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Abstract: Fractional differential operators are inherently non-local, so global methods, such as
spectral methods, are well suited for handling these non-local operators. Long-time integration of
differential models such as chaotic dynamical systems poses specific challenges and considerations
that make multi-domain numerical methods advantageous when dealing with such problems. This
study proposes a novel multi-domain pseudospectral method based on the first kind of Chebyshev
polynomials and the Gauss–Lobatto quadrature for fractional initial value problems.The proposed
technique involves partitioning the problem’s domain into non-overlapping sub-domains, calculating
the fractional differential operator in each sub-domain as the sum of the ‘local’ and ‘memory’ parts
and deriving the corresponding differentiation matrices to develop the numerical schemes. The
linear stability analysis indicates that the numerical scheme is absolutely stable for certain values
of arbitrary non-integer order and conditionally stable for others. Numerical examples, ranging
from single linear equations to systems of non-linear equations, demonstrate that the multi-domain
approach is more appropriate, efficient and accurate than the single-domain scheme, particularly for
problems with long-term dynamics.

Keywords: multi-domain; pseudospectral method; fractional differential equations; Chebyshev
polynomials; Gauss–Lobatto quadrature; stability analysis

1. Introduction

Fractional differential equations (FDEs) are gaining significant attention in engineer-
ing, science, finance and other fields. Unlike classical differential equations, which are
limited to integer-order derivatives, FDEs introduce a higher degree of complexity into
differential equations by incorporating arbitrary non-integer-order derivatives. Fractional
differential operators can be defined in various ways, with the most common definitions be-
ing those involving singular kernels, such as the Riemann–Liouville and Caputo fractional
differential operators [1,2]. These definitions rely on integrals with power-law kernels,
which can sometimes lead to singularities and complicate numerical approximations. These
differential operators with power law kernels are, however, advantageous for develop-
ing spectral-based methods using basis functions such as the Chebyshev and Legendre
polynomials, as these polynomials can be expressed in power series form. Therefore, the
Caputo derivative will be used in the numerical method proposed in this study. In re-
cent years, however, there has been a significant interest in non-singular kernels, which
provide an alternative framework for defining fractional operators. Examples include the
Caputo–Fabrizio and Atangana–Baleanu fractional operators, which use the exponential
and Mittag-Leffler functions as kernels, respectively [3,4]. These non-singular kernels were
introduced to broaden the scope and applicability of fractional calculus in various fields.
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This added complexity allows fractional differential operators to capture the memory effects
of a system or describe memory-inherent phenomena. As a result, FDEs offer a more robust
framework for modeling the intricate dynamics of complex systems across various scientific
disciplines [5,6]. Finding analytical solutions for fractional differential equations (FDEs) is
particularly challenging; however, several studies have proposed analytical solutions and
methods for FDEs, for instance, Ahmadian and Darvishi [7] derived solitons and traveling
wave solutions using the tanh-coth, tan-cot, sech-csch and sec-csc expansion methods for
the (1 + 1)-dimensional fractional Biswas–Milovic equation [8]. Kumar et al. [9] proposed
a modified Laplace decomposition method, which hybridizes the Laplace transform and
Adomian decomposition methods to analyze the fractional Navier–Stokes equation that
models the unsteady flow of a Newtonian fluid in a tube. The fractional symmetric reg-
ularized long wave equation has been resolved analytically using methods such as the
G′/G expansion method [10], the G′/G2 expansion method [11], the extended complex
method [11], the direct algebraic method [12] and the Jacobi elliptic function method [13].
Other analytical methods that have been used for FDEs include the Sumudu transform [14],
the Kudryashov method [15] and various semi-analytical techniques such as the exp expan-
sion method [16,17] and the sine-cosine method [18], among others. Numerical methods
also play an important role in obtaining accurate solutions for FDEs, and they provide
valuable insight into the dynamics of systems described by FDEs [19,20].

Many numerical methods for approximating the solutions of FDEs have been proposed.
For example, Hattaf et al. [21] introduced a novel numerical approach for approximating
the generalized Hattaf fractional derivative (GHF), which involves a fractional differential
operator with a non-singular kernel. The numerical method developed was tested on FDEs
with analytical solutions to verify its accuracy by comparing the approximate solutions
to the exact solutions. Non-linear FDEs describing the dynamics of HIV infection were
also solved to demonstrate the applicability of the method to real-world problems. The
predictor–corrector methods (PCMs) for FDEs were proposed by Kumar et al. [22], Jhinga
and Daftardar-Gejji [23] and Lee et al. [24]. These studies demonstrated that PCMs solve
FDEs faster and drastically reduce computational time. Kumar et al. [25] introduced
two computationally efficient numerical techniques based on the mid-point and Heun
method for linear and non-linear fractional initial value problems (IVPs). The study
concluded that the proposed methods offer significant advantages over the traditional and
improved Euler methods.

The non-local nature of fractional differential operators sometimes makes analysis and
finding solutions of FDEs herculean tasks [26]. Spectral methods have been a powerful nu-
merical technique for approximating the solutions of FDEs [27–29]. Unlike other traditional
numerical techniques, spectral-based methods are global and highly accurate, making them
efficient for solving differential equations [30]. Numerous studies have leveraged the global
nature of spectral-based methods to discretize fractional differential operators and obtain
numerical solutions of FDEs [31]. Zayernouri and Karniadakis [32] and Zhao et al. [33]
proposed an exponentially convergent Galerkin spectral method for FDEs. Zayernouri and
Karniadakis [32] compared the performance of the developed spectral-based method and
the established finite difference method (FDM) and concluded that the proposed method
performs better than the FDM in terms of convergence rate. Khader and Sweilam [34]
used the Legendre pseudospectral method to solve the fractional advection-dispersion
equation with the Caputo fractional differential operator. The study analyzed the accu-
racy of the new discrete fractional differential operator by examining its convergence rate
and estimating the maximum possible error, and the results were consistent with exist-
ing results from the literature. Stochastic fractional differential equations were solved by
Cardone et al. [35] using the spectral collocation method. The method involves obtaining a
fully discrete version of the original continuous operator and solving a system of non-linear
algebraic equations. Tests on several problems demonstrated that the proposed method
was effective for the chosen basis functions and collocation points.
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Spectral methods exhibit exponential convergence for differential equations with
sufficiently smooth solutions. This high level of accuracy has made spectral methods,
particularly the Chebyshev pseudospectral method, a popular choice for solving a va-
riety of fractional differential equations. For instance, Doha [36] used the Chebyshev
pseudospectral method to approximate the solutions of fractional multi-term differential
equations. Similarly, Sweilam [37] applied this method to numerically solve fractional
integro-differential equations. Other studies that have used the Chebyshev pseudospec-
tral method to approximate the solution of fractional differential equations include those
of Dabiri [38], Oloniiju et al. [39,40,41], among others. However, this desirable property
of spectral convergence can deteriorate with large time domains or non-smooth solu-
tions [42]. The multi-domain approach tackles these challenges by offering an accurate
and computationally efficient way to manage potentially non-smooth solutions. It can
also improve numerical stability and accuracy by breaking down a problem’s domain,
especially time-dependent problems, into smaller sub-domains [43]. Samuel and Motsa
[44] described a multi-domain spectral collocation method for solving hyperbolic partial
differential equations (PDEs) with a large time domain. The study showed that dividing
the computational domain into smaller sub-domains gives accurate results and reduces the
computational time. Birem and Klein [45] presented a multi-domain spectral method for
the Schrödinger equation. Jung and Olmos-Liceaga [46] introduced a non-conforming and
non-overlapping multi-domain spectral method to simulate traveling wave solutions in the
reaction-diffusion equations. The method has three key features: high-order accuracy and
convergence rate, adaptive mesh and the multi-domain technique. Qin et al. [47] proposed a
multi-domain Legendre–Galerkin least square method for linear differential equations with
variable coefficients. The study established two key properties of the method: continuity,
ensuring consistency and smoothness at the endpoints of each sub-domain, and coercivity,
ensuring stability and convergence. Additionally, the study established the optimal error
estimate in the H1 norm.

