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Abstract: This work considers the existence of solutions of the heteroclinic type in nonlinear second-
order differential equations with ϕ-Laplacians, incorporating generalized impulsive conditions on
the real line. For the construction of the results, it was only imposed that ϕ be a homeomorphism,
using Schauder’s fixed-point theorem, coupled with concepts of L1-Carathéodory sequences and
functions along with impulsive points equiconvergence and equiconvergence at infinity. Finally, a
practical part illustrates the main theorem and a possible application to bird population growth.

Keywords: heteroclinic solutions; impulsive points equiconvergence and equiconvergence at infinity;
L1-Carathéodory sequences and functions

1. Introduction

In the theory of differential equations, there are several aspects and interesting features
to study or explore further. Among these is the study of impulsive differential equations or
systems and the qualitative analysis of solutions in the real line. In this context, this article
aims to study the existence of solutions of the heteroclinic type in nonlinear second-order
differential equations with generalized, infinite impulse effects, which, to the best of our
knowledge is rarely addressed in the existing literature. More specifically, we extend the
results in [1], adding infinite impulses in the system with ϕ-Laplacian. This can be very
interesting for modeling phenomena with minor changes and with different intensities,
which occur very quickly and for long periods of time, opening new fields for investigation
on the subject.

Impulses incorporated in differential equations are intended to describe and represent
the effects of small and sudden changes in a given system over certain periods of time.
In the literature, there are several areas of study associated with impulses such as biotech-
nology, medicine, population dynamics, logging, etc. (see [2,3]) and references therein.
Various theoretical approaches, as well as numerous applications of second-order nonlinear
differential equations featuring impulses, can be found in ([1,4–10]).

On the other hand, in the analysis of the qualitative aspects of differential equations,
the investigation into the existence of heteroclinic or homoclinic solutions is useful and
necessary. When a system of ordinary differential equations has equilibria (that is, constant
solutions), studying the connections between them through the trajectories of the system’s
solutions, known as homoclinic or heteroclinic solutions, becomes an essential task. It
is common for homoclinic and heteroclinic solutions to emerge in mathematical models
dealing with dynamical systems, bifurcations, mechanics, chemistry and biology [11–13].

AppliedMath 2024, 4, 1047–1064. https://doi.org/10.3390/appliedmath4030056 https://www.mdpi.com/journal/appliedmath

https://doi.org/10.3390/appliedmath4030056
https://doi.org/10.3390/appliedmath4030056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com
https://orcid.org/0000-0002-0039-1561
https://orcid.org/0000-0003-4169-9789
https://doi.org/10.3390/appliedmath4030056
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com/article/10.3390/appliedmath4030056?type=check_update&version=2


AppliedMath 2024, 4 1048

The existence of heteroclinic orbits is also crucial for analyzing spatiotemporal chaotic
patterns of nonlinear evolution equations [14].

Over the years, some studies have been carried out on the topic of heteroclinic solu-
tions. In [15], the author investigates heteroclinic solutions pertaining to a second-order
equation that is asymptotically autonomous ẍ = a(t)V′(x(t)). In [16], Coti Zelati along
with Rabinowitz investigated heteroclinic orbits for a non-autonomous differential equa-
tion that connects stationary points with distinct energy levels. For a fourth-degree or-
dinary differential equation, heteroclinic solutions linking nonconsecutive equilibria of
a triple-well potential were found [17]. Cabada et al., in [18], examine the existence of
heteroclinic-type solutions in semi-linear second-order difference equations pertaining
to the Fisher–Kolmogorov’s equation. Monotonicity and continuity arguments form the
basis of the proof for these results. Hale and Rybakowski also demonstrated the existence
of heteroclinic solutions for retarded functional differential equations [19]. Furthermore,
works involving heteroclinics and impulses can be found in [20–26] and references therein.

Using findings concerning the existence of non-principal solutions, in [27], the au-
thors study Leighton and Wong theorems of oscillation regarding a class of second-order
impulsive equations having the form{

(p(t)x′)′ + q(t)x = 0, t ̸= θi

∆x + aix = 0, ∆p(t)x′ + bix + cix′ = 0, t = θi,

and {
(p(t)x′)′ + q(t)x = f (t), t ̸= θi

∆x + aix = fi, ∆p(t)x′ + bix + cix′ = gi, t = θi,

in which p > 0, q, f are left continuous piece-wise functions in [0, ∞), and {ai}, {bi} and
{ci} are real number sequences with i ≥ 1. The set {θi}, of impulse points, constitutes a
strictly increasing, unbounded sequence of positive real numbers.

In [28], Cupini, Marcelli and Papalini present the strongly nonlinear boundary-
value problem {

(a(x(t))Φ(x′(t)))′ = f (t, x(t), x′(t)) a.e. t ∈ R
x(−∞) = v−, x(+∞) = v+

In this work, the authors consider nonlinear mixed differential operators depending
both on x and x′. Here, v− < v+, and Φ : R → R is a general increasing homeomorphism,
Φ(0) = 0, a is a positive continuous function, and f is a nonlinear Caratheódory function.

