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Abstract: The classical tests for combining p-values use suitable statistics T(P1, . . . , Pn), which are
based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are
observations from independent and identically distributed Uniform(0, 1) random variables P1, . . . , Pn.
However, the phenomenon known as publication bias, which generally results from the publication of
studies that reject null hypotheses of no effect or no difference, can tempt researchers to replicate their
experiments, generally no more than once, with the aim of obtaining “better” p-values and reporting
the smallest of the two observed p-values, to increase the chances of their work being published.
However, when such “fake p-values” exist, they tamper with the statistic T(P1, . . . , Pn) because they
are observations from a Beta(1, 2) distribution. If present, the right model for the random variables Pk

is described as a tilted Uniform distribution, also called a Mendel distribution, since it was underlying
Fisher’s critique of Mendel’s work. Therefore, methods for combining genuine p-values are reviewed,
and it is shown how quantiles of classical combining test statistics, allowing a small number of fake
p-values, can be used to make an informed decision when jointly combining fake (from Two P) and
genuine (from not Two P) p-values.

Keywords: combined p-values; fake p-values; Mendel random variables

MSC: 62A01; 62P10

1. Introduction

The concept of p-value is generally credited to Pearson [1], although it was implicitly
used much earlier by Arbuthnot [2] in 1710. Defined as the probability of obtaining, under
a null hypothesis, a result that is as extreme or more extreme than the one observed, it was
considered to be an informal index to assess the discrepancy between the data and the
hypothesis under investigation. The use of p-values gained popularity with Sir Ronald
Fisher [3,4], and about their use, Fisher [5] states that “A scientific fact should be regarded
as experimentally established only if a properly designed experiment rarely fails to give
this [P = 0.05] level of significance”. Therefore, the question of reproducibility of results was
naturally raised (cf. Greenwald et al. [6], or Colquhoun [7]), which in turn demanded the
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p-values collected from replicated experiments to be summarized into a combined p-value.
In 1931, Tippett [8], a co-worker of Fisher, performed the first meta-analysis of p-values,
and in 1932, Fisher himself [9] suggested a method for combining p-values.

The classical combined test procedures assume that the observed p-values, p1, . . . , pn,
are, under null hypotheses H0k, k = 1, . . . , n, of no difference or no effect, observations from
independent random variables Pk ∼ Uniform(0, 1), which is an immediate consequence of
the probability integral transform theorem. It is then said that a pk from Pk ∼ Uniform(0, 1)
is a genuine (or a true) p-value.

Section 2 describes some classical methods for combining p-values, using either their
values directly, for example through order statistics or Pythagorean means, or using basic
transformations of standard uniform random variables, such as − ln Pk and Φ−1(Pk), where
Φ−1 is the inverse of the standard Gaussian cumulative distribution function, or the logit
function ln

(
Pk

1−Pk

)
. For additional p-values combinations, see Brilhante et al. [10].

Although today there is an intense debate on whether significance testing, and there-
fore the use of p-values, is an acceptable scientific research tool; see, for instance, the
editorials in The American Statistician vol. 70 (Wasserstein and Lazar [11]) and vol. 73
(Wasserstein et al. [12]) on the topic, traditionally low p-values were a valid passport for
being published. This has created a so-called file drawer problem due to publication bias.
As with other techniques used in meta-analysis, publication bias can easily lead to false
conclusions. In fact, the set of available p-values comes mainly from studies considered
worthy of publication because the observed p-values were small, presumably indicating
significant results. Thus, the assumption that the pk’s are observations from independent
Uniform(0, 1) random variables is quite questionable since generally they are a set of low
order statistics, given that p-values greater than 0.05 have less chances of being published.

One way of assessing publication bias is by computing the number of non-significant p-
values that would be needed to reverse the decision to reject the overall hypothesis based on
a set of available p-values. For example, Jin et al. [13] and Lin and Chu [14] give interesting
overviews of how to deal with publication bias. Givens et al. [15] also provide a deep
insight into publication bias in meta-analysis, namely using data-augmentation techniques.

Publication bias is also the cause of poor scientific practices, in some cases even fraud,
especially when the replication of experiments is carried out with the intent of, hopefully,
obtaining more favorable p-values to increase the chances of publishing. While replicating
experiments is legitimate and recommended to establish consistent results, replicating with
the purpose of reporting the smallest of the observed p-values is an unacceptable scientific
practice. If this is indeed the case, the reported “fake” p-value, being the minimum of
ℓ > 1 independent standard uniform random variables, is Beta(1, ℓ)-distributed. However,
replicating experiments has a cost, either monetary or timewise, and if in the replication of
an experiment only once, both p-values obtained are greater than 0.05, then what appears to
be the wisest decision is not to continue replicating the experiment; otherwise, the smallest
of the two p-values is reported, or none at all. In fact, what seems realistic to consider
is either ℓ = 2, and therefore a nuisance “fake two p-value” is reported, or ℓ = 1, i.e., a
“genuine”, not the minimum of “two p-value”, is disclosed.

