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Abstract: Magnetic resonance imaging (MRI) is crucial for its superior soft tissue contrast and high
spatial resolution. Integrating deep learning algorithms into MRI reconstruction has significantly
enhanced image quality and efficiency. This paper provides a comprehensive review of optimization-
based deep learning models for MRI reconstruction, focusing on recent advancements in gradient
descent algorithms, proximal gradient descent algorithms, ADMM, PDHG, and diffusion models
combined with gradient descent. We highlight the development and effectiveness of learnable
optimization algorithms (LOAs) in improving model interpretability and performance. Our findings
demonstrate substantial improvements in MRI reconstruction in handling undersampled data, which
directly contribute to reducing scan times and enhancing diagnostic accuracy. The review offers
valuable insights and resources for researchers and practitioners aiming to advance medical imaging
using state-of-the-art deep learning techniques.
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1. Introduction

Magnetic resonance imaging (MRI) is a crucial medical imaging technology that is
non-invasive and non-ionizing, providing highly detailed and accurate images of tissues in
their natural, living state, which is vital for disease diagnosis and medical research. As an
indispensable instrument in both diagnostic medicine and clinical studies, MRI plays an
essential role [1,2].

Although MRI offers superior diagnostic capabilities, its lengthy imaging times, com-
pared to other modalities, restrict patient throughput. This challenge has spurred inno-
vations aimed at speeding up the MRI process, with the shared objective of significantly
reducing scan duration while maintaining image quality [3,4]. Accelerating data acquisition
during MRI scans is a major focus within the MRI and clinical application community.
Typically, scanning one sequence of MR images can take at least 30 min, depending on the
body part being scanned, which is considerably longer than most other imaging techniques.
However, certain groups such as infants, elderly individuals, and patients with serious
diseases who cannot control their body movements, may find it difficult to remain still for
the duration of the scan. Prolonged scanning can lead to patient discomfort and may intro-
duce motion artifacts that compromise the quality of the MR images, reducing diagnostic
accuracy. Consequently, reducing MRI scan times is crucial for enhancing image quality
and patient experience.

MRI scan time is largely dependent on the number of phase encoding steps in the
frequency domain (k-space), with common methods to accelerate the process involving the
reduction of these steps by skipping phase encoding lines and sampling only partial k-space
data. However, this approach can lead to aliasing artifacts due to undersampling, violating
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the Nyquist criterion [5]. MRI reconstruction involves generating high-quality, artifact-free
MR images from undersampled k-space data, which are then used for diagnostic and
clinical purposes. In MRI reconstruction, the challenge lies in solving an inverse problem,
where the goal is to recover an image from partially sampled and noisy k-space data.
Compressed sensing (CS) [6] MRI reconstruction and parallel imaging [3,7,8] are effective
techniques that address this inverse problem, speeding up MRI scans and reducing artifacts.
By allowing for undersampling and heaving the ability to reconstruct high-quality MRI
images from undersampled data, CS significantly reduces scan time while offering images
that are often comparable to those obtained from fully sampled data.

Traditional MRI reconstruction techniques suffer from several limitations and chal-
lenges. While faster MRI scans are desirable to reduce patient discomfort and improve
throughput, this could lead to reduced sampling which in turn could compromise the
integrity of the reconstructed images. In addition to undersampling, certain techniques
may be susceptible to noise and other artifacts which could contaminate the images [9,10].
Challenges pertaining to reconstructing multi-contrast images have also been discussed by
these papers [11,12]. These multi-contrast images are often considered to provide rich and
more useful information as they involve combining different types of image modalities and
MRI sequences. However, reconstructing these images may be computationally expensive
with traditional methods and may also involve managing large and complex datasets.
Recent studies have proposed numerous deep-learning models to address these challenges.

Deep learning has seen extensive applications in image processing tasks [13–17] be-
cause of its ability to efficiently manage multi-scale data and learn hierarchical structures
effectively, both of which are essential for precise image reconstruction and enhancement.
Convolution neural networks (CNNs) are also extensively utilized in MRI reconstruc-
tion due to their proficiency in handling complex patterns and noise inherent in MRI
data [18–27]. By learning from large datasets, deep learning algorithms can improve the
accuracy and speed of reconstructing high-quality images, thus significantly enhancing the
diagnostic capabilities of MRI technology. Additionally, the deep learning models may
be particularly suited for reconstructing the MRI data. This is because these optimization-
based models are designed to iteratively refine their outputs, thereby allowing them to
efficiently handle the complex inverse problems associated with the MRI reconstruction.
Furthermore, deep learning models can effectively incorporate prior knowledge such as
sparsity or smoothness constraints, which are essential for reconstructing high-quality
images from undersampled data. Owing to the flexibility available during the model
design, it is possible to design models that can enforce the physics of MRI acquisition,
such as Fourier encoding of spatial information. This would ensure that the reconstructed
images are consistent with the underlying data.

In recent years, optimization-based algorithm unrolling networks have gained signif-
icant attention in the field of MRI reconstruction [27–37]. These algorithms are inspired
by classical optimization techniques and are designed to address the unique challenges
posed by MRI data. One notable development in this area is the introduction of learn-
able optimization algorithms (LOAs). LOAs enhance the interpretability of deep learning
models by incorporating MR physics, thereby improving both model performance and
training efficiency. The convergence properties of these LOAs can support the fast conver-
gence of the reconstruction process and speed up the model training [38,39]. This paper
explores several key approaches within this framework, including gradient descent and
proximal gradient descent algorithm-inspired networks, variational networks, iterative
shrinkage-thresholding algorithm (ISTA) networks, and alternating direction method of
multipliers (ADMM)-inspired networks. These methods leverage iterative optimization
techniques to refine MRI reconstructions, effectively reducing artifacts and enhancing
image clarity. Additionally, the integration of diffusion models, such as the score-based
diffusion model and Domain-conditioned diffusion modeling, represents a novel approach
that combines deep learning with diffusion processes to more robustly tackle undersam-
pling issues. LOAs, as a subset of physics-driven machine learning methods [40], explicitly
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incorporate known physics-based forward imaging models into deep learning architectures.
This integration ensures consistency with k-space measurements during the reconstruction
process, offering a comprehensive framework for improving the speed and accuracy of
MRI scans and advancing the application of machine learning in medical imaging. These
methods collectively represent a robust framework for improving the speed and accuracy
of MRI scans, advancing both the theory and application of machine learning in medical
imaging. The integration of these sophisticated deep learning techniques with traditional
optimization algorithms provides a dual advantage of enhancing diagnostic capabilities
while significantly reducing scan times. By reviewing how these optimization methods
are used in conjunction with novel deep learning techniques, we aim to shed light on the
capabilities of state-of-the-art MRI reconstruction techniques and the scope for future work
in this direction.

This paper is organized in the following structure: Section 1 introduces the importance
of MRI reconstruction and LOA methods. Section 2 presents the compressed sensing
(CS)-based MRI reconstruction model. Section 3 provides a detailed overview of various
optimization algorithms utilizing deep learning techniques. Section 4 discusses the current
issues and limitations of learnable optimization models. Section 5 concludes the paper by
summarizing the key findings and implications of the study.

2. MRI Reconstruction Model

Parallel imaging methods, such as the generalized auto-calibrating partially parallel
acquisition (GRAPPA) [4] and ESPIRiT [41], are k-space techniques that focus on manipu-
lating or reconstructing the k-space data before converting it into the image domains using
an inverse Fourier transform [42]. These methods utilize coil-by-coil auto-calibration to
achieve accurate reconstruction.

On the other hand, compressed sensing (CS) exploits the sparsity of MR images in a
specific transform domain (e.g., wavelet or total variation) to reconstruct images. For CS to
be effective, it requires incoherent sampling, which helps to spread the aliasing artifacts in
the image domain in a way that makes them easier to remove. CS is primarily applied in
the image domain, removing aliasing artifacts by solving a system of equations that relate
the image to be reconstructed and the partial k-space data through coil sensitivities. An
example of this approach is sensitivity encoding (SENSE) [3].

This paper focuses on CS-based methods and different algorithms for solving the
system equations derived from them. The formulation for the MRI reconstruction problem
in CS-based methods is described by a regularized variational model as follows:

min
x

1
2
∥Ax− f∥2

2 + µR(x), (1)

where x ∈ Cn is the MR image to be reconstructed, consisting of n pixels, and f ∈ Cm

denotes the corresponding undersampled measurement data in k-space. The data fidelity
term 1

2∥Ax− f∥2
2 enforces physical consistency between the reconstructed image x and

the partial data f measured in the k-space. The choice of regularization operator plays a
critical role in enforcing sparsity or low-rank constraints to stabilize the reconstruction
from undersampled k-space data. A common regularization used is L1 Norm which
promotes sparse solutions by penalizing the sum of absolute values of coefficients in
transformed domains. Alternatively, a low-rank or non-convex regularization may also
be used depending on the application. While a low-rank regularization leverages the
fact that MR images exhibit low-rank structures in certain matrix forms, the non-convex
penalties provide stronger sparsity-promoting properties similar to Lp norm. However,
the downside is that the non-convex regularization problems are harder to solve due to
non-convexity. A practical example illustrating the effectiveness or advantage of enforcing
sparsity in a clinical setting is that by enforcing sparsity in the wavelet domain, CS-based
methods have been found to accelerate MRI acquisitions by 4 to 6 times while maintaining
the image quality [3].
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The regularization operatorR:Cn → R enforces sparsity or low-rank constraints on
the MRI data, incorporating prior knowledge to guide the reconstruction and prevent
overfitting of the data fidelity term. It is important to note that MR images are generally not
sparse in their original spatial domain. Therefore, to effectively apply CS-based methods,
the image must be transformed into a domain where it exhibits sparsity, such as the
wavelet or Fourier domain. The regularization termR(x) typically enforces sparsity in this
transformed domain, allowing for accurate image reconstruction from undersampled data.

The weight parameter µ > 0 balances the data fidelity term and regularization term.
The measurement data is typically expressed as f = Ax + ε with ε ∈ Cm representing
the noise encountered during acquisition. The forward measurement encoding matrix
A ∈ Cm×n utilized in parallel imaging is defined by:

A := PΩFS , (2)

where S := [S1, . . . ,Sc] refers to the sensitivity maps of c different coils, F ∈ Cn×n

represents the 2D discrete Fourier transform, and PΩ ∈ Nm×n(m ≪ n) is the binary
undersampling mask that captures m sampled data points according to the undersampling
pattern Ω. Figure 1 shows the image reconstruction diagram.