In a recent paper [1], Sousa and Minhós consider the following coupled system{
(a(t)ϕ(u′(t)))′ = f (t, u(t), v(t), u′(t), v′(t)),
(b(t)ψ(v′(t)))′ = h(t, u(t), v(t), u′(t), v′(t)), t ∈ R.

where ϕ and ψ are increasing homeomorphisms satisfying adequate relations on their
inverses, with a, b : R → (0, +∞[ being continuous functions, and f , h : R5 → R, L1-
Carathéodory functions, along with the following asymptotic conditions

u(−∞) = A, u′(+∞) = 0, v(−∞) = B, v′(+∞) = 0

for A, B ∈ R.
Motivated by these works, in our paper, we consider a similar problem but with the

inclusion of infinite impulsive conditions; more precisely, we study the following real
nonlinear second-order differential equation(

a(t)ϕ
(
u′(t)

))′
= f (t, u(t), u′(t)), t ∈ R\{tk}, k ∈ Z (1)
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with ϕ being an increasing homeomorphism satisfying adequate relations on its inverse,
a : R → (0, +∞[ being a continuous function, and f : R3 → R being an L1-Carathéodory
function, considering the following asymptotic conditions

u(−∞) = C, u(+∞) = L (2)

for C, L ∈ R, together with the generalized and infinite impulse conditions{
∆u(tk) = Ik(tk, u(tk), u′(tk)),
∆ϕ(u′(tk)) = Jk(tk, u(tk), u′(tk)),

(3)

where, for k ∈ Z (Z is the set of all integers), ∆u(tk) = u(t+k ) − u(t−k ), ∆ϕ(u′(tk)) =
ϕ(u′(t+k ))− ϕ(u′(t−k )), and u(t+k ), u(t−k ) are the right and left limits for u(tk), respectively.
∆ϕ(u′(t+k )) and ∆ϕ(u′(t−k )) have a similar meaning for ∆ϕ(u′(tk)). Ik, Jk ∈ C(R3,R), are
Carathéodory sequences and tk are moments such that · · · < tk < tk+1 < tk+2 < · · · , and

lim
k→−∞

tk = −∞, lim
k→+∞

tk = +∞.

It is worth noting that problems involving ψ and ϕ Laplacians, which are more general
forms of the one-dimensional p-Laplacian equation (ϕ(x) = |x|p−2x), appear frequently in
the study of periodic solutions for differential equations (see [29] and references therein for
more information).

Another concept to highlight is the generalization of measurable functions (sequences);
that is, the concept of Carathéodory sequences was used in the work precisely to control
the behavior of the infinite moments of impulse (see [30,31] for more information).

The outline of the present paper is given as follows: Section 2 comprises the functional
backgrounds and the main theorem of existence, while Section 3 presents an example
application which illustrates the main result.

2. Auxiliary Results, Definitions and the Main Theorem

Let us define
u(t±k ) := lim

t→t±k
u(t),

and consider the set

PC(R) =
{

u : u ∈ Cn(R) is continuous for t ̸= tk, u(n)(tk) = u(n)(t−k ),
u(n)(t+k ) exists for k ∈ Z and n = 0, 1

}
.

Considering the space

X :=
{

x : x ∈ PC(R), lim
t→±∞

x(i)(t) ∈ R, i = 0, 1
}

, (4)

with the norm
∥u∥X = max

{
∥u∥∞,

∥∥u′∥∥
∞

}
,

being
∥u∥∞ := sup

t∈R
|u(t)|.

Lemma 1. (X, ∥ · ∥X) given in (4) is a real Banach space.

Proof. Let x, y ∈ X, and λ ∈ R. In order to show that the space (X, ∥ · ∥X) is Banach,
the following points need to be proven:

1. X is a vector space.
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(a) Vector addition

lim
t→±∞

(x + y)(i)(t) = lim
t→±∞

(
x(i)(t) + y(i)(t)

)
=

(
lim

t→±∞
x(i)(t) + lim

t→±∞
y(i)(t)

)
∈ R

Since from (4), both limt→±∞ x(i)(t) ∈ R and limt→±∞ y(i)(t) ∈ R. Hence, X
is closed under addition, and one can see that this addition is commutative,
associative and there exists a zero vector 0, and −x for each x such that

lim
t→±∞

(x + (−x) + 0)(i)(t) = lim
t→±∞

(
x(i)(t) + (−x)(i)(t)

)
=

(
lim

t→±∞
x(i)(t)− lim

t→±∞
x(i)(t)

)
= 0 ∈ R

(b) Multiplication by scalars
From derivative and limit rules we obtain that

lim
t→±∞

(λx)(i)(t) = lim
t→±∞

λ(x)(i)(t)

= λ

(
lim

t→±∞
(x)(i)(t)

)
∈ R

Thus, X is also closed under multiplication by scalars, satisfying the commuta-
tive and distributive laws as well. And therefore, X is a vector space.