In Fisher’s [16] comments about Mendel’s work, he conjectured that “the data of
most, if not all, of the experiments have been falsified to agree closely with Mendel’s
expectations”. Fisher made it quite clear that he suspected that Mendel’s “too good to be
true” results were carefully chosen to support the hereditary theory that Mendel wanted to
prove. Due to this historical background, in Section 3, we shall call Mendel distribution
the model that is a mixture of a Beta(1, 2) (or Beta(2, 1)) distribution and a Uniform(0, 1)
distribution, thus representing a mixture of “fake two p-value” and “genuine not two
p-value”. We briefly explain how an extension of Deng and George’s [17] characterization
of the standard uniform distribution using a Mendel random variable instead of a uniform
random variable can be considered to test the uniformity of a set of p-values or determine
if it is contaminated with fake p-values.
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In Section 4, an example is given to illustrate how to use the critical values from the
tables in Brilhante et al.’s [10] supplementary materials for jointly combining genuine and
fake p-values using classical combining methods. The example shows that a thorough
comparison should always be made, since most likely there is no reliable information that
rules out the existence of fake p-values that have resulted from bad scientific practices,
and therefore it is important to acknowledge their potential effects when performing a
meta-analysis of p-values.

In Section 5, further developments for combining p-values are reviewed, with a very
brief reference to the recent research field on e-values. Finally, Section 6 reinforces the
recommendation that when extending the usual combined tests to include genuine and
fake p-values, they should be compared with each other in terms of the conclusions drawn
for an informed final decision.

2. An Overview of Classical Combined Tests for p-Values

Let us assume that the p-values pk are known for testing H0k versus HAk, k = 1, . . . , n,
in n independent studies on some common issue, and that the objective is to decide on
the overall hypothesis H∗

0 : all the H0k are true versus H∗
A: some of the HAk are true. As

there are many different ways in which H∗
0 can be false, selecting the right test is generally

unfeasible. On the other hand, combining the available pk’s so that a function T(p1, . . . , pn)
is the observed value of a random variable with a known sampling distribution under H∗

0
is a simple problem, since under H∗

0 , (p1, . . . , pn) is the observed value of a random sample
(P1, . . . , Pn) from a Uniform(0, 1) distribution. In fact, several different and reasonable
combined testing procedures are often used with suitable functions of the pk’s. Moreover,
it should be guaranteed that a combined procedure is monotone, in the sense that if one set
of p-values (p1, . . . , pn) leads to the rejection of the overall null hypothesis H∗

0 , then any set
of component-wise smaller p-values (p′1, . . . , p′n), i.e., p′k ≤ pk, k = 1, . . . , n, must also lead
to its rejection.

Tippett [8] used the statistic

TT(P1, . . . , Pn) = min{P1, . . . , Pn} = P1:n .

From the fact that P1:n|H∗
0 ∼ Beta(1, n), the criterion for rejecting H∗

0 at a significance level
α is p1:n < 1 − (1 − α)1/n. Tippett’s method is a special case of Wilkinson’s method [18],
which recommends that H∗

0 should be rejected when some observed order statistic pk:n < c.
As Pk:n|H∗

0 ∼ Beta(k, n + 1 − k), the cut-of-point c to reject H∗
0 is the solution of∫ c

0
xk−1(1 − x)n−kdx = α B(k, n + 1 − k) ,

where B(p, q) =
∫ 1

0 xp−1(1 − x)q−1dx, p, q,> 0, is the Beta function.
Simes [19], on the other hand, gives an interesting development of Wilkinson’s method:

Let P1:n, . . . , Pn:n be the ordered p-values for testing the overall hypothesis H∗
0 , which should

be rejected at a significance level α if Pj:n ≤ jα/n for any j = 1, . . . , n.
Another way of constructing combined p-values is to use functions of standard uni-

form random variables. Fisher [9] suggested the use of the statistic

TF(P1, . . . , Pn) = −2
n

∑
k=1

ln Pk ,

since −2 ln Pk ∼ χ2
2 when Pk ∼ Uniform(0, 1), k = 1, . . . , n. As −2 ∑n

k=1 ln Pk|H∗
0 ∼ χ2

2n,
the criterion for rejecting H∗

0 at a significance level α is −2 ∑n
k=1 ln pk > χ2

2n,1−α, with χ2
m,p

denoting the p-th quantile of the chi-square distribution with m degrees of freedom.
Tippett’s method illustrates the direct use of standard uniform random variables,

while Fisher’s method shows the use of transformed standard uniform random variables.
Moreover, Fisher’s method is often the most efficient way of making use of all the infor-
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mation available, whereas Tippett’s method disregards almost all available information.
Therefore, these two methods can be viewed as two extreme cases.