This study explores the Chebyshev pseudospectral method in a multi-domain set-
ting as a novel approach to solving FDEs. Here, the domain of the problem is divided
into a finite number of non-overlapping sub-domains. The multi-domain approach for
FDEs has been applied to problems in biology [48] and finance [49,50]. Maleki and Ka-
jani [48] used the multi-domain Legendre–Gauss pseudospectral method to approximate
solutions for the fractional Volterra population growth model. The study demonstrated
the effectiveness of the proposed method in tackling a wide range of integro-differential
equations, including those with integer and fractional orders. Bambe Moutsinga et al. [49]
developed a spectral-based method for fractional differential equations which models valu-
ation within an affine jump-diffusion framework, chaotic and hyper-chaotic systems and
fractional pricing models for cryptocurrencies. The study established that the developed
spectral method outperforms the MATLAB numerical packages based on the Euler method.
Kharazmi [50] investigated a data-driven approach to solving stochastic fractional partial
differential equations (SFPDEs) using multi-domain spectral methods. Zhao et al. [51]
proposed a multi-domain spectral collocation method (MDSCM) for solving non-linear
FDEs. The MDSCM exhibited a significant advantage over the single-domain spectral
methods in achieving high accuracy for differential equations with low-regular solutions.
Klein and Stoilov [52] proposed a numerical technique for the fractional Laplacian, based
on the Riesz fractional operators, defined on R. The integrands are transformed using
the underlying Zq curve to ensure accurate computation within each sub-interval. The
transformed integrals within each sub-interval are then solved using the Clenshaw–Curtis
algorithm. Tavassoli Kajani [53] proposed a modified Müntz–Legendre collocation tech-
nique on a single domain and in a multi-domain setting for the fractional pantograph
equation. Xu and Hesthaven [54] proposed a highly accurate and stable multi-domain
spectral method with a penalty method for fractional partial advection and diffusion equa-
tions. The study concluded that the proposed scheme’s high accuracy makes it well suited
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for long-term integration of FDEs. It was also noted that the convergence rate aligns with
the theoretical analysis of the scheme.

The present study aims to introduce a novel numerical method, the non-overlapping
multi-domain Chebyshev pseudospectral method, based on the first kind of Chebyshev
polynomials and the Gauss–Lobatto quadrature for fractional differential equations. The
choice of Chebyshev polynomials is due to their orthogonality property with respect to
their weight function, which simplifies the projection of the approximate solution onto the
polynomial space. Additionally, the computation of Chebyshev-Gauss–Lobatto quadrature
weights and nodes is quite straightforward, and this reduces computational overhead
compared to other orthogonal polynomials. The proposed method works by decomposing
the domain of a fractional differential equation into smaller, non-overlapping sub-domains.
The novelty of this study lies in its approach of partitioning the domain of a fractional
initial value problem into non-overlapping sub-intervals and projecting the solution of
the problem onto the space of Chebyshev orthogonal polynomials of the first kind. This
technique involves separating the fractional differential operator into the sum of the ‘local’
and ‘memory’ components within each sub-domain. To demonstrate the versatility and
efficiency of the proposed method, stability analysis and numerical experimentation on
various types of fractional differential equations are carried out. Numerical error analysis
is conducted to demonstrate the advantages of the domain decomposition approach over
the single-domain Chebyshev pseudospectral method.

The rest of the article is organized as follows: Section 2 provides certain preliminary
definitions which are necessary for developing the numerical schemes; Section 3 is devoted
to developing and analyzing the numerical scheme for FDEs using the Chebyshev polyno-
mials on the Gauss–Lobatto quadrature in non-overlapping partitioned domains; Section 4
demonstrates the accuracy and effectiveness of the numerical method by presenting some
examples ranging from linear single equations to systems of non-linear equations that
require long-term integration; and Section 5 ultimately concludes the study.

2. Preliminaries

This section introduces and defines the basic concepts and fractional operators required
to develop the numerical scheme.

Definition 1. Suppose u : [a, b] → R is a continuous function, γ > 0 and the Riemann–Liouville
fractional order integral of u(t) is defined as [55]

RL
a Iγ

t u(t) =


1

Γ(γ)

(
tγ−1 ∗ u(t)

)
= 1

Γ(γ)

t∫
a
(t − τ)γ−1u(τ)dτ, t > 0, γ > 0,

u(t), γ = 0,
(1)

where Γ is the Euler gamma function and
(
tγ−1 ∗ u(t)

)
is the convolution product of the power

function, tγ−1, and the function u(t).

Definition 2 (Fractional integral of (t − a)j). For the power function (t − a)j, the fractional
integral is defined as [56]

RL
a Iγ

t (t − a)j =
Γ(j + 1)

Γ(j + γ + 1)
(t − a)j+γ. (2)

Definition 3. The left-sided Caputo fractional differential operator is defined as [55]

C
a Dγ

t u(t) =
1

Γ(⌈γ⌉ − γ)

(
t⌈γ⌉−γ−1 ∗ u⌈γ⌉(t)

)
=

1
Γ(⌈γ⌉ − γ)

t∫
a

(t − τ)⌈γ⌉−γ−1u⌈γ⌉(τ)dτ, ⌈γ⌉ − 1 < γ ≤ ⌈γ⌉, (3)
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where ⌈γ⌉ is the ceiling of γ, ⌈γ⌉ ≥ γ and
(

t⌈γ⌉−γ−1 ∗ u⌈γ⌉(t)
)

is the convolution product of the

power function, t⌈γ⌉−γ−1, and the ⌈γ⌉-th integer-order derivative of the function u(t).

Definition 4 (Fractional derivative of (t − a)j). The fractional derivative of (t − a)j is defined
as [56]

C
a Dγ

t (t − a)j =

{
0 j ∈ N0, j < ⌈γ⌉

Γ(j+1)
Γ(j+1−γ)

(t − a)j−γ j ∈ N0, j ≥ ⌈γ⌉.
(4)

Definition 5. The set of collocation points used in this study is that of the Chebyshev–Gauss–
Lobatto points defined as tr = − cos

( rπ

N

)
; r = 0(1)N [57].

3. Numerical Discretization and Analysis via the Pseudospectral Method

This section introduces the numerical discretization of a fractional initial value problem
using Chebyshev polynomials of the first kind and the Gauss–Lobatto quadrature. It
covers the approximations of the fractional derivative of an arbitrary function, both in
a single domain and in partitioned, non-overlapping domains. Firstly, the polynomial
approximation of an arbitrary function u(t), continuous on an interval [0, h], is presented
in terms of shifted first-kind Chebyshev polynomials. These polynomials are obtained
through the following recurrence formula:

Πh,0(t) = 1, Πh,1(t) =
2t
h
− 1, Πh,j+1(t) = 2Πh,1(t) · Πh,j(t)− Πh,j−1(t), j ≥ 1. (5)

The function u(t) is represented as follows:

u(t) ≊ Uh(t) =
∞

∑
j=0

ûjΠh,j(t), t ∈ [0, h], (6)

where the coefficients ûj in Equation (6) satisfy the ℓ2 orthogonality condition of the shifted
first-kind Chebyshev polynomials, which are defined with respect to the inner product

ûj = ⟨Uh(t), Πh,j(t)⟩ =
1
νj

∫ h

0

Uh(t)Πh,j(t)√
ht − t2

dt =
1
νj

∞

∑
i=0

Uh(ti)Πh,j(ti)ϱi, (7)

where

νj =

{
π j = 0
π
2 otherwise.

(8)

If a truncated N-th order approximation of the function is considered and collocated
at N + 1 distinct Chebyshev–Gauss–Lobatto (CGL) points, with tr ∈ [0, h]; r = 0(1)N, then

u(t) ≊
N

∑
i=0

Uh(ti)ϱi

N

∑
j=0

1
νj

Πh,j(ti)Πh,j(tr), r = 0(1)N, (9)

where ϱi is the Christoffel number associated with the Chebyshev–Gauss–Lobatto quadra-
ture and is defined as follows:

ϱi =

{
π

2N I = 0, N
π
N otherwise.

(10)

Using the following matrix representations
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ρ =


ϱ0

ϱ1
. . .