2. (X, ∥ · ∥X) is a normed space.
Let us show that the norm is well defined by verifying its properties. We can see from
the definition that ∥x∥X ≥ 0, ∀t ∈ R. When ∥x∥X = 0, by definition, we must have
∥x∥∞ = ∥x′∥∞ = 0, which in turn means that x(t) = 0 for all t ∈ R. Conversely, when
x(t) = 0 for all t ∈ R we get that ∥x∥∞ = ∥x′∥∞ = 0, and therefore ∥x∥X = 0.

Given some λ ∈ R, we have that

∥λx∥X = max{sup ∥λx(t)∥, sup ∥(λx)′(t)∥}
= max{|λ| sup ∥x(t)∥, |λ| sup ∥x′(t)∥}
= |λ|∥x∥X .

Now, we show the triangle inequality

∥x + y∥X ≤ ∥x∥X + ∥y∥X .

We know that
|x + y| ≤ |x|+ |y| ≤ sup |x|+ sup |y|,

and
|x′ + y′| ≤ |x′|+ |y′| ≤ sup |x′|+ sup |y′|.

But since the supremum is the least upper bound, we obtain from the above inequali-
ties that

|x + y| ≤ sup |x + y| ≤ sup |x|+ sup |y|,

|x′ + y′| ≤ sup |x′ + y′| ≤ sup |x′|+ sup |y′|.

So

sup |x + y| ≤ sup |x|+ sup |y|
≤ max{sup |x|, sup |x′|}+ max{sup |y|, sup |y′|}
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and

sup |(x + y)′| ≤ sup |x′|+ sup |y′|
≤ max{sup |x|, sup |x′|}+ max{sup |y|, sup |y′|}

So, the maximum between sup |x + y| and sup |(x + y)′| is bounded as

max{sup |x + y|, sup |(x + y)′|} ≤ max{sup |x|, sup |x′|}+ max{sup |y|, sup |y′|}.

Rewriting by the definition, we obtain

∥x + y∥X ≤ ∥x∥X + ∥y∥X ,

thus showing that the norm is well defined.
3. (X, ∥ · ∥X) is complete under the metric induced by the following norm:

d(x, y) = ∥x − y∥X = max{sup |x − y|, sup |(x − y)′|}.

Let (xm) be an arbitrary Cauchy sequence in X. Then, for any ε > 0, there exists an
N ∈ R such that for all m, n > N,

d(xm, xn) = max{sup |xm − xn|, sup |(xm − xn)
′|} < ε.

So, for every fixed t0 ∈ R, we have

max{|xm(t0)− xn(t0)|, |(xm(t0)− xn(t0))
′|} < ε

that is,
|xm(t0)− xn(t0)| < ε

and
|(xm(t0)− xn(t0))

′| < ε

And so, the sequence of numbers (x1(t0), x2(t0), x3(t0), . . . ) and
(x′1(t0), x′2(t0), x′3(t0), . . . ) are Cauchy, and each of them converge,
(see [32], Theorem 1.4-4), say

xm(t0) → x(t0) ∈ R

and
x′m(t0) → x′(t0) ∈ R,

as m → ∞. Therefore,
lim

t→±∞
x(t) ∈ R

and
lim

t→±∞
x′(t) ∈ R;

And so x(t) ∈ X, the space X is complete, and because it satisfies all the conditions, it
is also a Banach space.

For the reader’s convenience, we consider the definition of L1-Carathéodory functions:

Definition 1. A function f : R3 → R is L1− Carathéodory if

(i) For each (x, y) ∈ R2, t 7→ f (t, x, y) is measurable on R;
(ii) For a.e. t ∈ R, (x, y) 7→ f (t, x, y) is continuous on R2;
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(iii) For each ρ > 0, there exists a positive function ωρ ∈ L1(R) such that, whenever x, y ∈
[−ρ, ρ], then

| f (t, x, y)| ≤ ωρ(t), a.e. t ∈ R. (5)

Definition 2. A sequence Ik : R3 → R, k ∈ Z is Carathéodory if it verifies

(i) For each (a, b) ∈ R2, (a, b) 7−→ Ik(tk, a, b) is continuous for all k ∈ Z;
(ii) For each ρ > 0, there are non-negative constants χk,ρ ≥ 0 with

∑−∞<k<+∞ χk,ρ < +∞ such that for |a| < ρ and |b| < ρ we have |Ik(tk, a, b)| ≤ χk,ρ,
for every k ∈ Z.

Lemma 2. Assume that f : R3 → R is an L1-Carathéodory function and Ik, Jk : R3 → R are
Carathéodory sequences for k ∈ Z. Then, Equation (1) with conditions (2), (3) has a solution u ∈ X
expressed by

u(t) =
∫ t

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t<+∞

Ik(tk, u(tk), u′(tk)),

with C, M ∈ R satisfying condition (2). Namely, M is such that the following expression is verified:

u(+∞) =
∫ +∞

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<+∞

Ik(tk, u(tk), u′(tk)) = L. (6)

Proof. Assuming the appropriate convergence conditions are met, the first boundary
condition is satisfied as

u(−∞) =
∫ −∞

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<−∞

Ik(tk, u(tk), u′(tk)) = C.