Figure 1. Demonstration of MRI reconstruction process.

Optimization-based reconstruction methods encompass a variety of techniques for
solving complex problems such as (1). These include gradient descent methods like steep-
est descent [43], proximal methods such as ADMM for non-smooth optimization, interior
point methods for constrained problems, and Newton-type methods for faster conver-
gence. Other approaches include iterative shrinkage-thresholding algorithms for sparse
reconstruction, coordinate descent for large-scale problems, stochastic methods like SGD
for machine learning applications, and primal-dual methods that optimize in both spaces
simultaneously. Each method offers unique advantages, making them suitable for different
types of reconstruction problems based on factors such as problem structure, size, and
computational requirements.

3. Optimization-Based Network Unrolling Algorithms for MRI Reconstruction

The deep learning-based model has the capability to leverage large datasets and further
improve reconstruction performance compared to traditional methods and therefore has
had successful applications in clinical fields [18–24,44,45]. Most existing deep learning-
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based methods employ end-to-end neural networks that either map partial k-space data
directly to reconstructed images [46–50], or map partial k-space data to an estimated fully
sampled k-space such as RAKI [51] and Grappa-Net [52]. By incorporating optimization
algorithms in the end-to-end training, both the acquisition scanning times and image
reconstruction time can be drastically reduced to reconstruct high-quality images from
undersampled k-space data. This could allow for faster imaging without compromising the
MRI’s diagnostic accuracy [51–53]. To improve the interpretability of the relation between
the topology of the deep model and reconstruction results, a new emerging class of deep
learning-based methods known as learnable optimization algorithms (LOA) have attracted
much attention, e.g., [27–37,54,55]. LOA was proposed to map existing optimization
algorithms to structured networks where each phase of the networks corresponds to one
iteration of an optimization algorithm.

The architectures of these networks are modeled after iterative optimization algo-
rithms. They retain the data fidelity term, which describes image formation based on
well-established physical principles that are already known and do not need to be re-
learned. Instead of using manually designed and overly simplified regularization as in
classical reconstruction methods, these networks employ deep neural networks for regular-
ization. Typically, these reconstruction networks consist of a few phases, each mimicking
one iteration of a traditional optimization-based reconstruction algorithm. The manually
designed regularization terms in classical methods are replaced by layers of CNNs, whose
parameters are learned during offline training.

For instance, ADMM-Net [54], ISTA-Net+ [56], and cascade network [19] are applied
on single-coil MRI reconstruction, where the encoding matrix is reduced to A = PΩF as
the sensitivity map S is its identity.Variational networks (VNs) [18] introduced the gradient
descent method with given (pre-calculated) sensitivities S . MoDL [57] proposed a recursive
network by unrolling the conjugate gradient algorithm using a weight-sharing strategy.
Blind-PMRI-Net [58] designed three network blocks to alternatively update multi-channel
images, sensitivity maps, and the reconstructed MR image using an iterative algorithm
based on half-quadratic splitting. VS-Net [59] derived a variable splitting optimization
method. However, existing methods still face the lack of accurate coil sensitivity maps
and proper regularization in the parallel imaging problem. Alder et al. [60] proposed a
reconstruction network that unrolled a primal-dual algorithm where the proximal operator
is learnable.

3.1. Gradient Descent Algorithm-Inspired Network
3.1.1. Variational Network

The use of a variational network (VN) [18] solves model (1) by using gradient descent:

x(t+1) = x(t) − α(t)(λA⊤(Ax(t) − f) +∇(t)R(x(t))). (3)

This model was applied to multi-coil MRI reconstruction. The regularization term was

defined by the field-of-experts model: R(x) =
N
∑

i=1
< Hi(Gix), 1 >. A convolution neural

network Gi is applied to the MRI data. The functionHi is defined as non-linear potential
functions which are composed of scalar activation functions. Then take the summation of
the inner product of the non-linear termHi(Gix) and the vector of ones 1. The sensitivity
maps are pre-calculated and being used in A. The algorithm of VN unrolls the step (3)
where the regularizerR is parameterized by the learnable network Gi together with non-
linear activation functionHi:

x(t+1) = x(t) − α(t)(λA⊤(Ax(t) − f) +
N

∑
i=1

(G(t)i )⊤H(t)
i (G(t)i x(t))). (4)

Figure 2 shows the iterative process of the reconstruction algorithm of VN.
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Figure 2. Network architecture of VN at t-th phase, illustrating the updates of x(t).

Owing to the numerous advantages of CNNs, they can function as implicit regulariz-
ers, replacing traditional techniques such as L2 regularization or dropout layers. CNNs
excel at feature extraction and enable weight sharing, which reduces the number of param-
eters compared to fully connected layers, making the model less susceptible to overfitting.
Additionally, the hierarchical learning process of CNNs imposes a structured learning
approach, naturally limiting the network’s complexity and providing an implicit regulariza-
tion effect. Learning regularization terms from training data is becoming a popular trend
for solving inverse problems. Some methods were developed via a hybrid domain-specific
learning model. For instance, E2EVarNet [61] performs iterative optimization steps in the
k-space domain and uses CNNs to learn the gradient of the regularization term in the
image domain within each cascade iteratively.

f(t+1) = f(t) − α(t)PΩ(f(t) − f) +W(f(t)), (5a)

where W(f(t)) = F ◦ J ◦HΘ ◦ J̃ ◦ F⊤(f(t)). (5b)

where HΘ is a CNN applied on the complex image, J and J̃ are expand and reduce
operators that take care of coil sensitivity maps, respectively. Recurrent VarNet [62] utilizes
recurrent neural networks (RNN) for learning the image-refinement model HΘ. The
coil sensitivity maps are estimated and refined during the training phase. It has strong
performance in refining image quality and sensitivity maps, particularly in multi-coil
MRI. It is also effective in long-term sequence data, but is computationally intensive.
Additionally, other variations of VN [61,63] have also been developed. E2E-VarNet [61]
employs hybrid domain learning, combining both k-space and image domain approaches
through iterative optimization steps using gradient descent. While this method delivers
excellent performance in reconstructing undersampled MRI data in both domains, it comes
with a complex training process that demands substantial computational resources. Despite
its effectiveness, the high computational requirements for training and deployment present
a significant challenge. These works demonstrate the potential of combining variational
methods with deep learning for solving complex inverse problems in medical imaging.

3.1.2. Denoising Model-Based Regularizations

A group of optimization models employed denoising model-based regularizations [57,64,65].
They help in the reconstruction of high-quality images by iteratively refining the image
while reducing noise and preserving important image details. These types of models
balance the reconstruction between fitting the observed data and adhering to the learned
priors about noise and artifact patterns. The model-based deep learning (MoDL) [57] frame-
work incorporates a CNN-based regularization prior within a model-based reconstruction
scheme. This framework unrolls an alternating recursive algorithm to solve a variational
model, where the regularization term is learnable and designed to estimate the noise and
alias artifacts:

min
x
∥Ax− f∥2

2 + µ∥x−DΘ(x)∥2
2. (6)

In Equation (6), the non-linear denoising operator DΘ(x) parameterized by learnable
variables Θ is trained to eliminate noise and artifacts from the image. The regularization
term ensures that the reconstructed image x closely approximates the denoised version
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provided by DΘ(x). This regularized optimization model is solved by using the normal
equations and iterates the following steps:

x(t) =
A⊤f + λZ (t−1)

A⊤A + λI
. (7a)

Z (t) = DΘ(x(t)). (7b)

When dealing with single-channel MRI data, the step (7a) has an analytical solution which
can be expressed as a data consistency (DC) layer, where x(t) = F⊤f(t)DC, and

f(t)DC[i] =

 (f[i]+λZ (t−1) [i])
1+λ if ith sample is acquired,

Z (t−1)[i] else.
(8)

For the multi-coil MRI data, (7a) is solved using a conjugate gradient optimization algo-
rithm. Figure 3 shows the iterative process of the reconstruction algorithm of VN.

Figure 3. Network architecture of MoDL at t-th phase, illustrating the updates of x(t).

3.2. Proximal Gradient Descent Algorithm-Inspired Networks

Solving inverse problems using proximal gradient descent has been largely explored
and successfully applied in medical imaging reconstruction [27,39,66–76].

Applying a proximal gradient descent algorithm to approximate a (local) minimizer
of (1) is an iterative process. The first step is gradient descent to force data consistency, and
the second step applies a proximal operator to obtain the updated image. The following
steps iterates the proximal gradient descent algorithm:

bt = xt − ρtA⊤(Axt − f), (9a)

xt+1 = proxρtR(·)(bt), (9b)

where ρt > 0 is the step size and proxαR is the proximal operator ofR defined by

proxρR(b) = arg min
x

1
2ρ
∥x− b∥2

2 +R(x). (10)

The gradient update step (9a) is straightforward to compute and fully utilizes the relation-
ship between the partial k-space data f and the image x to be reconstructed as derived from
MRI physics. This step involves implementing the proximal operation for regularization
R, which is equivalent to finding the maximum a posteriori solution for the Gaussian de-
noising problem at a noise level

√
ρ [77,78]. Thus, the proximal operator can be interpreted

as a Gaussian denoiser. However, because the proximal operator proxρR in the objective
function (1) does not admit a closed-form solution, a CNN can be used to substitute proxρR.
Constructing the network with residual learning [66,71,76] is suitable to avoid the gradient
vanishing problem. This approach allows the CNN to effectively approximate the proximal
operator and facilitate the optimization process.

Mardani et al. [66] introduced a recurrent neural network (RNN) architecture enhanced
by residual learning to learn the proximal operator more effectively. This learnable proximal
mapping effectively functions as a denoiser, progressively eliminating aliasing artifacts
from the input image.
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The step size ρt plays a crucial role in determining the convergence and performance
of the proximal gradient descent algorithm. LOAs usually apply a learnable step size
which adds a layer of adaptability to the optimization process, allowing the algorithm to
adjust dynamically to the specific characteristics of the data and the model at each iteration.
Traditional fixed step sizes may be either too small, leading to slow convergence, or too
large, potentially causing the algorithm to overshoot and oscillate. In contrast, a learnable
step size can adjust itself based on the gradient’s magnitude and direction, promoting a
more stable and faster convergence. By fine-tuning the step size during the training process,
the algorithm can navigate the loss landscape more efficiently, avoiding regions where a
fixed step size might struggle. The performance of the proximal gradient descent algorithm
in MRI reconstruction is closely tied to how well it can minimize the objective function. A
learnable step size has the flexibility that helps in striking a balance between convergence
speed and reconstruction accuracy, leading to better overall performance. Additionally,
it allows the model to adapt to different noise levels and data inconsistencies, which are
common in MRI tasks, further improving the robustness of the reconstruction.