ϱN

, ϑ =


1
ν0

1
ν1

. . .
1

νN

, Πh =


Πh,0(t0) Πh,0(t1) . . . Πh,0(tN)
Πh,1(t0) Πh,1(t1) . . . Πh,1(tN)

...
...

. . .
...

Πh,N(t0) Πh,N(t1) · · · Πh,N(tN)

, (11)

Equation (9) can be expressed as

u(t) ≊
N

∑
i=0

Uh(t)Ei(tr) = ETUh, (12)

where E = ρ ΠT
h ϑ Πh and Uh = [Uh(t0) Uh(t1) . . . Uh(tN)]

T.

3.1. The Discretization of the Fractional Differential Operator in a Single Domain

Now, let us approximate the arbitrary non-integer order of the function u(t). Assuming
that u(t) ∈ C p([0, h]), where p ≥ N + ⌈γ⌉ + 1, representing the space of continuously
differentiable functions, t > 0 and γ > 0, then the approximation for the arbitrary non-
integer derivative of u(t) is given by

C
0 Dγ

t u(t) ≊
N

∑
i=0

Uh(ti)ϱi

N

∑
j=0

1
νj

Πh,j(ti)
C
0 Dγ

t Πh,j(t). (13)

The fractional-order derivative of the Chebyshev polynomial C
0 Dγ

t Πh,j(t) is obtained
by using the series form of the polynomial [56], as follows:

C
0 Dγ

t Πh,j(t) = j
j

∑
k=0

(−1)j−k(j + k − 1)!22k

(j − k)!(2k)!hk
C
0 Dγ

t tk = j
j

∑
k=⌈γ⌉

(−1)j−k(j + k − 1)!22k

(j − k)!(2k)!hk
Γ(k + 1)

Γ(k − γ + 1)
tk−γ. (14)

Proceeding to approximate tk−γ as a linear combination of shifted first-kind Chebyshev
polynomials at the CGL points, Equation (14) can now be expressed as [39]:

C
0 Dγ

t Πh,j(t) ≊ hD(γ)Πh, (15)

where hD(γ) = ∆ Ω Φ ∆T ϑ and ∆, Ω and Φ are matrices whose entries are defined
as follows:

∆j,k =


1 j = 0, k = 0
j(−1)j−k(j+k−1)!22j

(j−k)!(2k)!hk j = 1(1)N, k = 0(1)j

0 otherwise

, Ωk,k =

{
0 k < ⌈γ⌉

Γ(k+1)
Γ(k−γ+1) k = ⌈γ⌉(1)N

,

Φp,k =

0 k < ⌈γ⌉
√

πhk−γ+pΓ(k−γ+p+ 1
2 )

Γ(k−γ+p+1) k = ⌈γ⌉(1)N, p = 0(1)s, s = 0(1)N.


(16)

Therefore, C
0 Dγ

t u(t) is now approximated as

C
0 Dγ

t u(t) ≊ (0,hDγ)T Uh, (17)

where 0,hDγ = ρ ΠT
h ϑ hD(γ) Πh. We refer to (0,hDγ)T as the fractional differentiation

matrix in the domain [0, h].
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3.2. Discretization of Fractional Differential Operator in Non-Overlapping Partitioned Domains

Assume that u(t) is defined in t ∈ [0, T], partitioned into q non-overlapping sub-
intervals, such that 0 = t0 < t1 < . . . < tq = T and hl = tl − tl−1, l = 1(1)q. Suppose
t ∈ [tl , tl+1] and ⌈γ⌉ − 1 < γ ≤ ⌈γ⌉; then,

C
0 Dγ

t u(t) =
1

Γ(⌈γ⌉ − γ)

∫ t

0
(t − τ)⌈γ⌉−γ−1u⌈γ⌉(τ)dτ

=
l

∑
e=1

[
C
te−1

Dγ
te

u(t)
]
+ C

tl
Dγ

t u(t)

=
l

∑
e=1

[
1

Γ(⌈γ⌉ − γ)

∫ te

te−1

(t − τ)⌈γ⌉−γ−1u⌈γ⌉(τ)dτ

]
+

1
Γ(⌈γ⌉ − γ)

∫ t

tl

(t − τ)⌈γ⌉−γ−1u⌈γ⌉(τ)dτ.


(18)

The first term in Equation (18) is the ‘memory’, and the latter term of the equation is
the local arbitrary-order derivative of u(t) with respect to t ∈ [tl , tl+1]. The arbitrary-order
derivative in the first sub-domain is local and calculated with no memory term. The two
terms in Equation (18) are approximated separately. If the length, hl , of each sub-domain,
[tl , tl+1], is equivalent to h (from discretization in a single domain) in Section 3.1, and we
collocate at N + 1 distinct CGL points, tl

r ∈ [tl , tl+1], with tl
N ≡ tl+1

0 , then the second term
in Equation (18) is approximated as follows:

C
tl

Dγ
t u(t) ≊ (tl ,hl

Dγ
l )

T Uhl ,l , t ∈ [tl , tl+1]. (19)

The first term in Equation (18), the ‘memory’, which is the arbitrary non-integer-order
derivative, C

te−1
Dγ

te
u(t), is approximated as

C
te−1

Dγ
te

u(t) ≊
N

∑
i=0

Uh(te
i )ϱi

N

∑
j=0

Πhl ,j(t
e
i )

C
te−1

Dγ
te

Πhl ,j(t), te
i ∈ [te−1, te]. (20)

The derivative C
te−1

Dγ
te

Πhl ,j(t) at the CGL points tl
r is approximated as C

te−1
Dγ

te
Πhl ,j(t

l
r) ≊

∆ Θ, where the entries of Θ are defined as

Θj,r =

0 j < ⌈γ⌉
j!

Γ(⌈γ⌉−γ)(j−⌈γ⌉)!
∫ te

te−1
(tl

r − τ)⌈γ⌉−1−γ(τ − te−1)
j−⌈γ⌉dτ, tl

r∈[tl ,tl+1]
j=⌈γ⌉(1)N, r=0(1)N.

(21)

The integral in Equation (21) can be computed using any quadrature formula, such as
Newton–Cotes or Gaussian quadrature formulas. Therefore, the first term of Equation (18)
is then calculated as

l

∑
e=1

C
te−1

Dγ
te

u(t) ≊
l

∑
e=1

(te−1,te D
γ
e )

T Uhl ,e, (22)

where Uhl ,e = [Uhl
(te

0) Uhl
(te

1) . . . Uhl
(te

N)]
T, te

i are the CGL points mapped onto
[te−1, te] and te−1,te D

γ
e = ρ ΠT

hl
ϑ ∆ Θ.

3.3. Pseudospectral Discretization of FIVPs in Non-Overlapping Partitioned Domain

Consider the fractional initial value problem (FIVP){
C
0 Dγ

t u(t) = κu(t) + f (t), t ∈ (0, T],

u(0) = u0,
(23)

where κ ∈ C and γ ∈ (0, 1). Suppose the domain [0, T] is partitioned into q non-overlapping
domains, such that 0 = t0 < t1 < t2 < . . . < tq = T, and as before, we define hl = tl − tl−1,
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l = 1(1)q. To obtain the solution of Equation (23) on an arbitrary domain [tl , tl+1], we
rewrite the equation as

l

∑
e=1

C
te−1

Dγ
te

u(t) + C
tl

Dγ
t u(t) = κu(t) + f (t), t ∈ [tl , tl+1], l = 1(1)q − 1,

u(0) = u0.

(24)

Assume that the solution u(t) of Equation (24) can be approximated as a linear combi-
nation of functions which are in the space of shifted Chebyshev polynomials of at most
degree N on the CGL quadrature. Then, using the discretizations of the differential op-
erator given in Sections 3.1 and 3.2, the FIVP (24) is now equivalent to the following
algebraic systems:

(0,hl
Dγ

1 )
TUhl ,1 = ET

1 f

Uhl
(t1

0) = u0, t ∈ [t0, t1 ≡ t0 + hl ],

}
(25)

and
l

∑
e=1

(te−1,te D
γ
e )

TUhl ,e + (tl ,hl
Dγ

l )
TUhl ,l = κET

l Uhl ,l + ET
l f

Uhl
(tl

0) = Uhl
(tl−1

N ), t ∈ [tl , tl+1 ≡ tl + hl ], l = 2(1)q − 1,

 (26)

where f = [ f (tl
0), f (tl

1), . . . , f (tl
N)]

T and l = 1(1)q.

