

T0 = TS − T1 − T2 (10)

The modulation index, m =
Vre f
Vdc

, is represented as 0 ≤ α ≤ 60◦, and TS is the half-
period for switching carriers. The following formulas represent the dwell periods for
each sector:

T1 = mTSsin
(nπ

3
− α

)
(11)

T2 = mTssin
(

α − π(n − 1)
3

)
(12)

Figure 4 shows the SVPWM output switching sequence in the first sector.
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The switching periods for the upper and lower switches for each sector are summa-
rized in Table 2 [13].

Table 2. Switching time calculation for every sector.

Sectors Upper Switches
(S1,S3,S5)

Lower Switches
(S4, S6,S2)

Sector 1
S1 = T1 + T2 + T0/2
S3 = T2 + T0/2
S5 = T0/2

S4 = T0/2
S6 = T1 + T0/2
S2 = T1 + T2 + T0/2

Sector 2
S1 = T1 + T0/2
S3 = T1 + T2 + T0/2
S5 = T0/2

S4 = T2 + T0/2
S6 = T0/2
S2 = T1 + T2 + T0/2
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Table 2. Cont.

Sectors Upper Switches
(S1,S3,S5)

Lower Switches
(S4, S6,S2)

Sector 3
S1 = T0/2
S3 = T1 + T2 + T0/2
S5 = T2 + T0/2

S4 = T1 + T2 + T0/2
S6 = T0/2
S2 = T1 + T0/2

Sector 4
S1 = T0/2
S3 = T1 + T0/2
S5 = T1 + T2 + T0/2

S4 = T1 + T2 + T0/2
S6 = T2 + T0/2
S2 = T0/2

Sector 5
S1 = T2 + T0/2
S3 = T0/2
S5 = T1 + T2 + T0/2

S4 = T1 + T0/2
S6 = T1 + T2 + T0/2
S2 = T0/2

Sector 6
S1 = T1 + T2 + T0/2
S3 = T0/2
S5 = T1 + T0/2

S4 = T0/2
S6 = T1 + T2 + T0/2
S2 = T2 + T0/2

2.2. Direct Quadrature Zero Synchronous Reference Frame Methodology

The Direct Quadrature Zero (DQZ) synchronous reference frame methodology is a
control technique widely used in power electronics, particularly in VSIs, to achieve the
precise and efficient control of three-phase AC systems [14]. This methodology is widely
applied in grid-connected renewable energy systems (such as wind and solar inverters),
adjustable speed drives for motors, active power filters for harmonic mitigation, and other
applications requiring the precise control of the AC voltage and the current waveform [15].
The DQZ synchronous reference frame methodology involves transforming the three-phase
AC signals (typically voltages or currents) into a rotating reference frame aligned with
the AC frequency of the system. This transformation simplifies the control of the VSIs by
decoupling the components of interest (such as active power, reactive power, and harmonic
components) from each other.

The three-phase AC signals are transformed from the time domain (a, b, c reference
frame) to the rotating DQZ reference frame using Clarke and Park transformations [16].
Park transformation rotates the αβ components to a stationary DQZ reference frame (d, q, 0),
where d and q components represent the direct and quadrature components of the signals,
respectively, and 0 represents the zero sequence component [17]. Clarke transformation
converts three-phase quantities (a, b, c) into two-phase quantities (α, β), representing the
symmetrical components of the AC signals. In the DQZ reference frame, control strategies
such as proportional integral (PI) controllers or more advanced algorithms are applied
to regulate the d and q components of the reference signals. These controllers adjust the
switching patterns of the VSI’s semiconductor devices typically insulated gate bipolar
transistors (IGBTs) to generate the desired AC output voltage waveform, ensuring the
precise control of the voltage magnitude, frequency, and waveform quality [18]. Figure 5
shows a space phasor with the αβ0 reference frame.

The revised three-phase current values (ia, ib, ic) are shown in Figure 5 as projections
onto the new reference axis (iα, iβ). When a three-phase, three-wire system is balanced
and the zero axis represents the common mode component, the total phase current is
nullified. Thus, the variables α and β can fully characterize a system defined in the ABC
reference frame.