3.2.1. Iterative Shrinkage-Thresholding Algorithm (ISTA) Network

ISTA-Net+ [56] formulate the regularizer as a ℓ1 norm of non-linear transformR(x) =
∥φ(x)∥1. The proximal gradient descent updates (9) become:

bt = xt − ρtA⊤(Axt − f), (11a)

xt+1 = arg min
x

1
2ρt
∥x− bt∥2

2 + ∥φ(x)∥1. (11b)

The proximal step (11b) can be parameterized as an implicit residual update step due to
the lack of a closed-form solution:

xt+1 = bt +H(bt), (12)

whereH is a deep neural network with residual learning that approximates the proximal
point.

Using the mean value theorem, ISTA-Net+ derives an approximation theorem: ∥φ(x)−
φ(bt)∥2

2 ≈ δ∥x− bt∥2
2 with δ > 0. Thus, the proximal update step (11b) was written as

xt+1 ≈ arg min
x

1
2
∥φ(x)− φ(bt)∥2

2 + δρt∥φ(x)∥1. (13)

Assuming φ is orthogonal and invertible, ISTA-Net+ provides the following closed-form
solution:

xt+1 = φ̃(Sβt(φ(bt))), (14)

where βt = δρt and Sβt(x) = proxβt∥·∥1
(x) = [sign(xi)max(|xi| − βt, 0)] ∈ Rn is the soft

shrinkage operator with vector x = (x1, . . . , xn) ∈ Rn. Thus, Equation (12) is reduced to an
explicit form as given in (14), which we summarize together with (11a) in the following
scheme:

bt = xt − ρtA⊤(Axt − f), (15a)

xt = bt + φ̃t(Sβt(φt(bt))). (15b)

The deep network φ̃ is applied with the symmetric structure to φ and is trained separately
to enhance the capacity of the network. The initial input x0 was set to be the zero-filled
reconstruction A⊤f.

The loss function was designed in two parts. The first part is the discrepancy loss:

Ldis(Θ) =
1
2
∥xT(f, Θ)− x∗∥2

2 (16)
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This loss measures the squared discrepancy between the reference image x∗ and the re-
constructed image from the last iteration xT(Θ). The second part of the loss function is to
enforce the consistency of φ̃t and φt:

Lid(Θ) =
1
2

T

∑
t=1
∥φ̃t(φt(x∗))− x∗∥2

2 (17)

This loss aims to ensure that φ̃t φt = I, an identity mapping. The training process minimizes
the following loss function:

Lloss = Ldis(Θ) + µLid(Θ). (18)

where µ is a balancing parameter. Figure 4 shows the iterative process of the reconstruction
algorithm of VN.

Figure 4. Network architecture of ISTA-Net at the t-th phase, illustrating the updates of b(t) and x(t).

The derivation of the approximation theorem in ISTA-Net+ relies on several critical
assumptions including orthogonality and invertibility of non-linear transform (φ). One of
the primary assumptions is that φ is the orthogonal means that the transform φ satisfies:

φT φ = I, (19)

where I is the identity matrix. Another assumption is that φ is invertible and it ensures that
there exists a unique inverse transform. This assumption ensures that no information is
lost and allows for a complete reconstruction of the original signal after transformation.
The final assumption is the mean value theorem application. The approximation theorem
assumes that φ satisfies the conditions necessary for applying the mean value theorem.
Discussing the practical implications of these assumptions, the orthogonality assumption
allows for more straightforward updates leading to a closed-form solution. Similarly, the
invertibility is an important requirement to ensure that the transformation φ does not lose
any critical information. Finally, the mean value theorem provides a convenient way to
approximate the relationship between the transformed variables.

3.2.2. Parallel MRI Network

Parallel MRI networks [71] leverage residual learning to learn the proximal mapping
and tackle model (9), thus bypassing the requirement for pre-calculated coil sensitivity maps
in the encoding matrix (2). Similar to the model for joint reconstruction and synthesis [70],
parallel MRI networks consider the MRI reconstruction as a bi-level optimization problem:

min
Θ

ℓ(xΘ, x∗), (20a)

s.t. xΘ = arg min
x

ΦΘ(x). (20b)

The variable x = (x1, . . . , xc) ∈ Cm×n×c denotes the multi-coil MRI data scanned from c
coil elements, with each xi corresponding to i-th coil for i = 1 · · · c. The study constructs
a model ΦΘ to incorporate dual regularization terms applied to both image space and
k-space, described by:
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Φ(x) :=
1
2

c

∑
i=1
∥PΩFxi − fi∥2

2 +R(J (x)) +R f (Fxi). (21)

The channel-combination operator J aims to learn a combination of multi-coil MRI data
which integrates the prior information among multiple channels. Then the image domain
regularizer R extracts the information from the channel-integration image J (x). The
regularizerR f is designed to obtain prior information from k-space data.

The upper-level optimization (20a) is the network training process where the loss
function ℓ(xΘ, x∗) is defined as the discrepancy between learned xΘ and the ground truth
x∗. The lower level optimization (20b) is solved by the following redefined algorithm:

b(t)
i = x(t)i − ρtF−1P⊤Ω (PΩFx(t)i − fi), i = 1, · · · , c, (22a)

x̄(t)i = [proxρtR(J (·))(b
(t))]i, i = 1, · · · , c, (22b)

x(t+1)
i = proxρtR f (F (·))(x̄

(t)
i ), i = 1, · · · , c. (22c)

The proximal operator can be understood as a Gaussian denoiser. Nevertheless, the
proximal operator proxρtR in the objective function (22b) lacks a closed-form solution,
necessitating the use of a CNN as a substitute for proxρtR. This network is designed as a
residual learning network denoted by ϕ in the image domain and φ in the k-space domain,
and the algorithm (22a), (22b) and (22c) are implemented in the following scheme:

b(t)
i = x(t)i − ρtF−1P⊤Ω (PΩFx(t)i − fi), i = 1, · · · , c, (23a)

x̄(t)i = bi(t) + ϕt(b
(t)
i ), i = 1, · · · , c, (23b)

x(t+1)
i = x̄i(t) +F−1 φt

(
F (x̄(t)i )

)
, i = 1, · · · , c. (23c)

The CNN ϕ utilizes channel-integration operator J and operates with shared weights
across iterations, effectively learning spatial features. However, it may erroneously enhance
oscillatory artifacts as real features. In the k-space denoising step (23c), the k-space network
φ focuses on low-frequency data, helping to remove high-frequency artifacts and restore
image structure. Alternating between (23b) and (23c) in their respective domains balances
their strengths and weaknesses, improving overall performance. Figure 5 shows the
iterative process of reconstruction algorithm of the parallel MRI network.

Figure 5. Architecture of parallel MRI network at the t-th phase, illustrating the updates of b(t), x̄(t)i
and x(t).

The construction of iterative algorithm (23) is inspired by cross-domain reconstruction
methods [79–82], which aimed at improving the quality and speed of MRI image recon-
struction by leveraging information from multiple domains—typically the image domain
and the k-space (frequency) domain. This approach integrates data and knowledge across
different domains to enhance the accuracy and efficiency of reconstructing high-quality
images from undersampled MRI data.

Learning sensitivity maps also represent a related group of reconstruction tech-
niques [61,83–86]. Deep J-Sense builds on the joint SENSE model, which solves for both
the image and coil sensitivity maps simultaneously during MRI reconstruction. This work
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incorporates unrolled alternating optimization to refine both the magnetization (image)
kernel and the sensitivity maps iteratively. The optimization problem is defined as

min
S,x

1
2
∥f−PΩF (S ∗ x)∥2

2 + λxRx(x) + λsRs(S), (24)

Rx(x), Rs(S) are regularization terms for the image and sensitivity maps, respectively. λx
and λs are regularization parameters. This optimization problem is solved iteratively by
alternating between updating the image x and the sensitivity maps S.

For the sensitivity maps update:

St+1 = arg min
S

1
2
∥f−PΩF (S ∗ x)∥2

2 + λsRs(S). (25a)

S+ = Ds(S) (25b)

For the image update:

xt+1 = arg min
x

1
2
∥f−PΩF (S ∗ x)∥2

2 + λxRx(x). (26a)

x+ = Dx(x) (26b)

The end-to-end deep neural networks Ds and Dx are applied to refine the sensitivity maps
and refine the image, respectively.

Parallel MRI network architecture has also been generalized to quantitative MRI
(qMRI) reconstruction problems under a self-supervised learning framework. The
next subsection introduces a similar learnable optimization algorithm for the qMRI
reconstruction network.

3.2.3. Self-Supervised Approaches for Quantitative MRI Reconstruction

Recent advancements in quantitative MRI (qMRI) reconstruction have seen the incor-
poration of self-supervised learning techniques, which have proven effective in reconstruct-
ing quantitative mapping from the undersampled k-space MRI data. Among these, the
RELAX-MORE [76] algorithm has introduced a self-supervised learning framework that
optimizes reconstruction by leveraging the underlying physics of MRI signal acquisition.

RELAX-MORE introduced an optimization algorithm to unroll the proximal gra-
dient for qMRI reconstruction. The loss function minimizes the discrepancy between
undersampled reconstructed MRI k-space data and the “true” undersampled k-space data
retrospectively. The model, once thoroughly trained, can be adapted to other testing data
through the use of transfer learning.

The qMRI reconstruction model aims to reconstruct the quantitative parameters P and
this problem can be formulated as a bi-level optimization model:

min
Θ

ℓ(PΩFSM(P(f|Θ)), f) s.t. (27a)

P(f|Θ) = arg min
P

KΘ(P), (27b)

where KΘ(P) := 1
2 ∥ PΩFSM(P)− f ∥2

2 +βRΘ(P). (27c)

The modelM represents the MR signal function that maps the set of quantitative parame-
ters P := {ρ1, · · · , ρN} to the MRI data. The loss function in (27a) is addressed through a
self-supervised learning network, and P(f|Θ) is derived from the network parameterized
by Θ. The upper-level problem (27a) focuses on optimizing the learnable parameters for
network training, while the lower-level problem (27b) concentrates on optimizing the quan-
titative MR parameters. RELAX-MORE uses T1 mapping obtained through the variable
flip angle (vFA) method [87] as an example. The MR signal modelM is described by the
following equation:
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Mk(T1, I0) = I0 ·
(1− e−TR/T1) sin ηk

1− e−TR/T1 cos ηk
, (28)

where ηk represents flip angle for k = 1, . . . , Nk, where Nk is the total number of the flip
angles acquired. T1 and I0 are the spin-lattice relaxation time maps and proton density
maps, respectively. Therefore, the parameter set needed for reconstruction is P = {T1, I0}.