3.4. The Numerical Stability of the Scheme

The stability of the proposed numerical method is demonstrated by considering the
following linear fractional initial value problem

C
0 Dγ

t u(t) = κu(t), κ ∈ C s.t. Re(κ) ≤ 0, γ ∈ (0, 1), t ∈ [0, h], h ∈ R+, (27)

whose exact solution is u(t) = u0Eγ,1(κtγ), where Eγ,1(·) is the two-parameter Mittag-
Leffler function. If we consider a partition of the domain [0, h] into q = h equal sub-domains,
the discretization of the model Equation (27) through the proposed numerical method in
an arbitrary sub-domain [tl , tl+1] ≡ [tl , tl + hl ] is obtained as[

1
hγ

l
(0,hl

Dγ
l )

T − κET
l

]
Uhl ,l = −

l

∑
e=1

(te−1,te D
γ
e )

TUhl ,e. (28)

Here, (te−1,te D
γ
e )

T is the memory differentiation matrix as in Equation (22), (0,hl
Dγ

l )
T is

the fractional differentiation matrix in a single domain [0, hl ] and (tl ,hl
Dγ

l )
T ≡ 1

hγ
l
(0,hl

Dγ
l )

T.

To study the stability of the proposed pseudospectral numerical scheme, we define the
stability matrix

S(w) = [P − wQ]−1R, (29)

where w = κhγ
l and P, Q and R are the matrices defined, respectively, as
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P =


(0,hl

Dγ
2 )

T 0 . . . 0
0 (0,hl

Dγ
3 )

T . . . 0
...

...
. . .

...
0 0 . . . (0,hl

Dγ
q )

T

, Q =


ET

2 0 . . . 0
0 ET

3 . . . 0
...

...
. . .

...
0 0 . . . ET

q

,

R =


−hγ

l (t0,t1Dγ
1 )

T 0 . . . 0
−hγ

l (t0,t1Dγ
2 )

T −hγ
l (t1,t2Dγ

2 )
T . . . 0

...
...

. . .
...

−hγ
l (t0,t1Dγ

q−1)
T −hγ

l (t1,t2Dγ
q−1)

T . . . −hγ
l (tq−2,tq−1Dγ

q−1)
T

.



(30)

The stability of the numerical scheme is determined by the eigenvalues of S(w). The
stability region of the numerical scheme (28) is typically defined by the set of points in
the C-plane for which the spectral radius or the modulus of dominant eigenvalue is less
than or equal to 1. If there is more than one non-zero eigenvalue with the potential to cross
the stability threshold of 1, the stability region is then determined by considering these
eigenvalues and the regions where these eigenvalues have a magnitude less than or equal
to 1. The overall stability region of the numerical scheme would then be the intersection of
these regions. If the stability region includes Re(w) ≤ 0 (the entire left half of the C-plane),
then the numerical scheme is said to be absolutely stable (A-stable) [58]. If, in addition to
A-stability, the limit of the dominant eigenvalue tends to zero as w tends to −∞, then the
numerical scheme is said to be Lubich-stable (L-stable) [59]. The L-stability property means
that any components that may cause instability in the numerical scheme are damped as the
length of the sub-domain, hl , increases, which is particularly important when handling long-
term integration of stiff differential equations. To illustrate, Table 1 shows the dominant
eigenvalue, stability region and stability property for a linear discretization (N = 1) of
Equation (28) with two sub-domains (q = 2) for some selected values of fractional order γ.
As shown in the table, the stability region of the numerical scheme is the exterior of some
closed disks in C; the boundaries of these disks are illustrated in Figure 1. As indicated
by the figure, the stability regions for γ = 0.01, 0.10, 0.21, 0.32, 0.43, 0.54, 0.65 satisfy the
conditions for absolute and Lubich stability, and so the numerical scheme for these values of
γ is absolutely and Lubich-stable. However, the numerical schemes for γ = 0.76, 0.87, 0.98
are not absolutely stable and, by extension, not L-stable.

In Figure 2, the stability regions for a quadratic approximation with q = 3 and q = 5
for γ = 0.21, 0.54, 0.98 are presented. The stability region in the figure is the area outside
the elliptical disks, which shows that the stability regions for q = 3 and q = 5 sub-domains
are the same. However, in both cases, a varying number of eigenvalues with the potential
to cross the stability threshold are obtained. For q = 3, there is one non-zero dominant
eigenvalue for γ = 0.21 and 0.54, and there are four non-zero eigenvalues for γ = 0.98 with
the potential to cross the stability threshold of 1. For q = 5, γ = 0.21, 0.54, 0.98 all have eight
non-zero eigenvalues that can cross the stability threshold. However, when the intersection
of the resulting stability regions from these eigenvalues is taken, the same stability region
with q = 3 is obtained for each illustrated γ value, as shown in Figure 2. The figure shows
that the numerical schemes for γ = 0.21 and γ = 0.54 are absolutely stable, and the scheme
for γ = 0.98 is not absolutely stable (conditional stability). Although a general conclusion
about the stability of the numerical scheme cannot be made, it can be inferred from this
analysis that whether the numerical scheme is absolutely or conditionally stable depends
on the value of the arbitrary non-integer order of the fractional differential equation.
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Table 1. The dominant eigenvalue, stability region and stability property for some selected values of
arbitrary order, γ, for a linear approximation (N = 1) with q = 2.

γ Dominant Eigenvalue Stability Region Stability Property

0.01
−124958025860977

9007199254740992w − 9034579827725136

∣∣∣∣w − 9034579827725136
9007199254740992

∣∣∣∣ ≥ 124958025860977
9007199254740992

A–stable
L–stable

0.10
−1254334826011059

9007199254740992w − 9235870117935490

∣∣∣∣w − 9235870117935490
9007199254740992

∣∣∣∣ ≥ 1254334826011059
9007199254740992

A–stable
L–stable

0.21
−2627472107360489

9007199254740992w − 9350065552559051

∣∣∣∣w − 9350065552559051
9007199254740992

∣∣∣∣ ≥ 2627472107360489
9007199254740992

A–stable
L–stable

0.32
−3959902260456486

9007199254740992w − 9279409270142741

∣∣∣∣w − 9279409270142741
9007199254740992

∣∣∣∣ ≥ 3959902260456486
9007199254740992

A–stable
L–stable

0.43
−10428492653806604

18014398509481984w − 17946001659717557

∣∣∣∣w − 17946001659717557
18014398509481984

∣∣∣∣ ≥ 10428492653806604
18014398509481984

A–stable
L–stable

0.54
−12700697864360454

18014398509481984w − 16735571476860095

∣∣∣∣w − 16735571476860095
18014398509481984

∣∣∣∣ ≥ 12700697864360454
18014398509481984

A–stable
L–stable

0.65
−7316166143825643

9007199254740992w − 7382436898791357

∣∣∣∣w − 7382436898791357
9007199254740992

∣∣∣∣ ≥ 7316166143825643
9007199254740992

A–stable
L–stable

0.76
−15952263845377693

18014398509481984w − 11810807580156978

∣∣∣∣w − 11810807580156978
18014398509481984

∣∣∣∣ ≥ 15952263845377693
18014398509481984

0.87
−30618033637964479

36028797018963968w − 15079171789616800

∣∣∣∣w − 15079171789616800
36028797018963968

∣∣∣∣ ≥ 30618033637964479
36028797018963968

0.98
−9934148207590571

36028797018963968w − 2781302084999484

∣∣∣∣w − 2781302084999484
36028797018963968

∣∣∣∣ ≥ 9934148207590571
36028797018963968
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Figure 1. The boundaries of the closed disks in Table 1. The stability region of the linear
discretization with two sub-domains for the indicated values of arbitrary non-integer order,
(a) γ = 0.01, 0.10, 0.21, 0.32, 0.43 and (b) γ = 0.54, 0.65, 0.76, 0.87, 0.98, lies outside these circles.