The output variables ABC are described in Equation (13) below:

ia = IMcos(ωt); ib = IMcos
(

ωt − 2π

3

)
; ic = IMcos

(
ωt +

2π

3

)
(13)

where t is the amount of time needed to reach steady state and ω is the constant syn-
chronous frequency. Equation (14) expresses the αβ0 transformation in complex form,
while Equation (15) expresses it in matrix form.
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→
Is = iα + jiβ =

2
3

(
ia + ibe

j2π
3 + ice

−j2π
3

)
(14)iα

iβ

i0

 =
2
3

1 −1
2

−1
2

0
√

3
2

−
√

3
2

1
2

1
2

1
2


ia

ib
ic

 (15)

The reference axis currents are iα, iβ, and i0, while the three-phase currents are iα, ib,
and ic.
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Figure 5. Space phasor and αβ0 reference frame.

Using Park transformation with a −90◦ shift, the frame rotates around the 0 axis at the
same frequency as the sinusoids defining the phasors, while the system is in the αβ0 frame.
As it can be seen in Figure 6, the component is transformed to Q axis, which is positioned
90◦ at a quadrature angle to the direct component, and the −β component is transformed
to the d-axis, which is in line with the rotating vector.
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Equations (16) and (17) express the DQ0 transformation in complex and matrix repre-
sentations, respectively.

→
I s = id + jiq =

(
iα + jiβ

)
e−j(ωt− π

2 ) (16)



AppliedMath 2024, 4 896

id
iq
i0

 =

sin (ωt) −cos (ωt) 0
cos (ωt) sin (ωt) 0

0 0 1

iα

iβ

i0

 (17)

Consequently, the rotation generates DC values from the periodic signals. Since the
spinning frame trails the a-axis by 90 degrees, at t = 0, the Q- and A-axes coincide. When
Is is precisely aligned with the reference angle ωt, id = 1, iq = 0, and i0 = 0 are the DQ0
components. The full transformations from DQ0 to ABC and their corresponding inverses
are presented as follow:id

iq
i0

 =

sin (ωt) sin (ωt − 2π
3 ) sin (ωt + 2π

3 )
cos (ωt) cos (ωt − 2π

3 ) cos (ωt + 2π
3 )

1
2

1
2

1
2

ia
ib
ic

 (18)

ia
ib
ic

 =

 sin (ωt) cos (ωt) 1
sin (ωt − 2π

3 ) cos (ωt − 2π
3 ) 1

sin (ωt + 2π
3 ) cos (ωt + 2π

3 ) 1

id
iq
i0

 (19)

3. Design of the Control Loop for the Current in the S-Domain

The current control loop design in the S-domain for a three-phase two-level VSI is
a crucial aspect of ensuring the precise and stable operation of the inverter. This design
methodology leverages the classical control theory in the S-domain to achieve the effective
regulation of the output currents of the inverter. According to Wencong et al., this control
loop modifies the output voltage of the inverter to allow the injection of the necessary
current in the utility grid [19]. The three-phase VSI is typically modeled using a set
of differential equations that describe the relationship between the input DC voltage,
the switching states of the inverter, and the output AC currents. These equations are
transformed into the synchronous reference frame (dq-frame) to decouple the three-phase
AC currents into two orthogonal components (d-axis and q-axis), simplifying the control
design. The system dynamics are represented by transfer functions in the S-domain, which
relate the control inputs (reference voltages) to the outputs (actual currents). For a VSI, the
transfer function typically includes the LC filter dynamics of the inverter and the influence
of the load impedance. Figure 7 illustrates the schematic representation of a three-phase,
two-level VSC with an L filter. R f and L f represent the resistance and the inductance,
respectively, between the converter switches and the PCC.
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AppliedMath 2024, 4 897

AppliedMath 2024, 4, FOR PEER REVIEW 9 
 

 

phase, two-level VSC with an L filter. 𝑅௙ and 𝐿௙ represent the resistance and the induct-
ance, respectively, between the converter switches and the PCC. 

 
Figure 7. A two-level VSC circuit diagram with an L filter included. 