Combining p-values using functions of their sums or products, namely their arithmetic
mean or their geometric mean, is also feasible but less appealing than Fisher’s chi-square
transformation method. Edgington [20] suggested the use of the arithmetic mean as a test
statistic, i.e.,

TE(P1, . . . , Pn) = Pn =
1
n

n

∑
k=1

Pk ,

but it has a very cumbersome probability density function, defined as

fPn
(x) =

n
Γ(n)

[⌊nx⌋

∑
j=0

(−1)j
(

n
j

)
(max{0, nx − j})n−1

]
I[0,1)(x),

with ⌊x⌋ being the largest integer not greater than x and Γ(α) =
∫ ∞

0 xα−1e−xdx, α > 0,
Euler’s Gamma function. However, if n is large, an approximation based on the central limit
theorem can be used to perform an overall test on H∗

0 versus H∗
A, but it is not consistent, in

the sense that it can fail to reject the overall test’s null hypothesis, even though the results
of some of the individual tests are extremely significant.

Pearson’s [21] proposal for combining p-values is based on their product, i.e., on
the statistic

TP(P1, . . . , Pn) =
n

∏
k=1

Pk ,

which under H∗
0 has a probability density function

fTP(x) =
(− ln x)n−1

Γ(n)
I(0,1)(x) .

In other words, ∏n
k=1 Pk|H∗

0 ∼ BetaBoop(1, 1, 1, n) (see Brilhante et al. [22] for more details
on BetaBoop random variables). Consequently, the geometric mean

Gn = TGn(P1, . . . , Pn) =

(
n

∏
k=1

Pk

)1/n

has a cumulative distribution function

FGn(x) =
Γ(n, −n ln x)

Γ(n)
I(0,1)(x) + I[1,∞)(x) ,

where Γ(α, z) =
∫ ∞

z xα−1e−xdx, α, z > 0, is the upper incomplete Gamma function. The
critical quantiles gn, 1−α of Gn can easily be computed from the critical quantiles g∗n, 1−α of

Gn
n = TP(P1, . . . , Pn), where

∫ g∗n, 1−α

0
(− ln x)n−1

Γ(n) dx = 1 − α, since gn,1−α = (g∗n,1−α)
1/n.

Note, however, that using products of standard uniform random variables or adding
their exponential logarithms provides essentially the same information, as recognized by
Pearson [21] in his final remark, and hence, it is more convenient to use Fisher’s statistic.

In 1934, Pearson [23] considered that in a bilateral framework, it would be more
appropriate to use the statistic

TP∗(P1, . . . , Pn) = min

{
n

∏
k=1

Pk,
n

∏
k=1

(1 − Pk)

}
.
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Owen [24] suggested a simple modified version of TP∗(P1, . . . , Pn), namely the statistic

TO(P1, . . . , Pn) = max

{
−2

n

∑
k=1

ln Pk,−2
n

∑
k=1

ln(1 − Pk)

}
,

for which he recommends a Bonferroni correction to establish lower and upper bounds for
the computation of probabilities. Another alternative to TP∗(P1, . . . , Pn) is Pearson’s [23]
minimum of geometric means statistic,

Tmin{Gn ,G∗
n}(P1, . . . , Pn) = min


(

n

∏
k=1

Pk

)1/n

,

(
n

∏
k=1

(1 − Pk)

)1/n
 .

Also, concerning the use of transformed p-values, Stouffer et al. [25] used as a test statistic

TS(P1, . . . , Pn) =
n

∑
k=1

Φ−1(Pk)√
n

.

Since TS(P1, . . . , Pn)|H∗
0 ∼ Gaussian(0, 1), the criterion for rejecting H∗

0 at a significance

level α is
∣∣∣∑n

k=1
Φ−1(Pk)√

n

∣∣∣ > z1−α, with zp denoting the p-th quantile of the standard Gaus-
sian distribution.

A further simple transformation based on the standard uniform random variables
Pk and 1 − Pk is the logit transformation ln

(
Pk

1−Pk

)
∼ Logistic(0, 1), which was used by

Mudholkar and George [26] to construct the combined test statistic

TMG(P1, . . . , Pn) = −
n

∑
k=1

ln
(

Pk
1 − Pk

)
.