(a) (b) (c)
Figure 2. The stability regions of quadratic approximations with q = 3 and q = 5 for (a) γ = 0.21,
(b) γ = 0.54 and (c) γ = 0.98. The stability regions are the shaded areas located outside the
elliptical disks.
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4. Numerical Experimentation and Results

This section presents a series of numerical examples, ranging from single linear equa-
tions to systems of non-linear equations, along with the results. Detailed analyses of the
results for each example are provided to illustrate key observations. For a comprehensive
understanding of the numerical methods used in these examples, refer to the description
provided in Section 3.

Example 1. Consider the linear fractional differential equation [60]

C
0 Dγ

t u(t) + u(t) =
2t2−γ

Γ(3 − γ)
− t1−γ

Γ(2 − γ)
+ t2 − t, 0 < γ ≤ 1, t ∈ [0, T], (31)

with initial condition u(0) = 0 and exact solution u(t) = t2 − t.

Table 2 presents the absolute error between the approximate and exact solutions using
the non-overlapping multi-domain pseudospectral method with the CGL quadrature and
the Chebyshev polynomials as the basis functions. The table also includes numerical results
obtained without decomposing the domain. This comparative analysis highlights the
accuracy and effectiveness of the multi-domain approach in reducing errors and improving
the accuracy of the numerical solution. From the table, it can be seen that, for the fractional
order of γ = 0.5, although the maximum absolute error in the multi-domain setup does
not decrease in terms of significant zeros, it reduces as q increases. This indicates that,
although minimal, there is an advantage in using more sub-domains. Comparing the
error to the single-domain result, there is an additional significant zero in the error of the
multi-domain approach, which indicates that the multi-domain approach is more effective
for this problem.

Table 2. Maximum absolute error for Example 1 in single-domain and multi-domain setups.

N = 10, γ = 0.5 N = 10, T = 6.0

q T = 1.0 T = 3.0 T = 6.0 γ = 0.2 γ = 0.6 γ = 0.8

5 7.7426 × 10−5 6.2253 × 10−4 2.7903 × 10−3 1.3625 × 10−3 3.6161 × 10−3 5.2468 × 10−3

10 4.0800 × 10−5 5.2107 × 10−4 2.2192 × 10−3 6.7562 × 10−4 1.9440 × 10−3 2.8829 × 10−3

20 2.3538 × 10−5 4.4940 × 10−4 1.8850 × 10−3 4.4076 × 10−4 1.5245 × 10−3 2.1135 × 10−3

50 2.0489 × 10−5 4.1298 × 10−4 1.6596 × 10−3 3.8984 × 10−4 1.2966 × 10−3 1.5794 × 10−3

100 2.0286 × 10−5 4.0279 × 10−4 1.6132 × 10−3 3.8131 × 10−4 1.2746 × 10−3 1.4322 × 10−3

200 2.0374 × 10−5 4.0190 × 10−4 1.6047 × 10−3 3.8224 × 10−4 1.2946 × 10−3 1.3898 × 10−3

Single domain

3.3518 × 10−4 1.0362 × 10−3 2.1415 × 10−3 9.0794 × 10−4 2.5580 × 10−3 2.9839 × 10−3

From Table 2, the effectiveness of the proposed numerical technique in obtaining an
accurate approximate solution to a linear FDE is evident, so in the examples that follow, we
consider non-linear FDEs to further validate the numerical method.

Example 2. Consider the non-linear fractional differential equation [60]

C
0 Dγ

t u(t)− u2(t) = − 2
(t + 1)2 , 0 < γ ≤ 1, t ∈ [0, T], (32)

where the initial condition is u(0) = −2 and the exact solution when γ = 1 is given by u(t) =

− 2
(t + 1)

.
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Table 3 shows the approximate solution obtained using two different sub-domains
in the proposed method. The solutions in these sub-domains match the numerical values
reported in Odibat and Momani [60]. It should be noted that closed-form solutions for
γ = 0.2 and γ = 0.4 are not available. However, for γ = 1, the accuracy of the proposed
method is unquestionable. To further give credence to the accuracy of the proposed method,
Table 4 demonstrates that the residual error is consistently close to zero for various values
of γ. This suggests that the proposed method effectively resolves the problem in Example 2.

Table 3. Approximate solution of Example 2 using two different sub-domains, q, and the numerical
values reported in Odibat and Momani [60].

t γ = 0.2 γ = 0.4 γ = 1.0
q = 10 q = 20 Reported [60] q = 10 q = 20 Reported [60] q = 10 q = 20 Exact

0.0 −2.0000 −2.0000 −2.0000 −2.0000 −2.0000 −2.0000 −2.0000 −2.0000 −2.0000

0.2 −1.4454 −1.4455 −1.4864 −1.4874 −1.4874 −1.4899 −1.6666 −1.6666 −1.6666

0.4 −1.3295 −1.3296 −1.3665 −1.3506 −1.3506 −1.3525 −1.4285 −1.4285 −1.4285

0.6 −1.2477 −1.2478 −1.2822 −1.2525 −1.2526 −1.2541 −1.2500 −1.2500 −1.2500

0.8 −1.1867 −1.1868 −1.2192 −1.1774 −1.1774 −1.1787 −1.1111 −1.1111 −1.1111

1.0 −1.1396 −1.1397 −1.1704 −1.1177 −1.1178 −1.1189 −0.9999 −1.0000 −1.0000

Table 4. The residual errors of Example 2 at selected points using two different sub-domains, q, for
different values of fractional order γ.

t γ = 0.2 γ = 0.4 γ = 0.6

q = 10 q = 20 q = 10 q = 20 q = 10 q = 20

0.2 4.4230 × 10−9 4.8561 × 10−13 9.7841 × 10−11 9.2539 × 10−12 3.2469 × 10−10 5.2865 × 10−11

0.4 9.3414 × 10−13 2.1760 × 10−13 1.6637 × 10−11 3.8897 × 10−12 9.3717 × 10−11 2.0417 × 10−11

0.6 4.9305 × 10−13 1.2423 × 10−13 8.9744 × 10−12 2.1446 × 10−12 4.9785 × 10−11 1.1396 × 10−11

0.8 2.8477 × 10−13 7.1831 × 10−14 5.4355 × 10−12 1.3228 × 10−12 3.0330 × 10−11 7.1187 × 10−12

1.0 1.7807 × 10−13 4.6629 × 10−14 3.5078 × 10−12 8.6397 × 10−13 1.9900 × 10−11 4.6949 × 10−12

Example 3. Next, consider the non-linear fractional differential equation [61]

C
0 Dγ

t u(t) + u(t)2 =
2t2−γ

Γ(3 − γ)
− t1−γ

Γ(2 − γ)
+ (t2 − t + 1)2, 0 < γ ≤ 1, t ∈ [0, T], (33)

with the initial condition u(0) = 1 and whose exact solution is u(t) = t2 − t + 1.

Table 5 presents the maximum absolute error of the difference between the exact and
approximate solutions obtained using the multi-domain and single-domain methods. It
is observed from the table that there is conformity with the trend observed in Table 2. As
the domain of the FDE becomes larger, the error in the single domain scheme deteriorates;
however, in comparison, the magnitude of the errors is better for the multi-domain scheme.
We note that the magnitude of the error increases as γ increases, similar to the trend
observed in Table 2.
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Table 5. The maximum absolute error of the difference between the exact and approximate solutions
of Example 3 for different numbers of sub-domains, q.