Similar to the parallel MRI network [71], RELAX-MORE employs a proximal gradient
descent algorithm to address the lower level problem (27b), with a residual network struc-
ture designed to learn the proximal mapping. Below is the unrolled learnable Algorithm 1
for resolving (27b):

Algorithm 1 Learnable proximal gradient descent algorithm

Input: ρ
(0)
i , µ

(1)
i , ν

(1)
i , i = 1, · · · , N.

1: for t = 1 to T do
2: for i = 1 to N do
3: ρ̄

(t)
i = ρ

(t−1)
i − µ

(t)
i ∇ρi

1
2∥PΩFSM({ρ(t−1)

i }N
i=1)− f∥2

2,

4: ρ
(t)
i = W̃ (t)

Θi
◦ T (t)

νi ◦W
(t)
Θi

(ρ̄
(t)
i ) + ρ̄

(t)
i

5: end for
6: x(t) =M({ρ(t)

i }
N
i=1),

7: end for
Output: {ρ(T)

i }
N
i=1 and x(t), ∀t ∈ {1, · · · , T}.

Step 4 implements the residual network structure to learn the proximal operator with
regularization βRΘ. The learnable operators W̃Θ and WΘ have a symmetric network
structure, and T (t)

ν is the soft thresholding operator threshold parameter ν.

3.3. Alternating Direction Method of Multipliers (ADMM) Algorithm-Inspired Networks

ADMM introduced an auxiliary variable v to solve the following bi-level problem:

min
x,v

1
2
∥Ax− f∥2

2 + µR(v) (29a)

s.t. v = Dx, (29b)

we can consider D as a gradient operator to reinforce the sparsity of MRI data such as total
variation norm.

The first step is to form the augmented Lagrangian for the given problem. The aug-
mented Lagrangian combines the objective function with a penalty term for the constraint
violation and a Lagrange multiplier:

Lρ(x, v, λ) =
1
2
∥Ax− f∥2

2 + µR(v)+ < λ, Dx− v > +
ρ

2
∥Dx− v∥2

2, (30)

where λ is the Lagrange multiplier and ρ > 0 is a penalty parameter.
The ADMM algorithm solves the above problem by alternating the following three

subproblems:

xt+1 = arg min
x

1
2
∥Ax− f∥2

2 +
ρ

2
∥Dx− (vt − ut)∥2

2, (31a)

vt+1 = arg min
v

ρ

2
∥Dxt+1 − (v− ut)∥2

2 + µR(v), (31b)

ut+1 = ut + (Dxt+1 − vt). (31c)

We can obtain the closed-form solutions for each subproblem as follows:
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xt+1 = (A⊤A + ρD⊤D)−1(A⊤f + ρD⊤(vt − ut)), (32a)

vt+1 = proxµ/ρ(Dxt+1 + ut), (32b)

ut+1 = ut + (Dxt+1 − vt+1). (32c)

If the regularizer is l1 norm R(v) = ∥v∥1, then (32b) reduces to vt+1 = Sβ(Dxt+1 + ut)
with the soft shrinkage threshold β = µ/ρ.

In the ADMM, tuning penalty and regularization parameters play a crucial role in
the algorithm’s performance—particularly the penalty parameter ρ and the augmented
Lagrangian parameter µ. These parameters significantly influence the convergence and
performance of the algorithm. A well-chosen µ can accelerate convergence by appropriately
weighting the constraints in the problem. However, if µ is too large, the algorithm may
become unstable or oscillate between iterations. Conversely, if µ is too small, convergence
can be excessively slow. The parameter ρ controls the weight of the augmented Lagrangian
term in ADMM. It influences the convergence speed and stability of the algorithm. A large
ρ can enforce constraints more strictly but may lead to numerical instability, while a small ρ
might result in slower convergence. Tuning parameters typically rely on heuristic methods
or cross-validation to find a suitable value. One approach to mitigating the challenges
of parameter selection is to adaptively update ρ and µ during the iterations based on the
observed residuals. This strategy can help balance the trade-off between convergence speed
and stability, but it adds complexity to the algorithm.

Gradient descent is simple and widely used but it suffers from slow convergence,
particularly in ill-conditioned problems. ADMM can converge faster for certain problem
classes, especially when the objective function can be split into simpler subproblems.
Proximal gradient descent extends gradient descent by incorporating proximal operators,
making it suitable for optimization problems with non-smooth terms. ADMM can be seen
as a more general approach that also leverages proximal operators but in a way that allows
for better decomposition of the problem.

ADMM-Net

ADMM-Net [54] reformulates these three steps through an augmented Lagrangian
method. This approach leverages a cell-based architecture to optimize neural network
operations for MRI image reconstruction. The network is structured into several layers, each
corresponding to a specific operation in the ADMM optimization process. The gradient
operator D is parameterized as a deep neural network D. All the scalars µ and ρ are
learnable parameters to be trained and updated through ADMM iterations:

xt = (A⊤A + ρtD⊤t Dt)
−1(A⊤f + ρtD⊤t (vt−1 − ut−1)), (33a)

vt = Sβt(Dtxt + ut−1), (33b)

ut = ut−1 + (Dtxt − vt). (33c)

The Reconstruction layer (33a) uses a combination of Fourier and penalized transfor-
mations to reconstruct images from undersampled k-space data, incorporating learnable
penalty parameters and filter matrices. The Convolution layer ct = Dxt+1 applies a convo-
lution operation, transforming the reconstructed image to enhance feature representation,
using distinct, learnable filter matrices to increase the network’s capacity. The Non-linear
Transform layer (33b) replaces traditional regularization functions with a learnable piece-
wise linear function, allowing for more flexible and data-driven transformations that go
beyond simple thresholding. Finally, the Multiplier Update layer (33c) updates the La-
grangian multipliers, essential for integrating constraints into the learning process, with
learnable parameters to adaptively refine the model’s accuracy. Each layer’s output is
methodically fed into the next, ensuring a coherent flow that mimics the iterative ADMM
process, thus systematically refining the image reconstruction quality with each pass
through the network. Figure 6 shows the iterative process of the reconstruction algorithm
of the parallel MRI network.
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Figure 6. Network architecture of ADMM-Net at the t-th phase, illustrating the updates of xt, vt

and ut.

3.4. Primal-Dual Hybrid Gradient (PDHG) Algorithm-Inspired Networks

There are several networks [60,88] are developed inspired by the PDHG algorithm.
PDHG can be used to solve the model (1) by iterating the following steps:

dt+1 = proxζt H⊤(·)(dt + ζtAx̄t), (34a)

xt+1 = proxρtR(·)(xt + ηtA⊤dt+1), (34b)

x̄t+1 = xt+1 + θ(xt+1 − xt), (34c)

where H is the data fidelity function defined as H(Ax, f) := ∥Ax− f∥2
2 in the model (1). In

the learned primal-dual model [60], the traditional proximal operators are replaced with
learned parametric operators. These operators are not necessarily proximal but are instead
learned from training data, aiming to act similarly to denoising operators, such as block
matching 3D (BM3D). The proximal operators can be parameterized as deep networks Gθ′

and Kθ′′ . PD-Net [88] iterates the following two steps:

dt+1 = Gθ′(dt, ζtAxt, f), (35a)

xt+1 = Kθ′′(xt, A⊤dt+1), (35b)

The key innovation here is that these operators—both for the primal and dual vari-
ables—are parameterized and optimized during training, allowing the model to learn
optimal operation strategies directly from the data. The learned primal-dual model oper-
ates under a fixed number of iterations, which serves as a stopping criterion. This approach
ensures that the computation time remains predictable and manageable, which is beneficial
for time-sensitive applications. The algorithm maintains its structure but becomes more
adaptive to specific data characteristics through the learning process, potentially enhancing
reconstruction quality over traditional methods. Figure 7 shows the iterative process of the
reconstruction algorithm of a parallel MRI network.

Figure 7. Network architecture of PD-Net at the t-th phase, illustrating the updates of dt, xt.

3.5. Diffusion Models Meet Gradient Descent for MRI Reconstruction

A notable development for MRI reconstruction using diffusion models is the emer-
gence of denoising diffusion probabilistic models (DDPMs) [89–92]. In denoising diffusion
probabilistic models (DDPMs), the forward diffusion process systematically introduces
noise into the input data, incrementally increasing the noise level until the data becomes
pure Gaussian noise. This alteration progressively distorts the original data distribution.
Conversely, the reverse diffusion process, or the denoising process, aims to reconstruct the
original data structure from this noise-altered distribution. DDPMs effectively employ a
Markov chain mechanism to transition from a noise-modified distribution back to the origi-
nal data distribution via learned Gaussian transitions. The learnable Gaussian noise can be
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parametrized in a U-net architecture that consists of transformers/attention layers [93] in
each diffusion step. The transformer model has demonstrated promising performance in
generating global information and can be effectively utilized for image denoising tasks.

DDPMs represent an innovative class of generative models renowned for their ability
to master complex data distributions and achieve high-quality sample generation without
relying on adversarial training methods. Their adoption in MRI reconstruction has been
met with growing enthusiasm due to their robustness, particularly in handling distribution
shifts. Recent studies exploring DDPM-based MRI reconstructions [89–92] demonstrate
how these models can generate noisy MR images which are progressively denoised through
iterative learning at each diffusion step, either unconditionally or conditionally. This
approach has shown promise in enhancing MRI workflows by speeding up the imaging
process, improving patient comfort, and boosting clinical throughput. Moreover, the
model [90] has proven exceptionally robust, producing high-quality images even when
faced with data that deviates from the training set (distribution shifts) [94], accommodating
various patient anatomies and conditions, and thus enhancing the accuracy and reliability
of diagnostic imaging.