Using the approximation

−
(

n π2(5n + 2)
3(5n + 4)

)−1/2 n

∑
k=1

ln
(

Pk
1 − Pk

)
≈ t5n+4 ,

H∗
0 should be rejected at a significance level α if∣∣∣∣∣

(
n π2(5n + 2)

3(5n + 4)

)−1/2 n

∑
k=1

ln
(

pk
1 − pk

)∣∣∣∣∣ > t5n+4, 1−α ,

with tm,p denoting the p-th quantile of Student’s t distribution with m degrees of freedom.
On the other hand, Birnbaum [27] has shown that every monotone combined test pro-

cedure is admissible, i.e., provides a most powerful test against some alternative hypothesis
for combining a collection of tests, and therefore is optimal for a combined testing situation
whose goal is to harmonize possibly conflicting evidence or to pool inconclusive evidence.
In the context of social sciences, Mosteller and Bush [28] recommend Stouffer’s method,
but Littell and Folks [29,30] have shown that under mild conditions, Fisher’s method is
optimal for combining independent tests.

The thorough comparison performed by Loughin [31] shows that the normal combin-
ing function performs quite well in problems where the evidence against the combined null
hypothesis is spread among more than a small fraction of the individual tests. However,
when the total evidence is weak, Fisher’s method is the best choice, especially when the
evidence is at least moderately strong, and it is concentrated in a relatively small fraction
of the individual tests. Mudholkar and George’s [26] logistic combined test manages to
provide a compromise between the two previous cases. Additionally, when the total evi-
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dence against the combined null hypothesis is concentrated on one or on a few tests to be
combined, Tippett’s combining function is useful.

3. Fake p-Values and Mendel Random Variables

An important issue that should be addressed before combining p-values is whether
they are genuine or not. The overall alternative hypothesis H∗

A states that some of the
individual HAk are true, and so a meta-decision on H∗

0 implicitly assumes that some of the
Pk’s may not have a uniform distribution, cf. Hartung et al. [32] (pp. 81–84), and Kulinskaya
et al. [33] (pp. 117–119). In fact, the uniformity of the Pk’s is solely the consequence of
assuming that the null hypothesis is true, but this questionable assumption led Tsui and
Weerahandi [34] to introduce the concept of generalized p-values. See Weerahandi [35],
Hung et al. [36] and Brilhante [37], and references therein, on the concepts of generalized
and random p-values.

Moreover, the assumption Pk|H0 ∼ Uniform(0, 1), k = 1, . . . , n, can be unrealistic. As
a matter of fact, when an observed p-value is not highly significant or significant, there
is a possibility that the experiment will be repeated in the hope of obtaining a “better”
p-value to increase the likelihood of the research being published. However, the scientific
malpractice of trying to obtain better p-values to comply with research teams’ expectations,
which in some cases can be labeled as a fraudulent practice, can lead to disclosing results
that are “too good to be true”, as Fisher [16] observed in his appraisal of Mendel’s work.
Consult Pires and Branco [38] and Franklin [39] for more information on the famous
Mendel-Fisher controversy.

If a reported pk is the “best” of ℓk observed p-values of ℓk independent replications of
an experiment, i.e., is the minimum of ℓk independent Uniform(0, 1) random variables, then
Pk ∼ Beta(1, ℓk), which has a probability density function fPk (x; ℓk) = ℓk(1− x)ℓk−1I(0,1)(x).
Therefore, −2ℓk ln(1 − Pk) ∼ χ2

2. This also holds true for the case ℓk = 1, i.e., for genuine

p-values, since −2 ln Pk
d
=−2 ln(1 − Pk) ∼ χ2

2 when Pk ∼ Uniform(0, 1). So, the changes
needed in Fisher’s statistic are T∗

F (P1, . . . , Pn) = −2 ∑n
k=1 ℓk ln(1 − Pk), which under H∗

0 is
also χ2

2n-distributed. However, the main problem here is that there is no information on
whether some of the p-values are “fake ones”, and if they do exist, which ones are and
what are the corresponding values of ℓk.

Please note that what makes the most sense is to consider either ℓk = 1 or ℓk = 2
because it would be a complete waste of time and resources to continue replicating an
experiment if non-significant p-values keep showing up, especially if there is the (wrong)
belief that a p-value is only “a good one” if it is significant. It is, therefore, assumed that
ℓk = 1 when a genuine p-value is reported, regardless of whether it is significant or not.
However, when some researchers are dissatisfied with obtaining non-significant p-values
for their (first) results, they may decide not to report them and abandon their research,
or repeat the experiment once (ℓk = 2). In the latter case, one of the following scenarios
takes place:

(a) the second p-value is significant, and hence it is the one reported (fake p-value);
(b) the second p-value is also not significant and consequently, either the smallest of

the two observed p-values is reported (fake p-value), or none is reported and the
research stops.