N = 10, γ = 0.5 N = 10, T = 6.0

q T = 1.0 T = 3.0 T = 6.0 γ = 0.2 γ = 0.6 γ = 0.8

5 6.5833 × 10−5 4.5300 × 10−4 7.7010 × 10−4 1.6897 × 10−4 9.9126 × 10−4 1.0256 × 10−3

10 3.6216 × 10−5 2.6020 × 10−4 4.7125 × 10−4 1.0248 × 10−4 6.3577 × 10−4 7.4647 × 10−4

20 1.9347 × 10−5 1.3492 × 10−4 2.8073 × 10−4 5.5876 × 10−5 3.9608 × 10−4 5.1975 × 10−4

50 1.6865 × 10−5 8.2634 × 10−5 1.3621 × 10−4 2.3143 × 10−5 2.0636 × 10−4 3.2248 × 10−4

100 1.6547 × 10−5 6.7163 × 10−5 8.2558 × 10−5 1.0361 × 10−5 1.1932 × 10−4 2.1211 × 10−4

200 1.6576 × 10−5 5.9548 × 10−5 6.7326 × 10−5 7.5375 × 10−6 7.6523 × 10−5 1.3480 × 10−4

Single domain

3.1847 × 10−4 9.0415 × 10−4 1.7639 × 10−3 6.1773 × 10−4 1.9684 × 10−3 2.2669 × 10−3

Example 4. Consider the initial value fractional homogeneous Bagley–Torvik differential equation

C
0 Dγ

t u(t) + u′′(t) + u(t) = 0, for t ∈ (0, T] and γ ∈ (1, 2), (34)

subject to the initial conditions u(0) = 1.0 and u′(0) = 0.

If we replace the right-hand side of Equation (34) with 2 + 4
√

t
π
+ t2 and set t ∈ (0, 1],

subject to the starting conditions u(0) = 0.0 and u′(0) = 0, the closed-form solution is
given as u(t) = t2 when γ = 1.5. Table 6 presents the errors obtained by taking the absolute
value of the difference between the numerical solutions obtained through the multi-domain
technique and the exact solutions, and these are compared with the errors obtained through
the evolutionary artificial neural networks method in the study of Raja et al. [62].

Table 6. The absolute errors of the difference between the exact and numerical solutions of Example 4
at different t values using N = 12 and q = 400 in comparison with the errors reported in the work of
Raja et al. [62].

t Exact Solution Present Result Present Error Reported Error [62]

0.1 0.01 0.01000 1.83183 × 10−7 5.48 × 10−5

0.3 0.09 0.09005 1.26966 × 10−6 2.66 × 10−3

0.5 0.25 0.25014 6.69388 × 10−6 1.67 × 10−2

0.7 0.49 0.49026 3.40281 × 10−5 5.80 × 10−2

0.9 0.81 0.81040 1.25968 × 10−4 1.50 × 10−1

1.0 1.00 1.00048 2.12565 × 10−4 2.25 × 10−1

Table 6 compares the exact and approximate solutions obtained using the multi-
domain method at various t values and the associated errors at each t. The errors are
compared with those obtained in Raja et al. [62]. It is observed from the table that the
approximate solutions match the exact solutions better than the results in Raja et al. [62],
and this validates the efficiency of the proposed method as it outperforms a neural network
approach known to be efficient and reliable.

To further validate the accuracy of the proposed multi-domain method, the infinity
norm of the residual for different numbers of sub-domains is presented. Table 7 gives the
infinity norm of the residual errors for Example 4. The residual error is obtained through
the discrete equivalent of Equation (34), defined by

Residual =
l

∑
e=1

(te−1,te D
γ
e )

TUhl ,e + (tl ,hl
Dγ

l )
TUhl ,l + (tl ,hl

D2
l )

TUhl ,l + ET
l Uhl ,l . (35)
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Table 7 shows that the method is efficient in solving fractional-order differential
equations of varying values of arbitrary non-integer order, as the residual error remains
very small for various fractional orders, demonstrating the effectiveness of the multi-
domain technique.

Table 7. The maximum residual errors for Example 4 for different T values, fractional orders, and
different numbers of multi-domains, q.

N = 10, γ = 1.5 N = 10, T = 6.0

q T = 1.0 T = 3.0 T = 6.0 γ = 1.2 γ = 1.6 γ = 1.8

10 1.115 × 10−10 1.158 × 10−11 1.933 × 10−12 1.031 × 10−12 1.870 × 10−12 3.445 × 10−12

20 7.346 × 10−10 6.618 × 10−11 1.158 × 10−11 1.078 × 10−11 2.104 × 10−11 2.765 × 10−11

To further validate the results obtained, we reproduce the solution profiles obtained
by Zafar et al. [63] and observe excellent agreement in the result, as shown in Figure 3.
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Figure 3. The dynamics of the Bagley–Torvik Equation (34) for various values of γ with T = 70,
N = 10 and q = 400: (a) the phase portrait for the u − u′ plane and (b) the u(t) profile.

In the remaining examples in this section, we consider systems of coupled fractional
initial value problems that describe chaotic systems. These equations often exhibit long-
term dynamics and, invariably, require long-term integration to fully understand the
underlying dynamics involved. Therefore, a numerical technique, such as the multi-domain
Chebyshev pseudospectral method, that can handle long-term integration is a perfect fit
for solving such systems, as corroborated by the results in the next four examples.

Example 5. Consider the fractional chaotic system of differential equations which describe a
memory-inherent electrical system [64]

C
0 Dγ

t u1(t) =
u2(t)

c
,

C
0 Dγ

t u2(t) = − 1
L

(
u1(t) + βu2(t)(u3(t))2 − βu2(t)

)
,

C
0 Dγ

t u3(t) = −u2(t)− αu3(t) + u2(t)u3(t), t ∈ (0, T], γ ∈ (0, 1],


(36)

subject to the following initial state, (0.1, 0.0, 0.1). Here, c = 0.70, L = 3.00, β = 1.10 and
α = 0.60. The voltage across the capacitor, c, is represented by the variable u1(t), and the current
through the inductor, L, is represented by the variable u2(t), and the internal state of the memristive
system is denoted by the variable u3(t).

The average maximum residual error for the system (36) is given in Table 8. We remark
here that the maximum residual errors presented in Table 8 and subsequent tables in this
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section are obtained as the average of the maximum residuals of the equations in the system.
The residuals are calculated similarly to Equation (35). It can be seen from Table 8 that for
various fractional orders and seemingly large domains, [0, T], a high level of accuracy is
obtained when the multi-domain Chebyshev pseudospectral method is used. Due to the
inherently chaotic nature of the problem, the dynamics of the system typically require a
large physical domain to fully develop, and to effectively capture these complex long-term
behaviors, the physical domain is partitioned into a large number of smaller sub-domains.
The table shows that the average of the maximum residual errors decreases marginally
as the number of sub-domains increases. This inverse relationship between the number
of sub-domains and the residual error highlights the applicability of the multi-domain
technique when dealing with this kind of system that requires long-term integration. This
is particularly evident when the error is compared to the error associated with the single-
domain method. As already observed in the previous examples and now corroborated
by Table 8, the error associated with the single-domain method is worse than the error
obtained when the multi-domain approach is used.

Table 8. The residual errors for Example 5 for two values of T using N = 10 and for different numbers
of sub-domains q, with c = 0.70, L = 3.00, β = 1.10 and α = 0.60.

T = 20.0 T = 50.0

q γ = 0.7 γ = 0.8 γ = 0.9 γ = 0.7 γ = 0.8 γ = 0.9

100 2.515 × 10−11 7.810 × 10−12 8.503 × 10−12 8.781 × 10−11 3.336 × 10−11 8.054 × 10−10

200 9.780 × 10−12 2.590 × 10−12 2.144 × 10−12 3.434 × 10−11 1.113 × 10−11 1.935 × 10−10

300 5.544 × 10−12 1.365 × 10−12 9.795 × 10−13 1.973 × 10−11 5.817 × 10−12 8.468 × 10−11

400 3.717 × 10−12 8.632 × 10−13 5.718 × 10−13 1.319 × 10−11 3.701 × 10−12 4.723 × 10−11

500 2.720 × 10−12 6.125 × 10−13 4.095 × 10−13 9.769 × 10−12 2.592 × 10−12 3.004 × 10−11

Single domain

2.397 × 10−9 2.439 × 10−9 1.920 × 10−7 3.101 × 10−8 4.108 × 10−7 5.427 × 10−7

To lend further credibility to the numerical results of this example, we reproduce the
dynamics, in the form of phase portraits, of the memristive chaotic electrical system as
reported in the work of Sene [64]. As shown in Figure 4, there is an excellent agreement
between these phase portraits and those in the work of Sene [64].
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Figure 4. The phase portraits of the chaotic systems (36) for the (a) u1 − u2 plane, (b) u1 − u3 plane,
(c) u2 − u3 plane and (d) u1 − u2 − u3 surface with γ = 0.95 and 0.99, T = 250, N = 13 and q = 850.