Also, M ∈ R is such that (6) is satisfied.
Working the expression with u(t), we obtain

u′(t) = ϕ−1

(∫ t
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t<+∞ Jk(tk, u(tk), u′(tk))

a(t)

)

⇔ a(t)ϕ(u′(t)) =
∫ t

−∞
f (r, u(r), u′(r))dr + M + ∑

−∞<tk<t<+∞
Jk(tk, u(tk), u′(tk))

⇔ (a(t)ϕ(u′(t)))′ = f (t, u(t), u′(t)).

The following theorem presents a useful criterion for the operator’s compactness.

Theorem 1 ([1], Theorem 3). A set M ⊂ X is relatively compact if the following conditions hold:

(i) Both {t → x(t) : x ∈ M} and {t → x′(t) : x ∈ M} are uniformly bounded;
(ii) Both {t → x(t) : x ∈ M} and {t → x′(t) : x ∈ M} are equicontinuous on any compact

interval of R;
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(iii) Both {t → x(t) : x ∈ M} and {t → x′(t) : x ∈ M} are equiconvergent at ±∞, that is,
for any given ϵ > 0, there exists tϵ > 0 such that

| f (t)− f (±∞)| < ϵ,
∣∣ f ′(t)− f ′(±∞)

∣∣ < ϵ, ∀|t| > tϵ, f ∈ M.

Schauder’s fixed point theorem will provide the means to establish existence.

Theorem 2 ([33]). Let Y be a nonempty, closed, bounded and convex subset of a Banach space X,
and suppose that P : Y → Y is a compact operator. Then, P has at least one fixed point in Y.

Along this paper, we assume that

(H1) ϕ : R −→ R is an increasing homeomorphism such that
ϕ(R) = R, ϕ(0) = 0.

(H2) a : R → (0, +∞[ is a positive continuous function such that

lim
t→±∞

1
a(t)

∈ R.

Main Theorem

Here, we present the main result of this work, that is, the theorem that guarantees the
existence of a solution to the problem (1)–(3), for C, L ∈ R.

Theorem 3. Let ϕ : R → R be an increasing homeomorphism and a : R → (0, +∞[ a continuous
function satisfying (H1) and (H2). Assume that f : R3 → R is an L1-Carathéodory function,
Ik, Jk : R3 → R are Carathéodory sequences and there are ρ > 0, ωρ ∈ L1(R) and non-negative
constants χk,ρ, Ψk,ρ ≥ 0 such that

∫ +∞

−∞
ϕ−1

(∫ +∞
−∞ ωρ(r)dr + M + χk,ρ

a(s)

)
ds + C + Ψk,ρ < +∞, (7)

with

sup
t∈R

ϕ−1

(∫ +∞
−∞ ωρ(r)dr + M + χk,ρ

a(t)

)
< +∞, (8)

| f (t, x, y)| ≤ ωρ(t),

|Jk(tk, x(tk), y(tk))| ≤ χk,ρ,

|Ik(tk, x(tk), y(tk))| ≤ Ψk,ρ.

when x, y ∈ [−ρ, ρ].

Then, for C, L ∈ R, satisfying condition (2) and M ∈ R such that (6) is satisfied, the
problem (1)–(3) has, at least heteroclinic solutions u ∈ X.

Proof. Let us define the operator

T : X → X

u → T(u)

with
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(T(u))(t) =
∫ t

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t<+∞

Ik(tk, u(tk), u′(tk)),

with C ∈ R, satisfying condition (2) and M ∈ R such that (6) is satisfied.
To apply Theorem 2, we will prove that T is compact and that it has a fixed point; that

is, the proof follows five steps.

Step 1. T is well defined and it is continuous in X.

Allow u ∈ X and let us take ρ > 0 such that ∥u∥X < ρ. Being f an L1-Carathéodory
function and Ik, Jk Carathéodory sequences, there exists a positive function ωρ ∈ L1(R),
and non-negative constants χk,ρ, Ψk,ρ ≥ 0 such that

|Jk(tk, u(tk), u′(tk))| ≤ χk,ρ, |Ik(tk, u(tk), u′(tk))| ≤ Ψk,ρ.

Thus, T ∈ C1(R), as∫ t

−∞

∣∣ f (r, u(r), u′(r))
∣∣dr + |M|+ ∑

−∞<tk<t<+∞

∣∣Jk(tk, u(tk), u′(tk))
∣∣

≤
∫ +∞

−∞

∣∣ f (r, u(r), u′(r))
∣∣dr + |M|+ ∑

−∞<tk<t<+∞

∣∣Jk(tk, u(tk), u′(tk))
∣∣

≤
∫ +∞

−∞
ωρ(t) dt + |M|+ ∑

−∞<tk<+∞
χk,ρ < +∞,

∑
−∞<tk<t<+∞

∣∣Ik(tk, u(tk), u′(tk))
∣∣ ≤ ∑

−∞<tk<+∞
Ψk,ρ < +∞

and

(T(u))′(t) = ϕ−1

(∫ t
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t<+∞ Jk(tk, u(tk), u′(tk))

a(t)

)

≤ sup
t∈R

ϕ−1

(∫ +∞
−∞ ωρ(t) dt + M + ∑−∞<tk<+∞ χk,ρ

a(t)

)
< +∞.