From the above, if ℓk = 2, then clearly the right model for Pk is a mixture of the
minimum of two independent Uniform(0, 1) random variables (or a Beta(1, 2) random
variable) and a Uniform(0, 1) random variable, i.e., with probability density function

fPk (x; p) = (p 2(1 − x) + (1 − p))I(0,1)(x) ,

where 0 ≤ p ≤ 1, and which can be reparameterized as

fPk (x; m) =
(

m(1 − x) +
(

1 − m
2

))
I(0,1)(x) , (1)
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with m = 2p, m ∈ [0, 2]. Therefore, in Equation (1), m
2 is the probability of a p-value being a

fake p-value.
What is interesting to notice is that if the probability density function of the standard

uniform distribution is tilted using the point
( 1

2 , 1
)

as a pole, then for m ∈ [−2, 2], the
right-hand side of Equation (1) is still a probability density function, more specifically, the
probability density function of a Mendel random variable Xm ∼ Mendel(m).

From Equation (1), it is straightforward to see that X0 ∼ Uniform(0, 1),
X2 ∼ Beta(1, 2), and X−2 ∼ Beta(2, 1), i.e., the maximum of two independent standard
uniform random variables. Moreover, if m ∈ (−2, 0), then the Mendel distribution is a
mixture of standard uniform distribution, with weight 1 + m

2 , and a Beta(2, 1) distribution,
while if m ∈ (0, 2), it is a mixture of standard uniform distribution, with weight 1 − m

2 ,
and a Beta(1, 2) distribution. So, the probability density function of Xm ∼ Mendel(m),
m ∈ [−2, 2], can be expressed in the form

fXm(x; m) =
|m|
2

fPi:2(x) +
(

1 − |m|
2

)
fP(x) ,

with i = 1 if m ∈ (0, 2], or i = 2 if m ∈ [−2, 0), and where P1:2 and P2:2 denote, respectively,
the minimum and maximum of two independent standard uniform random variables, and
P ∼ Uniform(0, 1).

An interesting fact related to the Mendel distribution is that if X and Y are independent
random variables, both with support [0, 1], and with X ∼ Mendel(m), then

V = min
(

X
Y

,
1 − X
1 − Y

)
∼ Mendel((2E[Y]− 1)m) ,

which generalizes Deng and George’s [17] characterization of the standard uniform dis-
tribution when X ∼ Uniform(0, 1) (see Theorem 1 in Brilhante et al. [10]). Furthermore, if
X ∼ Uniform(0, 1), then V and Y are independent random variables.

In particular, if X and Y are independent such that X ∼ Mendel(m1) and
Y ∼ Mendel(m2), then

V = min
(

X
Y

,
1 − X
1 − Y

)
∼ Mendel

(m1m2

6

)
.

On the other hand, if X ∼ Mendel(m) and Y ∼ Beta(n, 1) are independent, then

V = min
(

X
Y

,
1 − X
1 − Y

)
∼ Mendel

(
m

n − 1
n + 1

)
, (2)

while if X ∼ Mendel(m) and Y ∼ Beta(1, n) are independent, then

V = min
(

X
Y

,
1 − X
1 − Y

)
∼ Mendel

(
m

1 − n
1 + n

)
. (3)

Please note that Equations (2) or (3) can be used to test whether a sample of p-values
(p1, . . . , pn) are observations from a Uniform(0, 1), a Mendel(2), or a Mendel(−2) distri-
bution, being very useful to increase the test’s power when the sample size is small (see
Gomes et al. [40] and Brilhante et al. [41] for more details). For this purpose, setting xk = pk

and generating yk, then vk = min
(

xk
yk

, 1−xk
1−yk

)
is obtained, and therefore to test, for instance,

the uniformity of the sample (p1, . . . , pn), one tests the uniformity of the pseudo-random
sample (p1, . . . , pn, v1, . . . , vn).
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4. Combining Genuine and Fake p-Values

It is generally impossible to know whether there are or not fake p-values among the set
of p-values to be combined. Therefore, a realistic approach is to examine possible scenarios
and assess how the probable existence of fake p-values in a sample can affect the decision
on the overall hypothesis H∗

0 . For this purpose, tables with critical quantiles for p-values’
combination methods that take into account the existence of fake p-values in a sample,
most likely in a very small number, can be useful to give an overall picture.

Such tables are given in Brilhante et al.’s [10] supplementary materials for the
most commonly used combined test statistics, where it is assumed that among the n
(n = 3, . . . , 28) p-values to be combined there are at most n f = 0, 1, . . . , max{3, ⌊n/3⌋} fake
ones. The usefulness of the tables is illustrated with Example 1.