A reduced equivalent per-phase circuit can be produced by applying the voltage law 
of Kirchhoff to the circuit shown above, as illustrated in Figure 8. 

 
Figure 8. An L filter in a simplified VSC per-phase circuit. 

The grid voltage, 𝑣௚௡, is shown in Figure 8 as a relatively fixed component that may 
be considered disruptive. As a result, the current, 𝑖௧௡, can be regulated by altering the 
output voltage of the inverter 𝑣௧௡. Consequently, the VSC functions as an energy source 
that feeds electricity into the grid. The voltage law of Kirchhoff, when applied to the three 
circuits per phase, yields the following: 𝑣௧௔௡ = 𝐿௙ 𝑑𝑖௔𝑑𝑡 + 𝑅௙𝑖௔ + 𝑣௚௔௡ 

𝑣௧௕௡ = 𝐿௙ 𝑑𝑖௕𝑑𝑡 + 𝑅௙𝑖௕ + 𝑣௚௕௡ 

𝑣௧௖௡ = 𝐿௙ 𝑑𝑖௖𝑑𝑡 + 𝑅௙𝑖௖ + 𝑣௚௖௡ 

(20)

The variables 𝑣௧௔௡ , 𝑣௧௕௡ , and 𝑣௧௖௡  represent the three per-phase inverter output 
voltages; 𝐿௙  and 𝑅௙  denote the inductance and resistance between the converter 
switches and the point of common coupling (PCC); 𝑣௚௔௡, 𝑣௚௕௡, and 𝑣௚௖௡ stand for the 
three per-phase grid voltages; and 𝑖௔, 𝑖௕, and 𝑖௖ represent the three per-phase inverter 
currents. By consolidating all three equations from (20) into a single equation, we obtain 
the following: 𝑣௧,௔௕௖ = 𝐿௙ 𝑑𝑖௔௕௖𝑑𝑡 + 𝑅௙𝑖௔௕௖ + 𝑣௚,௔௕௖ (21)

Figure 8. An L filter in a simplified VSC per-phase circuit.

The grid voltage, vgn, is shown in Figure 8 as a relatively fixed component that may be
considered disruptive. As a result, the current, itn, can be regulated by altering the output
voltage of the inverter vtn. Consequently, the VSC functions as an energy source that feeds
electricity into the grid. The voltage law of Kirchhoff, when applied to the three circuits per
phase, yields the following:

vtan = L f
dia
dt + R f ia + vgan

vtbn = L f
dib
dt + R f ib + vgbn

vtcn = L f
dic
dt + R f ic + vgcn

(20)

The variables vtan, vtbn, and vtcn represent the three per-phase inverter output voltages;
L f and R f denote the inductance and resistance between the converter switches and the
point of common coupling (PCC); vgan, vgbn, and vgcn stand for the three per-phase grid
voltages; and ia, ib, and ic represent the three per-phase inverter currents. By consolidating
all three equations from (20) into a single equation, we obtain the following:

vt,abc = L f
diabc

dt
+ R f iabc + vg,abc (21)

Equation (15) is used to translate Equation (21) into the reference frame αβ0, which
results in

vt,αβ = L f
diαβ

dt
+ R f iαβ + vg,αβ (22)

Using the reference frame dq0 in (16) and repeating the process for Equation (22), the
result is

vt,dq = vt,αβe−j(ωt− π
2 )

vt,dqL f
didq
dt + R f idq + vg,dq

(23)

The a, b, c frame can be split into the two components, d and q, as was indicated in
Section 2.1.

L f
did
dt

= vtd + L f ωiq − R f id − vgd (24)

L f
diq

dt
= vtq + L f ωiq − R f iq − vgq (25)

with vtd = VDC√
3

md and vtq = VDC√
3

mq, where mdq is the index of modulation, and VDC√
3

is the
SVPWM gain converter.