3.5.1. Score-Based Diffusion Model

Chung et al. [89] presented an innovative framework that applies score-based dif-
fusion models to solve inverse imaging problems. The core technique involves training
a continuous time-dependent score function using denoising score matching. The score
function of the data distribution log pt(x(t)) is defined as the gradient of log density w.r.t
the input data. This is estimated by a time-conditional deep neural network SΘ(x(t), t). The
score model is trained by minimizing the following loss function on the magnitude image:

L(Θ) = Ex(t)∼p(x(t)|x(0)),x(0)∼pdata

[
∥SΘ(x(t), t)−∇x(t) log pt(x(t)|x(0))∥2

2
]
. (36)

During inference, the model alternates between a numerical stochastic differential
equation (SDE) solver and a data consistency step to reconstruct images. The method
is agnostic to subsampling patterns, enabling its application across various sampling
schemes and body parts not included in the training data. Chung et al. [89] proposed
the following Algorithm (2) with the predictor-corrector (PC) sampling algorithm [95].
For i = N − 1, · · · , 0, the predictor is defined as xi = xi+1 + (σ2

i+1 − σ2
i )SΘ(xi+1, σi+1) +√

σ2
i+1 − σ2

i ϵ with ϵ ∼ N (0, I). The corrector is defined as xi = xi + λiSΘ(xi, σi) +
√

2λiϵ

with step size λi > 0.
Incorporating a gradient descent step to emphasize the data consistency after the

predictor and corrector, we can obtain the following Algorithm 2:

Algorithm 2 Score-based sampling for MRI reconstruction [89]

Input: xN ∼ N (0, σ2
TI), Learned score function Θ, step size {ϵi}, noise schedule {σi} and

MRI encoding matrix A.
1: for i = N − 1, . . . , 0 do
2: Re(xi)← Predictor(Re(xi+1), σi, σi+1)
3: Im(xi)← Predictor(Im(xi+1), σi, σi+1)
4: xi = Re(xi) + jIm(xi)
5: xi ← xi −A⊤(Axi − f)
6: for j = 1, . . . , M do
7: Re(xi)← Corrector(Re(xi+1), σi, ϵi)
8: Im(xi)← Corrector(Im(xi+1), σi, ϵi)
9: xi = Re(xi) + jIm(xi)

10: xi ← xi −A⊤(Axi − f)
11: end for
12: end for
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The above Algorithm 2 can be variate to other two different algorithms. One is
the parallel implementation for each coil image for parallel MRI reconstruction. The
other one considers the correlation among the multiple coil images and eliminates the
calculation of sensitivity maps, and the final magnitude image is obtained by using the
sum-of-root-sum-of-squares of each coil. The results outperforms conventional deep learn-
ing methods, including UNet [96], DuDoRNet [97], and E2E-Varnet [61], which requires
complex k-space data.

3.5.2. Domain-Conditioned Diffusion Modeling

Domain-conditioned diffusion modeling (DiMo) [73] and quantitative DiMo were
developed for application on both accelerated multi-coil MRI and quantitative MRI (qMRI)
using diffusion models conditioned on the native data domain rather than the image
domain. The method incorporates a gradient descent optimization within the diffusion
steps to improve feature learning and denoising effectiveness. The training and sampling
algorithm for MRI reconstruction is illustrated in Algorithms 3 and 4.

Algorithm 3 Training process of static DiMo

Input: t ∼ Uniform({1, · · · , T}), ϵ ∼ N (0, I), fully scanned k-space f̂0 ∼ q(f0), undersam-
pling mask PΩ, partial scanned k-space f, and coil sensitivities S .
Initialization : η0

1: f̂t ←
√

ᾱt f̂0 +
√

1− ᾱtϵ.
2: f̂t ← PΩ(λtf + (1− λt)f̂t) + (1−PΩ)f̂t ▷ DC
3: for k = 0 to K− 1 do
4: f̂t ← f̂t − ηk∇f̂t

1
2∥AF−1f̂t − f∥2

2 ▷ GD
5: end for
6: Take gradient descent update step
∇θ∥ϵ− ϵθ(f̂t, t)∥2

2
Until converge

Output: f̂t, t ∈ {1, · · · , T}.

Algorithm 4 Sampling process of static DiMo

Input: f̂T ∼ N (0, I), undersampling mask PΩ, partial scanned k-space f, and coil sensitivi-
ties S .

1: for t = T − 1, . . . , 0 do
2: z ∼ N (0, I) if t > 0, else z = 0
3: f̂t = µθ(f̂t+1, t + 1) + σt+1z
4: f̂t ← PΩ(λtf + (1− λt)f̂t) + (1−PΩ)f̂t ▷ DC
5: for k = 0 to K− 1 do
6: f̂t ← f̂t − ηk∇f̂t

1
2∥AF−1f̂t − f∥2

2 ▷ GD
7: end for
8: end for

Output: f̂0

In the training and sampling algorithm, the data consistency (DC) term was used to
emphasize the physical consistency between the partial k-space and reconstructed images.
Then, the gradient descent (GD) algorithm is applied iteratively into the diffusion step to
refine k-space data further. The matrix 1 only contains a value of one. GD in here solves
the optimization problem (1) without the regularization term.

Static DiMo performed a qualitative comparison with both the image domain dif-
fusion model presented by Chung et al. [89] and the k-space domain diffusion model
MC-DDPM [98] and demonstrated robust performance in reconstruction quality and noise
reduction. Quantitative DiMo reconstructs the quantitative parameter maps from the
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partial k-space data. The MR signal modelM defined in (28) maps MR parameter maps to
the static MRI; therefore, it is one more function inside the reconstruction model:

min
∆

1
2
∥AM(∆)− f∥2

2. (37)

The MR parameter maps are denoted as ∆ = {δi}N
i=1 where δi indicates each MR parameter

and N is the total number of MR parameters to be estimated.
The training and sampling diffusion model for quantitative MRI (qMRI) DiMo follows

the same steps as static DiMo, where the signal model should take the inverse when calcu-
lating the quantitative maps ∆ from the updated k-space. Quantitative DiMo showed the
least error compared to other methods [99–101]. This is likely achieved through integrating
the unrolling gradient descent algorithm and diffusion denoising network, prioritizing
noise suppression without compromising the fidelity and clarity of the underlying tis-
sue structure.

3.6. Bi-Level Optimization Model for Multi-Task Learning

In recent years, a large amount of work introduced the customized variational model
for multi-task learning using bi-level optimization models. For example, joint tasks of
reconstruction and multi-contrast synthesis [70] and meta-learning model for MRI recon-
struction [39].

Consider a clinical situation where a patient with suspected multiple sclerosis (MS)
undergoes an MRI scan. The clinician requires both T1-weighted and T2-weighted images
to assess different tissue characteristics—T1 for detailed anatomical structures and T2
for detecting lesions with high water content, commonly associated with MS. Typically,
reconstructing these sequences separately is time-consuming due to the high-resolution
requirements. Concurrently, there is a need to synthesize a FLAIR (Fluid-Attenuated
Inversion Recovery) image, which is crucial for suppressing cerebrospinal fluid signals
and enhancing the visibility of lesions. Given the urgency of diagnosis and the need for
comprehensive imaging, a joint reconstruction and synthesis model can be employed. This
model not only reconstructs the T1 and T2 sequences simultaneously, thereby reducing
overall scan and processing time, but also synthesizes the FLAIR image directly from
the acquired data. By leveraging the complementary information between the T1 and T2
sequences, the model ensures that the synthesized FLAIR image is consistent and reliable,
providing the clinician with a complete set of images for accurate diagnosis without the
need for additional scans.

A provable learnable optimization algorithm [70] was introduced for joint MRI recon-
struction and synthesis. Consider the partial k-space data {f1, f2} of the source modalities
(e.g., T1 and T2) obtained from the measurement domain. The goal is to reconstruct the
corresponding images {x1, x2} and synthesize the image x3 of the missing modality (e.g.,
FLAIR) without having its k-space data. The following optimization model is designed:

min
x1,x2,x3

ΦΘ,γ(x1, x2, x3) := 1
2

2
∑

i=1
∥Aixi − fi∥2

2 +
1
3

3
∑

i=1
∥ fwi (xi)∥2,1

+ γ
2 ∥ζθ([ fw1(x1), fw2(x2)])− x3∥2

2.
(38)

The first term 1
2

2
∑

i=1
∥Aixi − fi∥2

2 ensures the fidelity of the reconstructed images {x1, x2}

to their partial k-space data {f1, f2}. The second term 1
3

3
∑

i=1
∥ fwi (xi)∥2,1 regularizes the

images using modality-specific feature extraction operators fwi , i = 1, 2, 3. The third term
γ
2 ∥ζθ([ fw1(x1), fw2(x2)])− x3∥2

2 enforces consistency between the synthesized image x3 and
the learned correlation relationship from the reconstructed images x1, x2. To synthesize
the image x3 using x1 and x2, a feature-fusion operator ζθ was employed which learns the
mapping from the features fw1(x1) and fw2(x2) to the image x3.
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Denote X = {x1, x2, x3}, the forward learnable optimization algorithm is presented in
Algorithm 5. In step 3, the algorithm performs a gradient descent update with a step size
found via line search, while keeping the smoothing parameter ε > 0 fixed. In step 4, the
reduction of ε ensures the subsequence which met the ε reduction criterion must have an
accumulation point that is a Clarke stationary point of the problem.

Algorithm 5 Learnable descent algorithm for joint MRI reconstruction and synthesis

1: Input: Initial estimate X0, step size range 0 < η < 1, initial smoothing parameter ε0,
a, σ > 0, t = 0. Maximum iterations T. Set tolerance ϵtol > 0.

2: for t = 0, 1, 2, . . . , T − 1 do
3: Xt+1 = Xt − αt∇Φε

Θ,γ(Xt), where the step size αt is determined by a line search such

that Φε
Θ,γ(Xt+1)−Φε

Θ,γ(Xt) ≤ − 1
a∥Xt+1 − Xt∥2 holds.

4: if ∥∇Φε
Θ,γ(Xt+1)∥ < σηε, set εt+1 = ηε; otherwise, set εt+1 = ε.

5: if σε < ϵtol, terminate and go to step 6,
6: end for and output X(t).

Algorithm 5 is a forward MRI reconstruction algorithm. Let Θ = {w1, w2, w3, θ}
denote the collection of all the learnable parameters and γ denote a parameter to balance
the reconstruction part and image synthesis part. The backward network training algorithm
is designed to solve a bilevel optimization problem:

min
γ

∑Mval
i=1 ℓ(Θ(γ), γ;Dval

i ) s.t. Θ(γ) = arg minΘ ∑Mtr
i=1 ℓ(Θ, γ;Dtr

i ), (39)

where ℓ(Θ, γ;Di) :=
µ

2
∥ζθ([ fw1(x

∗
1), fw2(x

∗
2)])− x∗3∥2

2

+ ∑3
j=1

(
1
2∥xj,T̂(Θ, γ;Di)− x∗j ∥2

2 + (1− SSIM(xj,T̂(Θ, γ;Di), x∗j ))
)

.
(40)

The following Algorithm 6 was proposed for training the model for joint reconstruction
and synthesis.