Furthermore, by (2), (7), (8) and (H2),

lim
t→−∞

T(u)(t)

= lim
t→−∞

( ∫ t

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t<+∞

Ik(tk, u(tk), u′(tk))

)
= C ∈ R,
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lim
t→+∞

T(u)(t)

=
∫ +∞

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t<+∞

Ik(tk, u(tk), u′(tk)) = L ∈ R,

and

lim
t→±∞

(T(u))′(t)

= lim
t→±∞

ϕ−1

(∫ t
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t<+∞ Jk(tk, u(tk), u′(tk))

a(t)

)

≤ ϕ−1

(∫ +∞
−∞ ωρ(r) dr + M + ∑−∞<tk<+∞ χk,ρ

a(+∞)

)
< +∞.

Therefore, T(u) ∈ X.

Step 2. TK is uniformly bounded on K ⊆ X, for some bounded K.

Take K to be a bounded set of X, with the definition

K := {u ∈ X : max{∥u∥∞, ∥u′∥∞} ≤ ρ1} (9)

for some ρ1 > 0.
By (7), (8), (H1) and (H2), we have

∥T(u)(t)∥∞

= sup
t∈R

(∣∣∣∣∣
∫ t

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t<+∞

Ik(tk, u(tk), u′(tk))

∣∣∣∣∣
)

≤ sup
t∈R

∫ t

−∞

∣∣∣∣∣ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)∣∣∣∣∣ds

+|C|+ sup
t∈R

(
∑

−∞<tk<t<+∞
|Ik(tk, u(tk), u′(tk))|

)

≤ sup
t∈R

∫ t

−∞
ϕ−1

(∫ s
−∞ | f (r, u(r), u′(r))|dr + |M|+ ∑−∞<sk<s<+∞ |Jk(sk, u(sk), u′(sk))|

a(s)

)
ds

+|C|+ sup
t∈R

(
∑

−∞<tk<t<+∞
|Ik(tk, u(tk), u′(tk))|

)

≤
∫ +∞

−∞
ϕ−1

(∫ s
−∞ ωρ1(r) dr + |M|+ ∑−∞<sk<s<+∞ χk,ρ1

a(s)

)
ds

+|C|+ ∑
−∞<tk<+∞

Ψk,ρ1 < +∞

and
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∥T(u)′(t)∥∞

= sup
t∈R

∣∣∣∣∣ϕ−1

(∫ t
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t<+∞ Jk(tk, u(tk), u′(tk))

a(t)

)∣∣∣∣∣
≤ sup

t∈R
ϕ−1

(∫ t
−∞ | f (r, u(r), u′(r))|dr + |M|+ ∑−∞<tk<t<+∞ |Jk(tk, u(tk), u′(tk))|

a(t)

)

≤ ϕ−1

(∫ +∞
−∞ ωρ1(r) dr + |M|+ ∑−∞<tk<+∞ χk,ρ1

a(+∞)

)
< +∞

So, ∥T(u)(t)∥X < +∞, that is, TK is uniformly bounded on X.

Step 3. TK is equicontinuous, on each ]tk, tk+1] interval, for k ∈ Z.

Consider t1, t2 ∈ I ⊆]tk, tk+1] and let us suppose, without losing generality, that
t1 ≤ t2. So, for u ∈ K and by (7), (8), and (H1), follow

|T(u)(t1)− T(u)(t2)|

=

∣∣∣∣∣
∫ t1

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t1<+∞

Ik(tk, u(tk), u′(tk))−( ∫ t2

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t2<+∞

Ik(tk, u(tk), u′(tk))

)∣∣∣∣∣
≤
∫ t2

t1

ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+ ∑
t1≤tk<t2<+∞

Ik(tk, u(tk), u′(tk))

≤
∫ t2

t1

ϕ−1

(∫ +∞
−∞ ωρ1(t) dt + |M|+ ∑−∞<sk<s<+∞ χk,ρ1

a(s)

)
ds + ∑

t1≤tk<t2<+∞
Ψk,ρ1 → 0

uniformly for u ∈ K, as t1 → t2,

|T(u)′(t1)− T(u)′(t2)|

=

∣∣∣∣∣ϕ−1

(∫ t1
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t1<+∞ Jk(tk, u(tk), u′(tk))

a(t1)

)

−ϕ−1

(∫ t2
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t2<+∞ Jk(tk, u(tk), u′(tk))

a(t2)

)∣∣∣∣∣→ 0

uniformly for u ∈ K, as t1 → t2. Then, TK is equicontinuous on each interval ]tk, tk+1], for
k ∈ Z.

Step 4. TK is equiconvergent at each impulse point, and at t = ±∞ , that is TK, is equiconvergent
at t = t+i , (i ∈ Z) and at infinity.