The id and iq dynamics are related because of the L f ω term found in Equations (24)
and (25). To decouple the d and q subsystems and account for the grid disruption inputs
vgd and vgq, the index of modulation for each must be stated as follows:

md =

√
3

VDC

(
ud − L f ωiq + vgd

)
(26)
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mq =

√
3

VDC

(
uq − L f ωid + vgq

)
(27)

For the d subsystem, the anticipatory term is −L f ωiq + vgd, while for the q subsystem,
it is −L f ωid + vgq. Equation (26) can be substituted into (24), yielding

L f
did
dt

= ud − R f id (28)

Equation (27) can be substituted into (25) in the same way to obtain

L f
diq
dt

= uq − R f iq (29)

with uq as the output of PI compensator.
The control systems of the current control loops are the same in the d and q axes, as

seen in (28) and (29). Therefore, the linked compensators can be the same. As a result, only
the current control compensator gains in the d-axis will be determined. When Equation (29)
is transformed using the Laplace method, the following results are obtained:

L f sId(s) = ud(s)− R f Id(s)
Id(s) =

ud(s)
L f +R f

(30)

The control plant can therefore be expressed as follows:

GP(s) =
1

L f s + R f
(31)

The following Equation (32) indicates that the compensator is a PI controller:

Gc(s) =
kps + ki

s
(32)

Figure 9 illustrates the transfer function of the closed loop in the d-axis:
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Equation (33) gives the following open loop gain:

Gol(s) = GC(s)GP(s) (33)

By replacing the compensator and control plant Equations by their terms, Equation (33),
will be:

Gol(s) =
kps + ki

s
× 1

L f s + R f
=

kps + ki

L f s2 + R f s
=

(
kp

L f s

)
s + ki

kp

s +
R f
L f

(34)

Once the terms ki
kp

=
R f
L f

are equalized by applying the pole cancelation approach, the
open-loop gain Equation (34) is reduced from the second to the first order transfer function
as follows:



AppliedMath 2024, 4 899

Gol(s) =
kp

L f s
(35)

Equation (36) represents the current control gain in the closed loop in the d-axis:

Gi(s) = Gcl(s) =
Gol(s)

1 + Gol(s)
(36)

Equation (35) can be substituted into (36) to obtain the following expression for the
closed-look gain:

Id(s)
Idre f (s)

= Gi(s) =
kp

kp + L f s
(37)

By replacing kp =
L f
τi

and ki =
R f
τi

, the closed-look gain will become

Gi(s) =
1

τis + 1
(38)

The resultant closed-loop control constant time is written as τi. Therefore, the following
formula provides the first-order settling time in the closed-loop system:

ti, settling = 4.6τi (39)

4. Design of the Control Loop for the DC Bus Voltage in the S-Domain

For maintaining balanced power flow, the DC bus voltage control technique is essential.
Implementing this control is imperative as it enables the voltage source converter to function
as a rectifier, converting AC power to DC power and facilitating control of the DC link
capacitor voltage to supply an output load. Moreover, for intermittent DC power sources
such as PV systems, this control technique assists in adjusting the current control loop
reference to regulate the input of DC power effectively [20]. The circuit from Figure 7 is
shown in Figure 10, with a bleeding resistor RB and extra feedback signals (iDC and iL)
added to simplify DC control modeling.
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Figure 10. Two-level VSC with an L filter and a DC link circuit bleed resistor.

The resistance and inductance between the PCC and the inverter output are R f and
L f . The fact that the active power transfer enables to charge and discharge the DC link
capacitor, the circuit shown in the DQ synchronous reference frame configuration can only
be modeled for the d-axis component. As a result, an instantaneous reactive current is not
needed, neither the q-axis component for this procedure, as Figure 11 shows.