Algorithm 6 Mini-batch alternating direction penalty algorithm

1: Input Training data Dtr, validation data Dval , tolerance δtol > 0. Initialize Θ, γ, δ,
λ > 0 and νδ ∈ (0, 1), νλ > 1.

2: while δ > δtol do
3: Sample training batch Btr ⊂ Dtr and validation batch Bval ⊂ Dval .
4: while ∥∇ΘL̃(Θ, γ;Btr,Bval)∥2 + ∥∇γL̃(Θ, γ;Btr,Bval)∥2 > δ do
5: for k = 1, 2, . . . , K (inner loop) do
6: Update Θ← Θ− ρ

(k)
Θ ∇ΘL̃(Θ, γ;Btr,Bval)

7: end for
8: Update γ← γ− ργ∇γL̃(Θ, γ;Btr,Bval)
9: end while and update δ← νδδ, λ← νλλ.

10: end while and output: Θ, γ.

The training Algorithm 6 considers updating the network parameters Θ and the
balancing parameter γ by minimizing the loss function (40) on both validation and training
data sets for each task j = 1, 2, 3. Figure 8 shows the overall network architecture of
iterating forward optimization Algorithm 5 with backward training Algorithm 6.
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Figure 8. The model framework of joint MRI reconstruction and synthesis.

4. Discussion
4.1. Evaluation Metrics and Loss Functions

To quantitatively compare the performance of several MRI reconstruction algorithms,
evaluation metrics are essential. These metrics need to be standardized in order to provide
a consistent comparison between algorithms proposed in different studies and provide
insights into effectiveness of the algorithms. In this paper, we introduce a few evaluation
metrics used in previous studies. A common evaluation metric used across multiple
studies is the root mean squared error (RMSE), which provides the square root of the
average squared difference between predicted and actual images. The RMSE between the
reconstruction v and the ground truth v∗ is defined as

RMSE = ∥v∗ − v∥/∥v∗∥. (41)

RMSE =
√

∑c
i=1 ∥v

∗
i − vi∥2/ ∑c

i=1 ∥v
∗
i ∥2. (42)

Studies have also discussed the peak signal-to-noise ratio (PSNR), which expresses the ratio
between the maximum possible pixel value and the power of the noise. A higher PSNR
values indicate better predictive quality. Typically, a PSNR of above 30 dB is considered
acceptable for reconstructions. The PSNR is defined as follows.

PSNR = 20 log10
(

max(|v∗|)
/ 1

N
∥v∗ − v∥2), (43)

where N is the total number of pixels in the magnitude of ground truth.
Finally, the structural similarity index (SSIM) evaluates the quality of the model

predictions by comparing luminance, contrast, and structure between the reconstructed
and original images. A higher SSIM indicates closer structural similarity. The SSIM ranges
between −1 and 1, with 1 being considered as being perfect structural similarity. The
following equation calculates SSIM between reconstruction v and reference v∗:

SSIM =
(2µvµv∗ + C1)(2σvv∗ + C2)

(µ2
v + µ2

v∗ + C1)(σ2
v + σ2

v∗ + C2)
, (44)

where µv, µv∗ are local means of pixel intensity, σv, σv∗ denote the standard deviation and
σvv∗ is covariance between v and v∗. C1 = (k1L)2, C2 = (k2L)2 are constants to avoid the
denominator being zero, where k1 = 0.01, k2 = 0.03. L is the largest pixel value of the
magnitude of images.

Loss functions play crucial roles in training the network and optimizing model perfor-
mance. Studies proposing various networks have also discussed novel loss functions that
may enhance image reconstruction. We listed the loss functions that are being used in sev-
eral key representative methods. Most of the LOAs are supervised learning which requires
ground truth in the loss function. RELAX-MORE [76] is subject-dependent self-supervised
learning method that does not require fully sampled k-space data. The Table 1 shows the
comparisons of different loss functions.
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Table 1. Loss functions for variational networks in MRI reconstruction.

Model Loss Function

Variational Network [18] 1
2∥xT − x∗∥2

2

MoDL [57] 1
2∥xT − x∗∥2

2

ISTA-Net [56]

Ldis + µLid

Ldis =
1
2
∥xT − x∗∥2

2

Lid =
1
2

T

∑
t=1
∥φ̃t(φt(x∗))− x∗∥2

2

pMRI-Net [71] ∑c
i=1 γ∥x(T)i − x̂i∥+ ∥|J (x̄(T))| − s(x̂)∥

+ η∥s(x̄(T))− s(x̂)∥

ADMM-Net [102] 1
2∥xT − x∗∥2

2

Learned Primal-Dual [60] 1
2∥xT − x∗∥2

2

RELAX-MORE [76] ∑T
t=0 γt ∥ UFCxt − f ∥2

2

DiMo [73] E f̂t ,t,ϵ
∥ϵ− ϵθ( f̂t, t)∥2

2

It is worth noting that the goal for diffusion models is to learn the Gaussian noise
added in each diffusion step, the network ϵθ learns to remove the noise that is added in the
forward process and matches the target distribution. Therefore, the loss function measures
the discrepancy between the estimated learned noise in each step and the actual added
noise in the training process.

4.2. Comparing Learnable Optimization Algorithms (LOA) with Traditional Optimization Methods

LOA has emerged as an effective alternative to traditional optimization methods.
Despite its advantages, the LOA is computationally expensive, especially during the
training phase. LOAs need a substantial amount of training data to generalize well across
optimization tasks. Furthermore, owing to the requirement of large-scale training, the
training process for the LOA could also be quite slow, especially when suffering the curse
of dimensionality. Discussing the predictive performance and accuracy of the LOA and
comparing it with the traditional optimization methods, LOA often tends to outperform
traditional methods on more complex non-convex problems with irregular landscapes.
Focusing on MRI reconstruction, LOAs have shown impressive results in recovering
high-quality MRI images from undersampled k-space data. Additionally, studies have
demonstrated that LOAs can handle noise and artifacts better, which are common in clinical
MRI scans. Another advantage is that once the LOA is trained, they can reconstruct MRI
images much quicker than traditional methods. This efficiency makes LOAs more attractive
for real-time applications. However, as indicated earlier, this efficiency comes at the cost of
increasing training time.

4.3. Strengths, Weakness, and Performance of the Reviewed Algorithms in Different Scenarios

In this paper, several algorithms focusing on MRI reconstruction have been discussed.
To fully understand the limitations of existing algorithms and the need for future research, it
is vital to perform a comparative analysis between the algorithms in this paper. The Table 2
summarized a detailed comparisons among several well-known LOA inspired methods.
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Table 2. Strengths, weaknesses, performance of various optimization-based network unrolling
algorithms for MRI reconstruction and their code availability.

Algorithm Strengths Weaknesses Performance in
Various Scenarios Code Availability

Variational Network
(VN) [18]

Uses gradient descent
for reconstruction.
Effective in multi-coil
MRI. Incorporates
CNNs for
regularization.

Needs pre-calculated
sensitivity maps.
Limited flexibility in
handling unknown or
inaccurate sensitivity
maps.

Strong performance in
multi-coil MRI
reconstruction, but
dependent on the
accuracy of sensitivity
maps.

https://github.com/
VLOGroup/mri-
variationalnetwork
(accessed on 28 August
2024)

E2E-VarNet [61]

Hybrid domain
learning (k-space and
image domain). Learn
iterative optimization
steps using gradient
descent.

Complex training
process. Requires high
computational
resources.

Excellent performance
in k-space and image
domain reconstructions.
Effective in handling
undersampled MRI
data, but requires
significant
computational
resources for training
and deployment.

https://github.com/
facebookresearch/
fastMRI/tree/main/
fastmri_examples/
varnet (accessed on 28
August 2024)

MoDL [57]

Recursive architecture.
Weight sharing across
iterations. Effective
denoising-based
regularization.

May enhance artifacts
due to over-smoothing.
Computationally
intensive due to its
recursive nature.

Performs well in
denoising and
removing aliasing
artifacts, particularly in
single-coil and
multi-coil MRI
reconstruction. May
suffer from artifact
enhancement when
over-smoothed.

https://github.com/
hkaggarwal/modl
(accessed on 28 August
2024)

ISTA-Net+ [56]

Closed-form solution
using soft-thresholding.
Efficient for solving L1
norm problems.
Incorporates residual
learning.

May be less effective
with complex,
multi-coil data.
Requires careful tuning
of hyperparameters.

Excellent performance
in sparse image
reconstruction and
L1-based regularization
scenarios. Struggles in
complex multi-coil
scenarios.

https://github.com/
jianzhangcs/ISTA-Net-
PyTorch (accessed on
28 August 2024)

ADMM-Net [54]

Effective for single-coil
MRI reconstruction.
Retains iterative
optimization principles.
Utilizes CNN-based
regularization.

Limited application in
multi-coil settings.
Requires accurate coil
sensitivity maps.

Performs well in
single-coil MRI
reconstruction but
struggles in multi-coil
settings due to lack of
sensitivity map
adaptation.

https://github.com/
yangyan92/Deep-
ADMM-Net (accessed
on 28 August 2024)

Primal-Dual
Network [60]

Utilizes primal-dual
optimization principles.
Proximal operator is
learnable. Good
flexibility.

Requires significant
training data.
Computationally
expensive due to dual
operations.

Performs well across
different MRI settings,
including multi-coil
and accelerated
imaging. Effective in
handling complex data
with well-learned
priors.

https:
//github.com/adler-j/
learned_primal_dual
(accessed on 28 August
2024)

https://github.com/VLOGroup/mri-variationalnetwork
https://github.com/VLOGroup/mri-variationalnetwork
https://github.com/VLOGroup/mri-variationalnetwork
https://github.com/facebookresearch/fastMRI/tree/main/fastmri_examples/varnet
https://github.com/facebookresearch/fastMRI/tree/main/fastmri_examples/varnet
https://github.com/facebookresearch/fastMRI/tree/main/fastmri_examples/varnet
https://github.com/facebookresearch/fastMRI/tree/main/fastmri_examples/varnet
https://github.com/facebookresearch/fastMRI/tree/main/fastmri_examples/varnet
https://github.com/hkaggarwal/modl
https://github.com/hkaggarwal/modl
https://github.com/jianzhangcs/ISTA-Net-PyTorch
https://github.com/jianzhangcs/ISTA-Net-PyTorch
https://github.com/jianzhangcs/ISTA-Net-PyTorch
https://github.com/yangyan92/Deep-ADMM-Net
https://github.com/yangyan92/Deep-ADMM-Net
https://github.com/yangyan92/Deep-ADMM-Net
https://github.com/adler-j/learned_primal_dual
https://github.com/adler-j/learned_primal_dual
https://github.com/adler-j/learned_primal_dual
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Table 2. Cont.