Example 6. Consider the fractional modified stretch-twist-fold differential equations [65]

C
0 Dγ

t u1(t) = Ω1u3(t)− 8u1(t)u2(t), t ∈ (0, T], γ ∈ (0, 1],
C
0 Dγ

t u2(t) = 11(u1(t))2 + 3(u2(t))2 + (u3(t))2 + Ω2u1(t)u3(t)− 3Ω2
3,

C
0 Dγ

t u3(t) = 2
(
1 − Ω4

)
u2(t)u3(t)− Ω1u1(t)− Ω2u1(t)u2(t),

 (37)

under the initial state (0.2,−0.2, 0.2), with γ = 1.00, Ω1 = 0.2, Ω2 = 2.0, Ω3 = 1.0 and
Ω4 = 0.1.

Similar to the previous example, this system typically requires a large physical domain
to fully stabilize and develop, and when solved on a single domain, the numerical solution
is unstable, as evidenced by the average residual errors in a single domain presented in
Table 9. We present the average maximum residual errors for various fractional orders and
relatively large domains, [0, T], for different relatively large numbers of sub-domains in
Table 9. There is an agreement between the level of accuracy observed for the results in
Table 9 and those obtained in the previous examples. The error obtained for the various
sub-domain numbers used is shown to be small, indicating that the proposed multi-
domain Chebyshev pseudospectral method efficiently solves this system of FDEs. As
q increases, it is observed that the average residual error improves, resulting in higher
accuracy. The superior effectiveness of the multi-domain approach over the single-domain
numerical scheme becomes marginally clearer in this example. In this case, the single-
domain numerical scheme is observed to produce quite large numerical errors, whereas
the multi-domain technique can achieve a higher accuracy level. This disparity in the level
of performance highlights the limitation in the scope of the single-domain scheme, while
the multi-domain approach demonstrates robustness and versatility, especially for complex
systems like the one considered in this example.

Figure 5 gives the behavior of the solution profiles as t evolves. The results are as
expected and in complete agreement with the result of Azam et al. [65]. It is also observed
in Figure 6 that the chaotic system flows through the various states by turning and twisting
about the quadrants. This dynamics was also captured by Azam et al. [65] and validates
the numerical results being put forward in this study.
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Table 9. The average maximum residual errors for Example 6 for two values of T and different
numbers of sub-domains q using N = 10. The following parameter values are used: Ω1 = 0.2,
Ω2 = 2.0, Ω3 = 1.0 and Ω4 = 0.1.

T = 20.0 T = 50.0

q γ = 0.7 γ = 0.8 γ = 0.9 γ = 0.7 γ = 0.8 γ = 0.9

100 1.292 × 10−8 4.793 × 10−8 2.171 × 10−8 1.364 × 10−10 1.059 × 10−8 4.952 × 10−8

200 1.883 × 10−8 1.192 × 10−8 6.393 × 10−9 1.060 × 10−8 2.928 × 10−8 4.607 × 10−8

300 8.108 × 10−9 5.539 × 10−9 3.267 × 10−9 1.826 × 10−8 3.502 × 10−8 1.144 × 10−8

400 4.546 × 10−9 3.223 × 10−9 1.790 × 10−9 2.750 × 10−8 1.284 × 10−8 1.065 × 10−8

500 3.082 × 10−9 2.098 × 10−9 1.182 × 10−9 1.883 × 10−8 1.194 × 10−8 6.393 × 10−9

Single domain

1.730 × 101 1.999 × 101 2.419 × 101 8.388 × 101 2.195 × 10−1 4.131 × 101
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Figure 5. The time evolution of u1(t), u2(t), u3(t) of the chaotic system (37) with γ = 1.00, Ω1 = 0.2,
T = 100, N = 13 and q = 350.
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Figure 6. The phase portraits of the chaotic system (37) for the (a) u1 − u2 plane, (b) u1 − u3 plane,
(c) u2 − u3 plane and (d) u1 − u2 − u3 surface with γ = 1.00, Ω1 = 0.2, T = 100, N = 13 and q = 350.

Example 7. Consider the fractional Rossler differential equations [66]

C
0 Dγ

t u1(t) = −u2(t)− u3(t), t ∈ (0, T], γ ∈ (0, 1],
C
0 Dγ

t u2(t) = u1(t) + Ψ1u2(t),
C
0 Dγ

t u3(t) = 0.2 + u1(t)u3(t)− 10u3(t),

 (38)

with the following initial conditions: (1, 1, 1), with Ψ1 = 0.4 and γ = 0.9.

Table 10 shows the average maximum residual errors for Equation (38) for selected
values of arbitrary non-integer order, γ, and for two domains, (0, T]. The results are
presented for different numbers of domain decomposition. From Table 10, we see that the
residual errors are small, indicating that the approximate solutions are accurate. As has
been validated several times in this study, an increase in the number of sub-domains used
results in more accurate solutions. It is also shown that using the single-domain approach
results in less accuracy in the approximate solutions obtained.
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Table 10. The residual errors for Example 7 at two final times T using the number of grid points
N = 10 for different numbers of sub-domains q and Ψ1 = 0.40.

T = 20.0 T = 50.0

q γ = 0.7 γ = 0.8 γ = 0.9 γ = 0.7 γ = 0.8 γ = 0.9

100 1.073 × 10−7 4.973 × 10−8 1.171 × 10−8 1.469 × 10−7 1.469 × 10−7 1.893 × 10−7

200 5.544 × 10−8 1.857 × 10−8 3.569 × 10−9 1.269 × 10−7 6.666 × 10−8 4.696 × 10−8

300 3.479 × 10−8 1.015 × 10−8 1.740 × 10−9 9.241 × 10−8 3.853 × 10−8 3.299 × 10−8

400 2.459 × 10−8 6.520 × 10−9 1.042 × 10−9 6.979 × 10−8 2.574 × 10−8 1.933 × 10−8

500 1.859 × 10−8 4.653 × 10−9 7.023 × 10−10 5.544 × 10−8 1.857 × 10−8 1.189 × 10−8

Single domain

1.594 × 10−4 2.218 × 10−4 6.733 × 10−5 1.725 × 10−4 2.518 × 10−4 3.726 × 10−4

Figure 7 displays the phase portraits for the chaotic system, and the result agrees with
the results obtained in Li et al. [66], thereby validating the present numerical solutions.
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Figure 7. The phase portraits of the chaotic systems (38) for the (a) u1-u2 plane, (b) u1 − u3 plane,
(c) u2 − u3 plane and (d) u1 − u2 − u3 surface with γ = 0.90, Ψ1 = 0.4, T = 200, N = 10 and q = 900.

Example 8. Consider the following non-linear fractional chaotic system [67]

C
0 Dγ

t u1(t) = Ψ1u1(t) + u2(t) + u2(t)u3(t), t ∈ (0, T], γ ∈ (0, 1],
C
0 Dγ

t u2(t) = −u1(t)u3(t) + u2(t)u3(t),
C
0 Dγ

t u3(t) = −Ψ2u3(t)− Ψ3u1(t)u2(t)− m1,

 (39)

with the initial state given as (0.2, 0.2, 0.2), Ψ1 = Ψ2 = Ψ3 = 1.0, m1 = 0.0 and γ = 0.9.

In Table 11, the average maximum residual errors obtained for Equation (39) are
presented. The table shows that an increase in the number of partitioned domains results
in higher accuracy of approximate solutions obtained for the selected fractional orders and
domains. The average maximum residual errors are observed to be small, confirming that
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the proposed multi-domain method is highly efficient for this fractional differential model,
unlike the single-domain approach, which is not as accurate.

Table 11. The average maximum residual errors for Example 8 in two different domains (0, T] with
N = 10 for different numbers of sub-domains q, Ψ1 = Ψ2 = Ψ3 = 1.0 and m1 = 0.0.