Example 1. For the set of n = 13 p-values obtained in studies on depressive effects of a weekly
1mg dose of semaglutide

0.0571 0.5954 0.0249 0.4793 0.1792 0.2917 0.6783
0.0554 0.2805 0.8137 0.2824 0.3338 0.1923

the observed values for the combined test statistics are:

TF(0.0571, . . . , 0.0.1923) = 39.0602
TS(0.0571, . . . , 0.1923) = −2.0842
TMG(0.0571, . . . , 0.1923) = 13.1940
TG13(0.0571, . . . , 0.1923) = 0.2226
Tmin{G13,G∗

13}(0.0571, . . . , 0.1923) = 0.2226
TE(0.0571, . . . , 0.1923) = 0.3280
TT(0.0571, . . . , 0.1923) = 0.0249

The quantiles for n = 13 are extracted from the tables in [10] (without the standard errors)
for the following methods: Fisher (Table 1), Stouffer (Table 2), Mudholkar and George (Table 3),
Pearson’s geometric mean (Table 4), Pearson’s minimum of geometric means (Table 5), Edgington’s
arithmetic mean (Table 6) and Tippett (Table 7).

The quantiles that lead to the rejection of H∗
0 are highlighted for each method, thus showing for

which significance level α ∈ {0.005, 0.01, 0.025, 0.05, 0.1} this happens.

Fisher’s Statistic TF = 39.0602

Table 1. Estimated quantiles of TF with n f fake p-values.

n n f 0.900 0.950 0.975 0.990 0.995

13 0 35.5632 38.8851 41.9232 45.6417 48.2899
13 1 36.6548 40.0294 43.0852 46.7821 49.4752
13 2 37.7241 41.1053 44.1240 47.9461 50.6022
13 3 38.8119 42.1576 45.2735 49.0533 51.7268
13 4 39.9069 43.2759 46.2994 50.1729 52.9071

Stouffer et al.’s Statistic TS = −2.0842

Table 2. Estimated quantiles of TS with n f fake p-values.

n n f 0.900 0.950 0.975 0.990 0.995

13 0 1.2815 1.6448 1.9600 2.3264 2.5758
13 1 1.1087 1.4720 1.7844 2.1391 2.3767
13 2 0.9350 1.2924 1.6009 1.9524 2.1995
13 3 0.7620 1.1079 1.4117 1.7670 2.0049
13 4 0.5908 0.9312 1.2345 1.5756 1.8255



AppliedMath 2024, 4 1136

Mudholkar and George’s Statistic TMG = 13.1940

Table 3. Estimated quantiles of TMG with n f fake p-values.

n n f 0.900 0.950 0.975 0.990 0.995

13 0 8.3859 10.7850 12.8627 15.3892 17.1365
13 1 9.2840 11.6589 13.7337 16.2667 17.9027
13 2 10.1682 12.5187 14.5952 17.1134 18.8075
13 3 11.0523 13.3512 15.4344 17.9587 19.5983
13 4 11.9532 14.2848 16.2954 18.7587 20.4252

Pearson’s Geometric Mean Statistic TGn = 0.2226

Table 4. Estimated quantiles of TGn with n f fake p-values.

n n f 0.005 0.010 0.025 0.050 0.100

13 0 0.15609 0.17283 0.19940 0.22412 0.25466
13 1 0.14919 0.16544 0.19070 0.21448 0.24420
13 2 0.14287 0.15820 0.18323 0.20578 0.23436
13 3 0.13684 0.15162 0.17531 0.19762 0.22476
13 4 0.13075 0.14522 0.16853 0.18930 0.21549

Pearson’s Minimum of Geometric Means Statistic Tmin{Gn ,G∗
n} = 0.2226

Table 5. Estimated quantiles of Tmin{Gn ,G∗
n} with n f fake p-values.

n n f 0.005 0.010 0.025 0.050 0.100

13 0 0.14144 0.15578 0.17882 0.19940 0.22388
13 1 0.14177 0.15608 0.17876 0.19939 0.22400
13 2 0.13916 0.15370 0.17667 0.19710 0.22212
13 3 0.13536 0.14960 0.17235 0.19326 0.21799
13 4 0.13019 0.14438 0.16717 0.18746 0.21216

Edgington’s Arithmetic Mean Statistic TE = 0.3280

Table 6. Estimated quantiles of TE with n f fake p-values.

n n f 0.005 0.010 0.025 0.050 0.100

13 0 0.29609 0.31496 0.34333 0.36774 0.39629
13 1 0.28659 0.30475 0.33258 0.35682 0.38486
13 2 0.27780 0.29548 0.32267 0.34616 0.37356
13 3 0.26796 0.28591 0.31225 0.33557 0.36253
13 4 0.25868 0.27644 0.30163 0.32471 0.35112

Tippett’s Minimum Statistic TT = 0.0249

Table 7. Quantiles of TT with n f fake p-values.

n n f 0.005 0.010 0.025 0.050 0.100

13 0 0.00039 0.00077 0.00195 0.00394 0.00807
13 1 0.00036 0.00072 0.00181 0.00366 0.00750
13 2 0.00033 0.00067 0.00169 0.00341 0.00700
13 3 0.00031 0.00063 0.00158 0.00320 0.00656
13 4 0.00029 0.00059 0.00149 0.00301 0.00618
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For this example, Fisher’s method shows some stability when it comes to deciding
on H∗