The following equations illustrate the voltage dynamic equation of the DC link capacitor:

iDC = ibus + iRB + iL
ibus = iDC − iRB − iL

CDC
dvDC

dt = iDC − vDC
RB

− iL

(40)
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Equation (40) can be transformed using the Laplace transform to obtain[
sCDC + 1

RB

]
VDC(s) = IDC(S)− IL(s)

VDC(s) = 1[
sCDC+

1
RB

]ud(s) =
RB

sCDC RB+1 ud(s)
(41)

The formula for calculating the PI compensator output, ud(s), is ud(s) = IDC(s)−
IL(s), where IL(s) is the feedback term. This allows for the controller to avoid making up a
measured value. Considering this, the control system is written as follows:

GP =
RB

sCDCRB + 1
(42)

The relationship between these currents is represented as follows, assuming a con-
verter without losses and the fact that the iDC can only be directly controlled by the current
pulled from the grid:

P3∅ = PDC (43)

The active power is given as

P3∅ =
3
2

(
vgdid + vgqiq

)
(44)

The DC bus power is obtained by replacing Equation (44) with (43), which yields
the following:

3
2

vgdid = −iDCVDC (45)

The following Equation describes the relationship between the time constant τDC of
the control loop for the DC bus voltage and the time constant τi of the current control loop:

τi ≪ τDC (46)

The relationship between these two control loops may be expressed by the following
Equation (47) if the condition in Equation (46) is satisfied, id = Idre f , and the two control
loops are decoupled.

Idre f = −2
3

VDC
vgd

IDC (47)

The inner gain coefficient is obtained from the relationship between Idre f and IDC and
is stated as follows:

Kinner =
IDC
Idre f

= −3
2

vgd

VDC
(48)

Based on the following, it is presumed that the compensator is a PI controller ex-
pressed as

GC(s) =
kps + ki

s
(49)

The selected method for DC voltage control adopts a cascade approach, including an
outer loop for the voltage control of the DC bus and an inner loop for the current control.
This tactic guarantees that the time reaction of current controller is faster than that for
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the controller of the DC voltage in accordance with Equation (46). The DC voltage loop
considers the current loop as a constant gain, which permits a gradual shift in the current
reference, and hence an error-free response from the current controller. Consequently, the
dynamics of the two circuits depicted in Figure 11 are effectively disconnected. Figure 12
shows a DC link voltage loop block diagram of a VSC system in a simplified form.
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Equation (50) provides the gain in the open loop based on Figure 12.

Gol(s) = GC(S)GP(S)Kinner (50)

Equations (42) and (49) can be substituted into (50) to obtain the following:

Gol(s) =
kps + ki

s
× RB

sCDCRB + 1
× Kinner =

KinnerRB
(
kps + ki

)
s2CDCRB + s

(51)

With respect to the current control in d-axis, the closed loop gain is expressed in
Equation (52):

GDC(S) = Gcl(s) =
Gol(s)

1 + Gol(s)
(52)

Equation (51) substituted into (52) will result in

GDC(s) =
Kinner

(
kps + ki

)
/CDC

S2 +
(

Kinner RBkp+1
CDC RB

)
s + Kinnerki

CDC

(53)

Seeing that the Equation (53) has a first-order numerator, a pre-filter will be established
to eliminate this term, enabling the alignment of (53) with the standard second-order
transfer function, which is:

GPF(s) =
GDC, desired(s)

GDC,old(s)
=

ki(
kps + ki

) (54)

The gain in closed loop of the current control in d-axis can be obtained by multiplying
Equations (53) and (54). The result is as follows:

GDC(s) =
Kinnerki

CDC

s2 +
(

Kinner RBkp+1
CDC RB

)
S + Kinnerki

CDC

(55)

The gain in closed loop of the current control in d-axis can be obtained by multiplying
Equations (53) and (54). The result is as follows:

kp =
2ξωnCDCRB − 1

KinnerRB
(56)

ki =
ωn

2CDC
Kinner

(57)
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Thus, the following is the second closed-loop system settling time:

τDC = 1
ξωn

tDC,setting = 4.6 × τDC
(58)

5. Design of the Control Loop for the AC Voltage in the S-Domain

When a fault or power outage prevents the main grid from supplying power, a VSC
system in grid-forming mode creates a grid reference and makes it easier to transfer active
or reactive powers during micro-grid operation in isolated mode. This enables the micro-
grid to continue operating [21]. The three-phase VSI is modeled using differential equations
that describe the relationship between the input DC voltage, the switching states of the
inverter, and the output AC voltages. The dynamics of the VSI system, including the LC
filter (which is typically used to smooth the inverter output), as presented in Figure 13, are
represented in the S-domain by transfer functions [22].
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Figure 13. Two level VSC with an LC filter.