T = 20.0 T = 50.0

q γ = 0.7 γ = 0.8 γ = 0.9 γ = 0.7 γ = 0.8 γ = 0.9

100 4.114 × 10−8 6.012 × 10−8 5.802 × 10−8 2.142 × 10−7 1.226 × 10−7 2.711 × 10−7

200 1.305 × 10−8 1.673 × 10−8 1.559 × 10−8 5.335 × 10−8 6.845 × 10−8 7.236 × 10−8

300 6.155 × 10−9 7.361 × 10−9 7.034 × 10−9 3.422 × 10−8 4.357 × 10−8 4.049 × 10−8

400 3.398 × 10−9 4.196 × 10−9 3.935 × 10−9 2.050 × 10−8 2.575 × 10−8 2.436 × 10−8

500 2.195 × 10−9 2.720 × 10−9 2.540 × 10−9 1.304 × 10−8 1.676 × 10−8 1.559 × 10−8

Single domain

3.055 × 10−2 1.225 × 10−2 9.667 × 10−1 2.279 × 10−2 6.453 × 101 4.708 × 101

We present the phase portraits of the chaotic system in Figure 8. The figure validates
the dynamics reported by Sene [67] and is in excellent agreement with the previously
published result. The agreement between the phase portraits presented here and those
documented in the study by Sene [67] serves to further corroborate the accuracy and
reliability of the current numerical method.
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Figure 8. The phase portraits of the chaotic systems (39) for the (a) u1 − u2 plane, (b) u1 − u3 plane,
(c) u2 − u3 plane and (d) u1 − u2 − u3 surface with γ = 0.95, T = 150, N = 10 and q = 800.
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Figure 9 shows the phase portraits of the chaotic system in Equation (39) using two
different γ values. The figure justifies that the dynamics of the chaotic system depend on
the arbitrary real order.
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Figure 9. The phase portraits of the chaotic systems (39) for the (a) u1 − u2 plane, (b) u1 − u3 plane,
(c) u2 − u3 plane and (d) u1 − u2 − u3 surface with γ = 0.90 and 0.95, T = 80, N = 10 and q = 350.

Figure 10 displays the accuracy of the numerical results (the maximum absolute resid-
ual in each sub-domain) of each equation in the chaotic systems presented in
Equations (36)–(39). The figures show that the accuracy of the solutions obtained through
the multi-domain Chebyshev pseudospectral method is high and sometimes reaches er-
rors smaller than those reported so far in the tables. As can be clearly observed, as the
number of sub-domains in the computational domain increases, the residual error de-
creases correspondingly. In some instances, the residual error is reduced to the order of
10−16. However, the residual errors with a small number of sub-domains already show
good accuracy, thereby showing that using the multi-domain approach proposed in this
study is very efficient in solving fractional differential equations that typically require
long-term integration.



AppliedMath 2024, 4 971

0 10 20 30 40 50 60 70 80 90 100
10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

||Res
1
||

||Res
2
||

||Res
3
||

(a)

0 10 20 30 40 50 60 70 80 90 100
10-14

10-12

10-10

10-8

10-6

||Res
1
||

||Res
2
||

||Res
3
||

(b)

0 10 20 30 40 50 60 70 80 90 100
10-18

10-16

10-14

10-12

10-10

10-8

10-6

||Res
1
||

||Res
2
||

||Res
3
||

(c)

0 10 20 30 40 50 60 70 80 90 100
10-14

10-12

10-10

10-8

10-6

||Res
1
||

||Res
2
||

||Res
3
||

(d)
Figure 10. The maximum residual error in each domain for (a) Equation (36) (b) Equation (37)
(c) Equation (38) and (d) Equation (39) using γ = 0.8, T = 50, N = 10 and q = 100.

5. Conclusions

This study introduced a novel approach, the multi-domain Chebyshev pseudospectral
method for solving fractional differential equations. The novelty of the method stemmed
from the use of non-overlapping multi-domains, Chebyshev polynomials of the first kind
and Gauss–Lobatto collocation points in developing the scheme, which was specifically
adapted to handle fractional differential equations. The method leverages the global
properties of spectral-based methods for discretizing non-local operators such as fractional
differential operators, the exponential convergence of the Chebyshev polynomial-based
pseudospectral method and the multi-domain approach’s ability to maintain the accuracy
of solutions to problems with long-term dynamics. The stability region of the multi-domain
scheme was established through linear stability analysis. The stability analysis showed that
obtaining an absolute and Lubich-stable numerical scheme for some values of arbitrary non-
integer order is possible. Several numerical experiments involving linear and non-linear
single FDEs and systems of non-linear FDEs were conducted. The examples were carefully
chosen to span varying complexity levels, including fractional initial value problems with
long-term dynamics, such as chaotic systems, which were shown to significantly benefit
from a multi-domain numerical scheme. These examples have established that the proposed
multi-domain numerical method gives highly accurate results. To validate the method,
comparisons of the numerical results obtained in this study were made with analytical
solutions, where available, and approximate solutions from the literature. It was found
that the proposed method gave more accurate solutions than the approximate solutions
from the literature. Where an exact solution was unavailable, residual error analysis
was conducted to establish the accuracy of the proposed method. In all the examples
considered, the method was found to produce comparative, highly accurate solutions. In
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future studies, we will explore the applicability of the Chebyshev pseudospectral method
in non-overlapping or overlapping partitioned domains to fractional boundary value
problems with non-linear dynamics.

Author Contributions: S.D.O.: Conceptualization, Investigation, Methodology, Software,
Writing—Original Draft, Reviewing and Editing, Supervision. N.M.: Investigation, Methodology,
Writing—Original Draft, Reviewing and Editing. Y.O.T.: Investigation, Methodology,
Writing—Original Draft, Reviewing and Editing. O.O.: Conceptualization, Methodology,
Writing—Original Draft, Reviewing and Editing, Supervision. All authors have read and agreed to
the published version of the manuscript.

Funding: This work is based on the research supported in part by the National Research Foundation of
South Africa (Ref Number TTK2204163593). The APC was funded by the University of Witwatersrand.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data generated are contained within the article.

Acknowledgments: Yusuf Olatunji Tijani acknowledges the support of Rhodes University.

Conflicts of Interest: The authors declare that there are no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CGL Chebyshev–Gauss–Lobatto
FDEs Fractional differential equations
MSCM Multi-domain spectral collocation method

References
1. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of

Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998.
2. Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier:

Amsterdam, The Netherlands, 1974.
3. Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85.
4. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat

transfer model. arXiv 2016, arXiv:1602.03408.
5. Javadi, R.; Mesgarani, H.; Nikan, O.; Avazzadeh, Z. Solving fractional order differential equations by using fractional radial basis

function neural network. Symmetry 2023, 15, 1275. [CrossRef]
6. Benchochra, M.; Karapinar, E.; Lazreg, J.E.; Salim, A. Fractional Differential Equations: New Advancements for Generalized Fractional

Derivatives; Springer: Cham, Switzerland, 2023.
7. Ahmadian, S.; Darvishi, M. Fractional version of (1+1)-dimensional Biswas–Milovic equation and its solutions. Optik 2016,

127, 10135–10147. [CrossRef]
8. Manafian, J.; Lakestani, M. A new analytical approach to solve some of the fractional-order partial differential equations. Indian J.

Phys. 2017, 91, 243–258. [CrossRef]
9. Kumar, S.; Kumar, D.; Abbasbandy, S.; Rashidi, M. Analytical solution of fractional Navier–Stokes equation by using modified

Laplace decomposition method. Ain Shams Eng. J. 2014, 5, 569–574. [CrossRef]
10. Shakeel, M.; Mohyud-Din, S.T. A novel (G’/G)-expansion method and its application to the space-time fractional symmetric

regularized long wave (SRLW) equation. Adv. Trends Math. 2015, 2, 1–16. [CrossRef]
11. Zhu, Q.; Qi, J. Exact Solutions of the Nonlinear Space-Time Fractional Partial Differential Symmetric Regularized Long Wave

(SRLW) Equation by Employing Two Methods. Adv. Math. Phys. 2022, 2022, 8062119. [CrossRef]
12. Senol, M. New analytical solutions of fractional symmetric regularized-long-wave equation. Rev. Mex. De Física 2020, 66, 297–307.

[CrossRef]
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