First, let us prove that TK is equiconvergent at t = t+i , for i ∈ Z. Let u ∈ K. So, by (7),
(8), and (H1), it follows
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|T(u)(t)− lim
t→t+i

T(u)(t)|

=

∣∣∣∣∣
∫ t

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t<+∞

Ik(tk, u(tk), u′(tk))−

( ∫ t+i

−∞
ϕ−1

∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s+i <+∞ Jk(sk, u(sk), u′(sk))

a(s)

ds

+C + ∑
−∞<tk<t+i <+∞

Ik(tk, u(tk), u′(tk))

)∣∣∣∣∣→ 0

uniformly in u ∈ K, as t → t+i , for i ∈ Z and

|T(u)′(t)− lim
t→t+i

T(u)′(t)|

=

∣∣∣∣∣ϕ−1

(∫ t
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t<+∞ Jk(tk, u(tk), u′(tk))

a(t)

)

−ϕ−1


∫ t+i
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t+i <+∞ Jk(tk, u(tk), u′(tk))

a(t+i )

∣∣∣∣∣→ 0

uniformly in u ∈ K, as t → t+i , for i ∈ Z. Therefore, TK is equiconvergent at each point
t = t+i , for i ∈ Z.

Identically, we will prove that TK is equiconvergent at t = ±∞. In this way, we have

|T(u)(t)− lim
t→−∞

T(u)(t)|

=

∣∣∣∣∣
∫ t

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t<+∞

Ik(tk, u(tk), u′(tk))− lim
t→−∞( ∫ t

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t<+∞

Ik(tk, u(tk), u′(tk))

)∣∣∣∣∣
=

∣∣∣∣∣
∫ t

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<sk<s<+∞ Jk(sk, u(sk), u′(sk))

a(s)

)
ds

+C + ∑
−∞<tk<t<+∞

Ik(tk, u(tk), u′(tk))− C

∣∣∣∣∣→ 0

uniformly in u ∈ K, as t → −∞.

In turn,
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|T(u)(t)− lim
t→+∞

T(u)(t)|

=

∣∣∣∣∣
∫ t

−∞
ϕ−1

(∫ s
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<s<+∞ Jk(tk, u(tk), u′(tk))

a(s)

)
ds

+C + ∑
−∞<tk<t<+∞

Ik(tk, u(tk), u′(tk))− L

∣∣∣∣∣→ 0

uniformly in u ∈ K, as t → +∞.
It follows for the derivative that

|T(u)′(t)− lim
t→+∞

T(u)′(t)|

=

∣∣∣∣∣ϕ−1

(∫ t
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t<+∞ Jk(tk, u(tk), u′(tk))

a(t)

)

−ϕ−1

(
lim

t→+∞

∫ t
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<+∞ Jk(tk, u(tk), u′(tk))

a(t)

)∣∣∣∣∣→ 0

uniformly in u ∈ K, as t → +∞, and

|T(u)′(t)− lim
t→−∞

T(u)′(t)|

=

∣∣∣∣∣ϕ−1

 ∫ t
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t<+∞ Jk(tk , u(tk), u′(tk))

a(t)


−ϕ−1

 lim
t→−∞

∫ t
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<+∞ Jk(tk , u(tk), u′(tk))

a(t)

∣∣∣∣∣
≤ ϕ−1

∣∣∣∣∣
∫ t
−∞ f (r, u(r), u′(r))dr + M + ∑−∞<tk<t<+∞ Jk(tk , u(tk), u′(tk))

a(t)

∣∣∣∣∣


≤ ϕ−1

 ∫ t
−∞ ωρ1 (r) dr + |M|+ ∑−∞<tk<t<+∞ χn1,ρ1

a(t)

→ 0

uniformly in u ∈ K, as t → −∞.
Therefore, TK is equiconvergent at ±∞ and by Theorem 1, TK is relatively compact.

Step 5. T : X → X has a fixed point.

To be able to apply Schauder’s fixed-point theorem for the operator T(u), we have to prove
that TD ⊂ D, for some, bounded, closed and convex D ⊂ X.

Let us consider
D := {u ∈ X : ∥u∥X ≤ ρ2},

with ρ2 > 0 such that

ρ2 ≥ max


ρ1,∫ +∞
−∞ ϕ−1

( ∫ +∞
−∞ ωρ1 (r)dr+|M|+∑−∞<tk<+∞ χk,ρ

a(s)

)
ds + |C|+ ∑−∞<tk<+∞ Ψk,ρ,

supt∈R ϕ−1
( ∫ +∞

−∞ ωρ1 (r)dr+|M|+∑−∞<tk<+∞ χk,ρ

a(t)

)
with ρ1 given by (9).

Following arguments similar to step 2, we have that for u ∈ D

∥T(u)∥X = max{∥T(u)∥∞, ∥(T(u))′∥∞} ≤ ρ2,
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and TD ⊂ D. Then, the operator T(u), by Theorem 2, has a fixed point u ∈ X. Using stan-
dard arguments, we can demonstrate that this fixed point determines a pair of heteroclinic
or homoclinic solutions for the problem (1)-(3).