Algorithm Strengths Weaknesses Performance in
Various Scenarios Code Availability

Parallel MRI
Network [71]

Bi-level optimization
for MRI reconstruction.
Regularization in both
image and k-space
domains.
Cross-domain learning.

Complex design with
dual regularization
terms. Sensitive to
training data.

Excellent performance
in parallel MRI,
including multi-coil
settings. Balances
between k-space and
image domain
reconstruction,
effective at removing
artifacts.

https://github.com/
Wanyu624/pMRI_
optimal_control
(accessed on 28 August
2024)

RELAX-MORE [76]

Self-supervised
learning. Transfer
learning for quick
adaptation. Optimizes
quantitative MRI
parameters.

Dependent on transfer
learning for efficiency.
Requires well-prepared
training datasets.

Strong performance in
quantitative MRI
reconstruction,
especially with transfer
learning. Effective in
undersampled
scenarios and
cross-domain
applications.

N/A

4.4. Selection of Acquisition Parameters

The selection of acquisition parameters is a critical aspect of MRI reconstruction,
influencing the efficiency and accuracy of deep learning models. The architecture of
deep reconstruction networks and efficient numerical methods play a pivotal role in this
selection. In LOAs, one must determine the appropriate number of iterations T and the
initial step size for gradient descent to ensure the reconstruction network converges to the
local optimum of the problem (1). The convergence to the local optimum is essential for
producing high-quality reconstructed images. The required number of iterations and the
step size depend on the specific application tasks and whether the step size is learnable or
fixed in the gradient descent-based algorithm used for reconstruction. Proper tuning of
these parameters is crucial for optimizing the performance of the reconstruction network.

4.5. Theoretical Convergence and Practical Considerations

While unrolling-based deep-learning methods are derived from numerical algorithms
with convergence guarantees, these guarantees do not always extend to the unrolled meth-
ods due to their dynamic nature and the direct replacement of functions by neural networks.
Theoretical convergence is compromised, and only a few works have analyzed the conver-
gence behavior of unrolling-based methods in theory. Notable studies include [38,39,70],
which provide insights into the theoretical convergence of these methods. For example,
reference [70] proved that if x(t) satisfies the stopping criterion, then there exists a subse-
quence x(tl+1) at least one accumulation point, and every accumulation point of x(tl+1) is a
Clarke stationary point of the (1). Understanding the convergence properties of unrolled
networks is crucial for ensuring the reliability and robustness of MRI reconstruction al-
gorithms. Future research should focus on establishing stronger theoretical foundations
and convergence guarantees for unrolling-based deep learning methods. This includes
developing new theoretical frameworks that can account for the dynamic and adaptive
nature of these models, as well as creating more rigorous validation protocols.

A significant application of deep learning in clinical MRI is its use in accelerating image
acquisition, making it possible to acquire images up to 10 times faster than conventional
methods without compromising diagnostic quality [24,94,103]. Artifact reduction is a
critical challenge in MRI, where motion artifacts or metal implants can significantly degrade
image quality. Deep learning models have shown scalability across different MRI modalities

https://github.com/Wanyu624/pMRI_optimal_control
https://github.com/Wanyu624/pMRI_optimal_control
https://github.com/Wanyu624/pMRI_optimal_control
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and anatomical regions, which is crucial for their widespread adoption in clinical practice.
The ability to handle large datasets and perform real-time processing is also vital for
integrating these models into routine workflows. For deep learning models to be truly
effective in clinical settings, they must generalize well across diverse patient populations,
imaging protocols, and MRI scanners. This requires robust training on large, heterogeneous
datasets and careful validation across multiple sites and clinical conditions.

4.6. Limitations of the Existing Deep Learning Approaches

Despite the advancements in reconstructing MRI images through deep learning meth-
ods, there are several practical challenges that need to be addressed. Most deep learning
approaches focus on designing end-to-end networks that are independent of intrinsic MRI
physical characteristics, leading to sub-optimal performance. Deep learning methods are
also often criticized for their lack of mathematical interpretation, being seen as “black
boxes”. Acquiring and processing large high-quality datasets that are needed for training
deep-learning models may be difficult, especially when dealing with diverse patient pop-
ulations and varying imaging conditions. Training deep neural networks may require a
large quantity of data and may be prone to over-fitting when data is scarce. Additionally,
both the training and inference process of deep learning models may require substantial
computational resources, which may act as a barrier for certain medical institutions. Hence,
it may be a trade-off between cost and time. Ensuring that the model generalizes well across
different MRI scans and clinical settings is also essential for the widespread adoption of
deep-learning techniques. Finally, the technologies utilized in clinical settings might need
to be validated, transparent, and fully interpretable in order to ensure that clinicians trust
the decision-making capabilities of the algorithms. Future studies may focus on addressing
the above-mentioned challenges, which would accelerate the adoption of deep learning
methods and advance the field of medical imaging.

4.7. Computational Burden, Memory Consumption, and Inference Time

Deep learning-based MRI reconstruction methods, particularly those involving un-
rolled optimization algorithms, demand significant computational resources. The training
process involves substantial GPU memory consumption to store intermediate results and
their corresponding gradients. This high memory requirement, coupled with potentially
long training times, arises from the need to repeatedly apply the forward and adjoint
operators during training.

However, diffusion models, for example, require long inference times due to the
pre-scheduled denoising steps involved in the sampling process. Additionally, training
diffusion models is time-consuming and memory-intensive, particularly because of the
self-attention modules incorporated in the denoising network at each diffusion step.

The LOAs such as ISTA-Net, and PD-Net unroll iterative optimization procedures,
with each phase of the network being trained independently without parameter sharing. As
the number of iterations increases, so does the computational and memory burden, making
these methods more resource-intensive. It is crucial to acknowledge these limitations in the
design of the network architecture, such as long inference times, model complexity, memory
consumption, and computational burden, alongside the advantages of these methods.
Addressing these challenges will be key to improving the feasibility and efficiency of deep
learning approaches in MRI reconstruction.

To address these challenges, techniques such as pruning, quantization, and knowledge
distillation can reduce the model size and memory footprint without significantly sacrificing
performance. In addition, implement gradient checkpointing, where only a subset of
activations is stored during the forward pass, and others are recomputed during the
backward pass. This can significantly reduce memory usage during training. Splitting the
training process across multiple GPUs or even across different nodes in a cluster can help
manage memory constraints by distributing the workload. Advancements in hardware
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acceleration, such as the use of specialized AI chips and tensor processing units (TPUs),
could further enhance the performance of deep learning-based MRI reconstruction.

4.8. Other Related Reconstruction Methods

Federated learning (FL) for MRI reconstruction [104–106] is an innovative approach
that enables multiple institutions to collaboratively train a deep learning model without
sharing patient data, thus preserving privacy. This method is particularly valuable in
the medical imaging field, where data privacy and security are paramount, and where
institutions may have diverse datasets collected under different conditions, such as varying
sensors, disease types, and acquisition protocols. For example, the FL-MR framework [105]
trains local models at multiple institutions. Each local model computes reconstruction losses
and update parameters through gradient descent. Then the updated model parameters are
sent to the central server, where they are averaged to update the global model. The updated
global model is then redistributed to local institutions for further training, iterating until
the model converges.

Plug-and-play (PnP) methods [78,107–109] integrate state-of-the-art denoising algo-
rithms as priors into the image reconstruction process. The PnP approach allows for the
decoupling of image modeling (denoising) from forward modeling (data acquisition),
which is particularly advantageous in MRI, where the forward model can vary significantly
between different scans. For example, proximal-based PnP methods [78] leverage the
ADMM framework to decouple the regularization term (which encodes prior knowledge
of the image) from the data fidelity term. In these methods, a denoising algorithm re-
places the proximal operator that would typically be used in the optimization process.
Gradient-based PnP methods [108] involve using gradient descent-based algorithms like
the fast iterative shrinkage-thresholding algorithm (FISTA) in combination with denois-
ers. Instead of solving the proximal update exactly, a gradient descent step is performed
to handle the data fidelity term, followed by a denoising step that uses the denoiser as
a regularizer. This category emphasizes computational efficiency, as gradient steps are
generally less expensive than solving proximal updates. The consensus equilibrium (CE)
framework [110–113] provides a theoretical understanding of PnP methods. It interprets
the denoiser used in the PnP algorithm as a solution to an equilibrium equation rather than
an exact minimization of a cost function. This framework helps to address questions related
to the convergence of PnP methods, particularly when the denoiser does not correspond to
any known regularizer.

Blind-PMRI-Net [58] is a method that alternates between updating images and sen-
sitivity maps to solve multi-channel MRI problems. It employs a half-quadratic splitting
approach, resulting in a complex network design that requires careful balancing of updates
to maintain stability. This method is particularly effective in multi-coil MRI scenarios
where sensitivity maps are not known a priori, making it well-suited for handling com-
plex imaging tasks. However, optimizing this approach can be challenging due to its
intricate structure.

VS-Net [59] utilizes variable splitting optimization to manage complex multi-coil data.
While it performs well in parallel imaging tasks, its robustness is limited by its handling of
sensitivity maps, making it less adaptable to certain coil configurations. VS-Net delivers
good performance, but its sensitivity to inaccuracies in the sensitivity maps can impact its
effectiveness in some scenarios.

4.9. Future Directions and Research Opportunities

Future research should aim to address the limitations of current models and explore
new avenues for enhancement. Emerging AI techniques, such as reinforcement learning,
offer promising directions for improving MRI reconstruction. To further enhance MRI
reconstruction, future work may focus on leveraging reinforcement learning (RL). RL can
optimize acquisition parameters dynamically during the scan. This could lead to more
efficient data collection and potentially reduce scan times further, thereby making MRI
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procedures more responsive to specific patient needs and scanning conditions. In addition
to RL, self-supervised learning also holds immense promise in improving the efficacy,
quality, and accuracy of MRI reconstruction. Self-supervised learning can exploit the
structure in MRI data, such as the physical constraints of the imaging process, to generate
useful training signals without the need for a large quantity of ground truth data. This can
serve as a catalyst for the development of novel models and reduce any dependency the
researchers may have on expensive and time-consuming data labeling. Future work may
see the development of more sophisticated self-supervised to leverage domain-specific
knowledge and enhance model performance.