0 , even when a small number of fake p-values can exist in the sample, and thus it
seems robust to a prior choice of a significance level α (usually 0.05). The same can be
said of Pearson’s geometric mean method, which is, in fact, equivalent to Fisher’s method.
The runner-up is Mudholkar and George’s method, which in traditional contexts has
shown to be a compromise between Fisher’s and Stouffer’s methods. Please note that
Stouffer’s method, recommended in the social sciences, looks less reliable in this case.
Clearly, Tippett’s method should be avoided, despite being the simplest of them all and
having a very uncomplicated sampling distribution for its statistic, even when n f fake
p-values exist, since P1:n|H∗

0 ∼ Beta(1, n + n f ).
This example reinforces, to some extent, the general belief that Fisher’s combined test

(or Pearson’s equivalent geometric mean test) should be used, even in a wider context of
jointly combining genuine and fake p-values. However, a more in-depth study is needed to
support such a conclusion, but this is beyond the scope of this review paper.

5. Further Developments in Combining p-Values

There are many other modifications and generalizations of the classical test statistics
for combining genuine P-values than those discussed in Section 2.

Fisher’s statistic is the most widely used for combining p-values and has therefore
been the subject of several generalizations, namely weighted versions. The discussion of
conceptual advantages of weighting p-values, for instance, to improve the power of the
combination method, goes as far as Good [42]. In regard to the weighted combination of
independent probabilities, see also Bhoj [43]. As for the combination of dependent and
weighted p-values, these are intertwined topics. Aside from the references Chuang and
Shih [44], Hou [45], Makambi [46], and Yang [47], cf. for instance Alves and Yu [48].

Lancaster [49] generalized Fisher’s method by transforming p-values using the chi-
squared distribution with dk degrees of freedom,

TL(P1, . . . , Pn) =
n

∑
k=1

F−1
χ2

dk

(1 − Pk),

where F−1
χ2

dk

is the inverse of the chi-square cumulative distribution function with dk degrees

of freedom, so that in an independent setup, TL|H∗
0 ∼ χ2

∑n
k=1 dk

. Chen’s [50] numerical
comparisons indicate that Lancaster’s statistic TL has a higher power than the traditional
combination rules described in Section 2. Dai et al. [51] combined dependent P-values
using approximations to the distribution of TL, obtaining higher Bahadur efficiency than
with a weighted version of the z-test.

Hou and Yang [52] developed a weighted version of Lancaster’s statistic, namely

THY(P1, . . . , Pn) =
n

∑
k=1

wk F−1
χ2

dk

(1 − Pk).

Regardless of whether P1, . . . , Pn are independent or not, THY ≈ cχ2
f , and by equating

expectations and variances, i.e., E(THY) = E(cχ2
f ) = c f and Var(THY) = Var(cχ2

f ) = 2c2 f ,
the parameter c can be estimated considering that

c =
Var(THY)

2E(THY)
=

n

∑
k=1

w2
kdk +

n

∑
k=1

∑
j<k

wkwj Cov

(
F−1

χ2
dk

(1 − Pk), F−1
χ2

dj

(1 − Pj)

)
n

∑
k=1

wkdk

,
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and the parameter f by considering

f =
2
[
E(THY)

]2
Var(THY)

=

 n

∑
k=1

wkdk

2

n

∑
k=1

w2
kdk +

n

∑
k=1

∑
j<k

wkwj Cov

(
F−1

χ2
dk

(1 − Pk), F−1
χ2

dj

(1 − Pj)

) .

It then follows that the (1 − α)100-th percentile of the distribution of THY(P1, . . . , Pn) can
be approximated by cF−1

χ2
f
(1 − α).

Zhang and Wu [53] investigated a general family of Fisher’s type of statistics referred
to as the GFisher, which covers many classical statistics. Systematic simulations show that
new p-value calculation methods based on moment-ratio matching and joint distribution
surrogating are more accurate under the multivariate Gaussian and more robust under the
generalized linear model and the multivariate t distribution. Relevant computation has
been implemented in the R package GFisher, which is available in the Comprehensive R
Archive Network.

The poolr package (Cinar and Viechtbauer [54]) provides an implementation of a
variety of methods for combining p-values, including the inverse chi-square method
(Liu [55]), a binomial test (Wilkinson [18]) and a Bonferroni/Holm method [56], which
is an alternative to Simes’ test [19]. Using an empirically derived null distribution based
on pseudo-replicates that mimics a proper permutation test, an adjustment to account for
dependence among the tests from which the p-values have been derived is made assuming
multivariate normality among the test statistics. The poolr package has been compared
with several other packages that can be used to combine p-values. Dewey’s [57] metap
v1.9 package provides an implementation of a wide variety of methods for combining
independent p-values described in Becker [58].