3. Example of Application of the Main Result and a Concrete Case of Application:
Model for Studying the Dynamics of Bird Population Growth in the Natural Reserve
3.1. Example of Application of the Main Result

Let us consider the following second-order nonlinear system

(
(1 + t6)(u′(t))5

)′
=

t2

(1 + t4)2

[
(u(t))2 + (u′(t))3 + u(t)u′(t)

]
(10)

together with the boundary conditions

u(−∞) = C, u(+∞) = L. (11)

for C, L ∈ R, and the generalized, impulse conditions
∆u(tk) =

1
k4 (α1

5
√

u(tk) + α2
5
√

u′(tk)),

∆ϕ(u′)(tk) =
1
k2 (α3u(tk) + α4u′(tk)),

(12)

with αi ∈ R, i = 1, 2, 3, 4. and for k ∈ N, · · · < t1 < · · · < tk < · · · , .

The above system (10)–(12) happens to be a particular case of problem (1)–(3). For ex-
ample, for ρ > 0 so that

ρ := max{|x|, |y|}, (13)

taking x = u(t), y = u′(t) and f : R3 → R is an L1-Carathéodory function being

f (t, x, y) =
t2

(1 + t4)2 (x2 + y3 + xy),

≤ t2

(1 + t4)2 (2ρ2 + ρ3) := ωρ(t),

where ωρ(t) ∈ L1(R),
ϕ(y) = y5, a(t) = 1 + t6,

and Ik, Jk, are Carathéodory sequences that satisfy Definition 2, as for each k, we set

Ik(tk, x, y) ≤
5
√

ρ(|α1|+ |α2|)
k4 , Jk(tk, x, y) ≤ ρ(|α3|+ |α4|)

k2 .

with tk = k, k ∈ N, αi ∈ R, i = 1, 2, 3, 4.

So, evaluating the following series, we obtain

+∞

∑
k=1

Ik(tk, x, y) ≤
+∞

∑
k=1

5
√

ρ(|α1|+ |α2|)
k4 =

π4 5
√

ρ(|α1|+ |α2|)
90

and
+∞

∑
k=1

Jk(tk, x, y) ≤
+∞

∑
k=1

ρ(|α3|+ |α4|)
k2 =

π2ρ(|α3|+ |α4|)
6

Conditions (H1), (H2) hold, being that

• ϕ(R) = R, ϕ(0) = 0, |ϕ−1(y)| = | 5
√

y| = ϕ−1(|y|) = 5
√
|y|;
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• lim
t→±∞

1
a(t) = lim

t→±∞
1

1+t6 = 0.

Finally, note that

∫ +∞

−∞
ϕ−1

(∫ +∞
−∞ ωρ(r)dr + |M|+ ∑−∞<tk<t<+∞ Jk(tk, x, y)

a(s)

)
ds + |C|+

∑
−∞<tk<t<+∞

Ik(tk, x, y)

≤
∫ +∞

−∞

 5

√√√√∫ +∞
−∞

r2

(1+r4)2 (2ρ2 + ρ3)dr + |M|+ π2ρ(|α3|+|α4|)
6

1 + s6

ds + |C|+

π4 5
√

ρ(|α1|+ |α2|)
90

< ρ

is finite. For example, taking α1 = α2 = α3 = α4 = 1, M = C = 0 and using the Maple
software, we find an approximated fixed point for ρ = 382.8775379. For slightly smaller
values of ρ, the above inequality is false. So, by Theorem 3, there is at least u ∈ X, that is a
solution to the problem (10)–(12).

3.2. A Possible and Specific Case of Application: Model for Studying the Complex Dynamics of
Bird Population Growth

The study of bird population growth is important and one of the most studied aspect
of avian physiology [34] and appears in studies on the global decline of biodiversity,
population ecology and others [35–38].

Differential equations involving impulses and ϕ-Laplacian are widely used to model
population dynamics (see [10,39,40]) and therefore also bird population growth. Works on
bird population growth involving impulses are scarce in the literature. Just to mention a
few, we have [41], where an impulse control model is used to manage the bird population
and [42], where the authors study impulse dispersal in single-species models. Motivated by
these works, we consider a specific example adapted from existing models (see [38,43–47])
of bird population growth, which is represented by an ordinary differential equation system
that describes and captures the complexity of bird population dynamics, considering both
the influence of continuous factors and discrete events in a specific area.

Therefore, by adapting a nonlinear second-order differential equation based on ex-
isting models, we aim to accurately model and represent the complex dynamics of bird
populations as closely as possible by(

(1 + t2)u′(t)
)′

=
t2

(1 + t4)2

[
− β(t)u(t)− α(t)u′(t) + γ(t)

(
1 − u(t)

K

)
u(t)

+ η(t) exp(−0.02u(t))

]

where

• u(t) is the population size of the bird species at time t;
• u′(t) represents the rate of change of the population;
• (1 + t2)u′′(t) represents the population acceleration, capturing rapid changes in the

growth rate;
• K is the carrying capacity of the environment;
• β(t) is a time-dependent coefficient representing factors like seasonal variations that

affect the growth rate;
• α(t) is a time-dependent function modeling damping effects such as environmental

resistance or intraspecific competition;
• γ(t) is a time-dependent coefficient representing seasonal variations in the growth rate;
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• η(t) is an additional coefficient representing other specific environmental influences;

• γ(t)
(

1 − u(t)
K

)
u(t) is a modified logistic growth component.