The resistances between the converter and the filter capacitor are presented as RL1
and L1. A condensed per-phase equivalent circuit produced by using the voltage law of
Kirchhoff is shown in Figure 14.
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The phase currents for each of the three per-phase circuits can be obtained by using
the current law of Kirchhoff as follows:

ia = iC f a + iLa
ib = iC f b + iLb
ic = iC f c + iLc

(59)

Combining the three equations from (59) results in the following:

iabc = iC f ,abc + iL,abc (60)

Using the ABC-αβ0 transform on Equation (60), the following result is obtained:

iC f ,αβ = iαβ + iL,αβ (61)
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Using Equation (16), the αβ0-dq0 transform can be converted to

iC f , dq = iC f ,αβe−j(ωt− π
2 ) (62)

iC,dq = idq − iL,dq (63)

Consequently, as described in Section 2.1, the a, b, c frame reference may be divided
into d and q components and cascaded via the current control loops in d and q axes,
resulting in

C f
dvsd
dt

= C f ωvsq + id − iLd (64)

C f
dvsq

dt
= −C f ωvsd + iq − iLq (65)

The existence of the C f ω terms in Equations (64) and (65) causes the vsd and vsq

dynamics to be coupled. The feedforward terms
(
−C f ωvsq + iLd

)
for the d-axis component

and
(

C f ωvsd + iLq

)
for the q-axis component are introduced in order to decouple them

and account for the load disturbance inputs iLd and iLq. Furthermore, the control units of
the d-axis and q-axis components are the same, as shown in Equations (64) and (65); thus,

dVsd
dt

=
1

C f
[ud] (66)

ud is the PI compensator output. Equation (66) is solved by applying the Laplace
transform, which yields the following:

Vsd(s) =
ud(s)
sC f

(67)

As a result, the following is the control plant:

GP(s) =
1

sC f
(68)

Furthermore, it is presumed that the control loop time constant of the AC voltage, τv,
will be five times greater than that of the current control loop, τi. If this assumption is met,
the two control loops will be decoupled. The circumstance is as follows:

τi ≪ τv (69)

Therefore, the inputs of the current control loops are presented in Equations (70) and (71),
and Idq(s) = Idqre f (s) for the control loop of AC voltage.

Idre f (s) = ud(s)− C f ωVsq(s) + ILd(s) (70)

Iqre f (s) = uq(s) + C f ωVsd(s) + ILq(s) (71)

Equation (72) gives the PI controller gain.

GC(s) =
kps + ki

s
(72)

Since the control plants of Equation (68) for the d and q components are the same, the
corresponding compensators may also be the same. With reference to Figure 15, the only
information that needs to be collected next is the gains of the voltage control compensators
in d-axis. The following is the open loop gain:

Gol(s) = GC(s)GP(s) (73)
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GC(s) and GP(s) can be substituted with their corresponding values to obtain the
following result:

Gol(s) =
kps + ki

s
× 1

sC f
=

kps + ki

s2C f
(74)

The gain of the current control in d-axis in closed loop can be represented as follows:

Gv(s) = Gcl(s) =
Gol(s)

1 + Gol(s)
(75)

When Equation (74) is substituted into (75), this results in

Gv(s) =

(kps+ki)
C f

s2 +
(

kp
C f

)
s + ki

C f

(76)

The VSC system AC voltage loop block diagram in a simplified form is shown in
Figure 15.

Given that the first-order numerator of Equation (76) must be cancelled, a pre-filter
needs to be developed in order to allow for Equation (76) to correspond to the conventional
transfer function of the second order. As stated below, a pre-filter is required.