Liu and Xie [59] suggested a statistic defined as a weighted sum of the Cauchy trans-
formation of individual p-values, implying that the tail of the null distribution can be
well approximated by a Cauchy distribution under arbitrary dependency structures. The
p-value calculation of the test is accurate and as simple as the classical z-test or t-test,
making it well suited for analyzing massive data. On the other hand, Ham and Park [60]
showed that the Cauchy combination test provides the best combined p-value in the sense
that it had the best performance among the examined methods while controlling type I
error rates.

As the independence assumption is clearly a strong limitation when it comes to com-
bining p-values, in 1975, Brown [61] discussed a method for combining non-independent
tests of significance. The combination of p-values in correlated setups, for instance, in
genome research requiring the analysis of Big Data, is currently a very active field of
research, cf. Makambi [46], Hou [45], Yang [62], and Chuang and Shih [44]. In 2002, Kost
and McDermott [63] derived an approximation to the null distribution of Fisher’s statistic
for combining p-values when the underlying test statistics are jointly distributed as a
multivariate t with a common denominator.

As already mentioned, Fisher’s statistic is the most used for combining p-values and
generalizing it for dependence contexts has also been a constantly revisited research topic
(see, for instance, Yang [47], Dai et al. [51] or Li et al. [64]). Chen [65] investigated new
Gamma-based combination of p-values, based on the test statistic

TG(α,1/δ)(P1, . . . , Pn) =
n

∑
k=1

F−1
G(α,1/δ)

(1 − Pk),

where F−1
G(α,1/δ)

denotes the inverse of the Gamma cumulative distribution function with
shape parameter α and scale parameter 1/δ, and showed that in many situations it provides
an asymptotically Uniformly Most Powerful test.
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Wilson [66] recommends the use of the harmonic mean p-value, i.e.,

THn(P1, . . . , Pn) =
n

∑n
k=1 1/Pk

,

for combining dependent p-values, since it controls the overall type I error, i.e., the proba-
bility of falsely rejecting the overall null hypothesis H∗

0 in favor of at least one alternative
hypothesis HAk. It is a complementary method to Fisher’s method by averaging only
valid p-values when these are mutually exclusive but not necessarily independent. The
sampling distribution of THn(P1, . . . , Pn) is known to be in the domain of attraction of the
heavy-tailed Landau skewed additive (1,1)-stable law, is robust to positive dependency
between p-values and also to the distribution of the weights w used in its computation.
Furthermore, it is insensitive to the number of tests and is mainly influenced by the smallest
p-values.

Chien [67] compared the performances of Wilson’s [66] harmonic mean method and
of Kost and McDermott’s [63] method to the performance of an empirical method based
on the gamma distribution for combining dependent p-values from multiple hypothesis
testing, which robustly controls the type I error and keeps a good power rate.

Based on recent developments in robust risk aggregation techniques, Vovk and
Wang [68] by combining a number of p-values without making any assumption about their
dependence structure, extended those results to generalized means, and showed that n
p-values can be combined by scaling up their harmonic mean by a factor of ln n.

E-values, defined as expectations, in contrast to p-values, defined as probabilities,
are nonnegative random variables whose expected values under the null hypothesis are
bounded by 1 (Shafer et al. [69]), as in Bayes factors and likelihood ratios in the case of
a simple null hypothesis (Grünwald et al. [70]; Shafer et al. [69]). The combination of
e-values via e-merging functions is a more recent and active field of research (cf. Grünwald
et al. [70], Shafer [71], Vovk et al. [72,73], and Vuursteen et al. [74]). For instance, the product
of independent e-values is clearly an e-value. However, so far, little is known about the
power of these combination procedures, although this is now the main focus of research in
this field.

6. Conclusions

The meta-analysis of p-values poses some challenges, especially in today’s world in
which academic and scientific achievements are largely measured (and funded) by the
number of papers published, thus putting much pressure on researchers. For this reason,
possibly some—but almost certainly a very few—of the Pk’s, k = 1, . . . , n, to be used in
a statistic T(P1, . . . , Pn) are fake p-values (minimum of Two P), when in an honest world,
they should all be genuine p-values (not Two P). Therefore, it is a good idea to perform
a comparison between the conclusions drawn from different combined tests, assuming
that among the observed pk’s there are n f = 0, 1, . . . , j ≪ n fake p-values, to ensure a more
informed decision on the overall hypothesis.

The tables with quantiles of the most used methods for combining p-values that take
into consideration the existence of a small number of fake p-values in a sample, obtained
by the authors and provided in Brilhante et al. [10], can be a useful tool to assess the
reliability of the conclusions drawn from meta-analyses of p-values in the event of their
unknown presence.
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