In addition to leveraging various techniques, personalized medicine approaches,
where models are tailored to individual patient characteristics, could provide significant
benefits. These approaches can leverage patient-specific data to enhance the accuracy and
reliability of MRI reconstructions, leading to more precise diagnoses and personalized
treatment plans. Additionally, the integration of self-supervised learning techniques,
which can operate with limited ground truth data, represents a promising avenue. Self-
supervised learning can leverage the inherent structure in MRI data to improve model
training, reducing the dependency on extensive labeled datasets.

Moreover, exploring hybrid models that combine multiple algorithms may offer a
more comprehensive solution to the challenges of MRI reconstruction. These hybrid models
can integrate the strengths of different techniques, such as combining the robustness of
classical optimization with the adaptability of deep learning. Collaborative efforts between
researchers, clinicians, and industry partners will be essential for advancing the field and
translating research innovations into clinical practice. Ensuring that these models are
user-friendly and seamlessly integrated into existing clinical workflows will be critical for
their successful implementation.

5. Conclusions

In conclusion, this paper provides a comprehensive overview of several optimiza-
tion algorithms and network unrolling methods for MRI reconstruction. The discussed
techniques include gradient descent algorithms, proximal gradient descent algorithms,
ADMM, PDHG, and diffusion models combined with gradient descent. By summarizing
these advanced methodologies, we aim to offer a valuable resource for researchers seeking
to enhance MRI reconstruction through optimization-based deep learning approaches.
The insights presented in this review are expected to facilitate further development and
application of these algorithms in the field of medical imaging. One of the most promising
directions is the integration of these optimization techniques with emerging AI-driven
methods such as generative models and RL, which could further improve reconstruction
accuracy and reduce computational costs. Additionally, research on reinforcement and
self-supervised learning could greatly improve the efficacy and accuracy of the MRI recon-
struction process. The insights presented in this review are expected to facilitate further
development and application of these LOAs in the fields of inverse problems and medical
imaging reconstruction.
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51. Akçakaya, M.; Moeller, S.; Weingärtner, S.; Uğurbil, K. Scan-specific robust artificial-neural-networks for k-space interpolation
(RAKI) reconstruction: Database-free deep learning for fast imaging. Magn. Reson. Med. 2019, 81, 439–453. [CrossRef] [PubMed]

52. Sriram, A.; Zbontar, J.; Murrell, T.; Zitnick, C.L.; Defazio, A.; Sodickson, D.K. GrappaNet: Combining parallel imaging with
deep learning for multi-coil MRI reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14315–14322.

53. Han, Y.; Sunwoo, L.; Ye, J.C. k-space deep learning for accelerated MRI. IEEE Trans. Med. Imaging 2019, 39, 377–386. [CrossRef]

http://dx.doi.org/10.1109/TIP.2017.2713099
http://www.ncbi.nlm.nih.gov/pubmed/28641250
http://dx.doi.org/10.1016/j.zemedi.2018.11.002
http://dx.doi.org/10.1109/MSP.2019.2950557
http://dx.doi.org/10.1109/MSP.2019.2950433
http://dx.doi.org/10.1109/MSP.2017.2739299
http://dx.doi.org/10.1109/JPROC.2021.3054390
http://dx.doi.org/10.1111/1754-9485.13276
http://dx.doi.org/10.1016/j.imed.2021.03.003
http://dx.doi.org/10.1109/TMI.2020.3014193
http://www.ncbi.nlm.nih.gov/pubmed/32746155
http://dx.doi.org/10.1137/20M1353368
http://dx.doi.org/10.3390/jimaging7110231
http://dx.doi.org/10.1109/MSP.2022.3215288
http://dx.doi.org/10.1002/mrm.24751
http://dx.doi.org/10.1002/jmri.23639
http://www.ncbi.nlm.nih.gov/pubmed/22696125
http://dx.doi.org/10.1007/s001860000043
http://dx.doi.org/10.3390/bioengineering10091012
http://dx.doi.org/10.1002/mp.12600
http://dx.doi.org/10.1109/TMI.2018.2820120
http://dx.doi.org/10.1109/TMI.2018.2858752
http://dx.doi.org/10.1002/mrm.27420
http://www.ncbi.nlm.nih.gov/pubmed/30277269
http://dx.doi.org/10.1109/TMI.2019.2927101


AppliedMath 2024, 4 1125

54. Yang, Y.; Sun, J.; Li, H.; Xu, Z. Deep ADMM-Net for Compressive Sensing MRI. In Advances in Neural Information Processing
Systems; Curran Associates, Inc.: New York, NY, USA, 2016; Volume 29.

55. Kofler, A.; Altekrüger, F.; Antarou Ba, F.; Kolbitsch, C.; Papoutsellis, E.; Schote, D.; Sirotenko, C.; Zimmermann, F.F.; Papafitsoros,
K. Learning regularization parameter-maps for variational image reconstruction using deep neural networks and algorithm
unrolling. SIAM J. Imaging Sci. 2023, 16, 2202–2246. [CrossRef]

56. Zhang, J.; Ghanem, B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1828–1837.

57. Aggarwal, H.K.; Mani, M.P.; Jacob, M. MoDL: Model-Based Deep Learning Architecture for Inverse Problems. IEEE Trans. Med.
Imaging 2019, 38, 394–405. [CrossRef] [PubMed]

58. Meng, N.; Yang, Y.; Xu, Z.; Sun, J. A prior learning network for joint image and sensitivity estimation in parallel MR imaging.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen,
China, 13–17 October; Springer: Berlin/Heidelberg, Germany, 2019; pp. 732–740.

59. Duan, J.; Schlemper, J.; Qin, C.; Ouyang, C.; Bai, W.; Biffi, C.; Bello, G.; Statton, B.; O’regan, D.P.; Rueckert, D. VS-Net: Variable
splitting network for accelerated parallel MRI reconstruction. In Medical Image Computing and Computer Assisted Intervention–
MICCAI 2019, Proceedings of the 22nd International Conference, Shenzhen, China, 13–17 October 2019; Proceedings, Part IV 22; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 713–722.

60. Adler, J.; Öktem, O. Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 2018, 37, 1322–1332. [CrossRef] [PubMed]
61. Sriram, A.; Zbontar, J.; Murrell, T.; Defazio, A.; Zitnick, C.L.; Yakubova, N.; Knoll, F.; Johnson, P. End-to-end variational networks

for accelerated MRI reconstruction In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020, Proceedings of the
23rd International Conference, Lima, Peru, 4–8 October 2020; Proceedings, Part II 23; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 64–73.

62. Yiasemis, G.; Sonke, J.J.; Sánchez, C.; Teuwen, J. Recurrent variational network: A deep learning inverse problem solver applied
to the task of accelerated MRI reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 732–741.

63. Polak, D.; Cauley, S.; Bilgic, B.; Gong, E.; Bachert, P.; Adalsteinsson, E.; Setsompop, K. Joint multi-contrast variational network
reconstruction (jVN) with application to rapid 2D and 3D imaging. Magn. Reson. Med. 2020, 84, 1456–1469. [CrossRef]

64. Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.N.; Rueckert, D. A Deep Cascade of Convolutional Neural Networks for Dynamic
MR Image Reconstruction. IEEE Trans. Med. Imaging 2018, 37, 491–503. [CrossRef]

65. Jun, Y.; Shin, H.; Eo, T.; Kim, T.; Hwang, D. Deep model-based magnetic resonance parameter mapping network (DOPAMINE)
for fast T1 mapping using variable flip angle method. Med. Image Anal. 2021, 70, 102017. [CrossRef]

66. Mardani, M.; Sun, Q.; Donoho, D.; Papyan, V.; Monajemi, H.; Vasanawala, S.; Pauly, J. Neural proximal gradient descent for
compressive imaging. Adv. Neural Inf. Process. Syst. 2018, 31, 9596–9606.

67. Zeng, G.; Guo, Y.; Zhan, J.; Wang, Z.; Lai, Z.; Du, X.; Qu, X.; Guo, D. A review on deep learning MRI reconstruction without fully
sampled k-space. BMC Med. Imaging 2021, 21, 195. [CrossRef] [PubMed]

68. Bian, W.; Chen, Y.; Ye, X. Deep parallel MRI reconstruction network without coil sensitivities. In Proceedings of the Machine
Learning for Medical Image Reconstruction: Third International Workshop, MLMIR 2020, Held in Conjunction with MICCAI
2020, Lima, Peru, 8 October 2020; Proceedings 3; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–26.

69. Bian, W. Optimization-Based Deep Learning Methods for Magnetic Resonance Imaging Reconstruction and Synthesis. Ph.D.
Thesis, University of Florida, Gainesville, FL, USA, 2022.

70. Bian, W.; Zhang, Q.; Ye, X.; Chen, Y. A learnable variational model for joint multimodal MRI reconstruction and synthesis. In
Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore,
18–22 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 354–364.

71. Bian, W.; Chen, Y.; Ye, X. An optimal control framework for joint-channel parallel MRI reconstruction without coil sensitivities.
Magn. Reson. Imaging 2022, 89, 1–11. [CrossRef] [PubMed]

72. Bian, W.; Jang, A.; Liu, F. Magnetic Resonance Parameter Mapping using Self-supervised Deep Learning with Model Reinforce-
ment. arXiv 2023, arXiv:2307.13211v1.

73. Bian, W.; Jang, A.; Zhang, L.; Yang, X.; Stewart, Z.; Liu, F. Diffusion modeling with domain-conditioned prior guidance for
accelerated mri and qmri reconstruction. IEEE Trans. Med. Imaging 2024. [CrossRef]

74. Bian, W.; Jang, A.; Liu, F. Multi-task Magnetic Resonance Imaging Reconstruction using Meta-learning. arXiv 2024,
arXiv:2403.19966.

75. Bian, W. A Review of Electromagnetic Elimination Methods for low-field portable MRI scanner. arXiv 2024, arXiv:2406.17804.
76. Bian, W.; Jang, A.; Liu, F. Improving quantitative MRI using self-supervised deep learning with model reinforcement: Demonstra-

tion for rapid T1 mapping. Magn. Reson. Med. 2024, 92, 98–111. [CrossRef]
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