GPF(s) =
GDC, desired(s)

GDC, old(s)
=

ki
kps + ki

(77)

The following is the result of multiplying Equations (76) and (77):

Gv(s) =
ki

s2C f + kps + ki
(78)

By resolving the results of the denominator coefficients of Equation (78), the gains of
the proportional and integral controllers are solved for

kp = 2ξωnC f (79)

ki = ωn
2C f (80)

As a result, the control loop time constant of the AC voltage is provided as

τv =
1

ξωn
(81)

To decouple the two control loops, the system settling time for this second order in the
closed loop is considered to be five times longer than the existing control loop settling time.
In other words,



AppliedMath 2024, 4 905

tv,settling =
4.6
ξωn

= 4.6 × 5 × τi = 5 × ti,settling (82)

6. Discussion

This Discussion section explores the key aspects of the basic circuit model of VSCs. The
different methodologies and control strategies employed in VSCs, including the SVPWM
methodology, the DQZ synchronous reference frame methodology, the design of the current,
the DC bus voltage, and the AC voltage control loops in the S-domain, are presented
in Table 3.

Table 3. Summary of the basic circuit model of voltage source converters.

SVPWM methodology

SVPWM is a widely used technique for controlling VSCs because it can produce excellent
output waveforms with less harmonic distortion. By effectively synthesizing the desired
output voltage vector, SVPWM enables the precise control of the VSC output. However,
challenges, such as computational complexity and switching frequency constraints, need to
be carefully addressed to ensure an optimal performance.

DQZ synchronous reference frame
methodology

The DQ0 synchronous reference frame methodology provides a powerful tool for analyzing
and controlling VSCs, particularly in grid-connected applications. By transforming the
three-phase system into a two-dimensional space with direct (d) and quadrature (q) axes,
this methodology simplifies the control and modeling processes. It allows for the accurate
representation of the system dynamics and facilitates the design of control algorithms,
enhancing the overall performance and stability of VSC-based systems.

Design of the control loop for the
current in the S-domain

Effective current control is crucial for ensuring accurate and dynamic response in VSCs,
especially in applications requiring the precise regulation of current flow. By designing
current control loops in the S-domain, engineers can leverage advanced control techniques
to achieve desired performance objectives, such as fast response, low overshoot, and robust
stability. Implementing sophisticated control algorithms, such as proportional integral
controllers or model predictive control (MPC), can further improve the current control loops
efficiency in VSCs.

Design of the control loop for the
DC Bus voltage in the S-domain

The control loop for DC bus voltage plays a critical role in maintaining stable operation and
ensuring reliable performance of VSCs. By regulating the DC bus voltage, this control loop
enables efficient energy conversion and smooth power transfer between the VSC and the
grid or load. Designing the DC bus voltage control loop in the S-domain allows for the
precise tuning of controller parameters and dynamic response characteristics, ensuring
optimal performance under varying operating conditions and load profiles.

Design of the control loop for the
AC voltage in the S-domain

In grid-connected VSC applications, the control loop for the AC voltage is essential for
regulating the output voltage to meet grid requirements, such as voltage magnitude and
frequency. By designing the control loop for the AC voltage in the S-domain, engineers can
develop robust control strategies to maintain grid stability, mitigate voltage harmonics, and
ensure the seamless integration of renewable energy sources. Advanced control techniques,
such as predictive control and adaptive control, can be employed to enhance the AC voltage
control loop efficiency and flexibility in VSCs.

7. Conclusions

The basic VSC circuit model with an output LC filter has been presented in this
paper. The main power interface between distributed generators and the micro-grid is
the AC-DC converter. Two forms of operation for a voltage source converter have been
observed. It acts as an active rectifier when utilized as a DC bus control. It uses a variety of
control loops to operate as an inverter when in the grid-feeding and grid-forming modes.
A thorough manual that covers a variety of techniques has also been introduced, including
the SVPWM, the DQZ synchronous frame, and the phase lock loop. In addition, this
paper serves as a comprehensive guide to understanding the basic circuit model of VSCs,
methodologies for their control, and techniques for their accurate modeling. By providing
insights into the fundamental principles and practical considerations associated with
VSCs, this paper aims to contribute to the advancement of VSC-based power electronics
applications and their integration into modern power systems for enhanced efficiency,
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reliability, and sustainability. Case studies and simulations need to be conducted to illustrate
the efficacy and accuracy of the presented methodologies and control strategies in analyzing
VSC-based power electronics applications.
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