The initial condition indicates that the population starts with 1000 individuals:

u(−∞) = 1000.

After a long period, the population stabilizes at 50,000 individuals:

u(+∞) = 50000.

The model also incorporates impulse terms to account for specific events that affect
the bird population: {

∆u(tk) = Ik(tk, u(tk), u′(tk)),
∆u′(tk) = Jk(tk, u(tk), u′(tk)),

to model abrupt changes in population size and growth rate due to specific events with
the following:

• The moments of impulse are tk = k for k ∈ N;
• ∆u(tk) = u(t+k ) − u(t−k ): represents the change in population size at discrete time

points tk;
• ∆u′(tk) = u′(t+k )− u′(t−k ): represents the change in growth rate at tk;
• The functions Ik and Jk are defined as{

Ik(tk, u(tk), u′(tk)) =
1
k2

(
α1
√

u(tk) + α2
√

u′(tk)
)

,

Jk(tk, u(tk), u′(tk)) =
1
k (β1u(tk) + β2u′(tk)),

where αi and β j are real constants for i, j = 1, 2.

The function ϕ is an increasing homeomorphism, which is often used to model nonlin-
ear effects influencing population dynamics. For this model, we assume the following:

ϕ(x) = x,

which simplifies the model by assuming linear effects.
The general form of the function f is defined as

f (t, u(t), u′(t)) =
t2

(1 + t4)2

[
− β(t)u(t)− α(t)u′(t) + γ(t)

(
1 − u(t)

K

)
u(t)

+ η(t) exp(−0.02u(t))

]

representing an L1-Carathéodory function.

4. Discussion

The model employs advanced mathematical techniques to analyze nonlinear differen-
tial equations with impulsive effects, ensuring robust solutions under specific conditions.
It accurately represents bird population dynamics by integrating both continuous and
discrete factors, thus supporting effective management strategies.

Impulse terms simulate sudden population changes due to environmental events or
human actions. The generalized ϕ-Laplacian homeomorphism simplifies the model while
capturing essential nonlinear effects. The initial and boundary conditions, generalized to
accommodate various starting and stabilizing population sizes, demonstrate the model’s
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capability to predict long-term population trends. These conditions ensure that the model
aligns with observed population dynamics over extended periods.

In this study, we considered several assumptions and aspects, such as the generalized
ϕ-Laplacian being a homeomorphism, specific forms of impulse conditions, asymptotic
boundary conditions, and the way nonlinearities appear. Relaxing these assumptions or
considering alternative forms could add depth to the analysis; however, it could also affect
the problem’s well-posedness. Examining the impact of these changes would enhance
the understanding of the model’s flexibility and its applicability to a broader range of
ecological scenarios.

Changes in the assumptions or components of the boundary value problem can
lead to variations in the solutions—both in their existence and behavior. Alterations in
impulse conditions can affect the stability and profile of the solutions. Similarly, changes
in nonlinearities can result in different solutions, such as bifurcations or chaotic behavior.
Relaxing the assumptions may yield weak solutions, ill-posed problems, or necessitate both
numerical and theoretical methods to find solutions.

In summary, any variations or changes in the problem may require entirely different
methods and necessitate analytical and numerical tools to adequately understand and solve
the problem.

5. Conclusions

This work establishes the existence of heteroclinic solutions for strongly nonlinear
second-order equations using Schauder’s fixed-point theorem. By incorporating a gener-
alized nonlinear ϕ-Laplacian operator and accommodating infinite impulses of varying
intensity, we extend the existing literature significantly. Our approach utilizes a general-
ized ϕ-Laplacian homeomorphism to manage nonlinearities, employs equiconvergence
at impulsive moments to control jumps, and leverages Carathéodory sequences to ensure
solution existence.

One of the problems proposed in the practical part attempts to capture bird popula-
tion dynamics through a nonlinear second-order differential equation, integrating both
continuous and discrete factors. This adaptability allows it to simulate a variety of ecolog-
ical scenarios, including abrupt environmental changes and management interventions.
Theoretical results affirm the existence of solutions, offering a robust foundation for future
studies and simulations. Future research should refine the model using empirical data
and incorporate additional factors like predation, disease, and migration to enhance bird
population management and conservation efforts.

Our research enhances the understanding of bird population dynamics, particularly
in handling discrete and sudden events that impact populations. By combining continu-
ous and impulsive approaches, the model offers comprehensive and realistic ecological
system modeling.

Overall, this model is a powerful tool for ecologists and conservationists, facilitating
the better prediction and management of bird populations. Future work should refine im-
pulse functions with empirical data, expand the model to include factors such as predation
and migration, explore different forms of the ϕ-Laplacian, adjust boundary conditions,
and consider higher-order differential equations. These enhancements will improve conser-
vation strategies and habitat management.
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