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Abstract: In this paper, an innovative hybrid technique is proposed for the efficient training of
artificial neural networks, which are used both in class learning problems and in data fitting problems.
This hybrid technique combines the well-tested technique of Genetic Algorithms with an innovative
variant of Simulated Annealing, in order to achieve high learning rates for the neural networks. This
variant was applied periodically to randomly selected chromosomes from the population of the
Genetic Algorithm in order to reduce the training error associated with these chromosomes. The
proposed method was tested on a wide series of classification and data fitting problems from the
relevant literature and the results were compared against other methods. The comparison with other
neural network training techniques as well as the statistical comparison revealed that the proposed
method is significantly superior, as it managed to significantly reduce the neural network training
error in the majority of the used datasets.

Keywords: artificial neural networks; evolutionary techniques; genetic algorithms; simulated
annealing

1. Introduction

Artificial Neural networks (ANNs) [1,2] are widely used parametric tools, where a
series of methods have been developed to identify the optimal set of these parameters,
commonly called weights or processing units. ANNs have been used in a variety of sci-
entific problems, such as problems from physics [3–5], chemistry [6–8], economics [9–11],
medicine [12,13], etc. Furthermore, in recent years, neural networks have been incorporated
into a variety of practical problems, such as flood simulation [14], solar radiation predic-
tion [15], agricultural problems [16], solution of problems in wireless communications [17],
mechanical applications [18], etc.

Commonly, a neural network is expressed as function N(−→x ,−→w ), where the vector
−→x expresses the input pattern and the vector −→w represents the weight vector of the
neural network. The methods aimed at training the artificial neural network to deal with
the efficient adjustment of the weight vector −→w to minimize the training error, defined
as follows:

E
(

N
(−→x ,−→w

))
=

M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (1)

The set
(−→xi , yi

)
, i = 1, ..., M defines the train set for the neural network, where the value yi

represent the the actual output for pattern −→xi . Neural networks can be expressed also in
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close analytic form, as show in [19]. As it was shown, any neural network can be expressed
as function

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(2)

The parameter H defines the number of processing units and the constant d represents the
dimension of pattern −→x . The function σ(x) is called a sigmoid function, and it is defined as

σ(x) =
1

1 + exp(−x)
(3)

The number of elements in the weight vector is calculated as n = (d + 2)H. Of course,
other activation functions may be used, such as the tanh function, defined as

tanh(x) =
e2x + 1
e2x − 1

(4)

with similar approximation capabilities. Also, Guarnieri et al. proposed the usage of an
adaptive spline activation function for neural networks [20]. Furthermore, Ertuğrul pro-
posed the trained activation function in neural networks [21]. A systematic review of activa-
tion functions for Artificial Neural Networks can be found in the paper of
Rasamoelina et al. [22].

In the recent bibliography, a series of methods have been proposed to minimize the
Equation (1), such as the Back Propagation method [23,24], the Levenberg-Marquardt
method [25], the RPROP method [26–28], Quasi Newton methods [29,30], Particle Swarm
Optimization [31,32], the Differential Evolution method [33], etc. The first four methods
are local optimization methods, used in a series of research papers but they can be easily
trapped in local minima of the error function of Equation (1). On the other hand, methods
like Particle Swarm Optimization or Differential Evolution are considered global optimiza-
tion methods aiming to discover the global minimum of such functions and, as a conse-
quence, they can avoid local minima of the error function. A survey of stochastic methods
for training neural networks can be found in the work of Zhang and Suganthan [34].

Due to the wide application of artificial neural networks in various fields, but also due
to the difficulties faced by traditional optimization techniques in minimizing the training
error, a series of hybrid techniques have been developed to more effectively reduce this
error. Among these methods, there is the method of Yaghini et al. [35] that combines
Particle Swarm Optimization and the Back Propagation technique. Also, Chen et al. [36]
has proposed a hybrid method that incorporates particle swarm optimization and Cuckoo
Search [37].

Another important issue of neural networks that has been thoroughly studied in
the recent literature is the initialization of the parameters for the network. The methods
developed for the initialization issue include utilization of decision trees [38], an initial-
ization technique based on the Cauchy’s inequality [39], discriminant learning [40], etc.
A recent paper by Narkhede et al. [41] presents various techniques for the initialization of
the parameters.

Due to the complexity of the training techniques, but also due to the fact that the
number of required parameters increases with the increase in the dimension of the problem,
a number of training techniques have been developed that take advantage of modern
parallel computing structures. For example, there are implementations of neural networks
on GPU cards [42], incorporation of GPU programming techniques on neural network
training for face recognition [43], molecular dynamics simulation using neural networks
that are executed on GPU cards [44], etc. A comparative study of GPU programming
models used for neural network training can be found in the work of Pallipuram et al. [45].
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In this work, the use of a hybrid optimization technique is proposed for the training
of artificial neural networks. In this hybrid technique, Genetic Algorithms are used as
a basic technique for training neural networks. Genetic algorithms, which were initially
suggested by John Holland [46], are inspired by biology, and are from trial solutions of any
optimization problem. These solutions are improved gradually by a process that mimics
natural evolution, such as mutation, natural selection, and crossover [47–49]. Genetic
algorithms have proven their efficiency, and they have been applied on a wide series of
problems, such as networking [50], robotics [51,52], energy problems [53,54], etc.

Genetic algorithms have been extensively studied in the modern literature for the
training of artificial neural networks or for the efficient creation of their structure. For ex-
ample, the work of Arifovic et al. [55] was used to select the optimal architecture of an
artificial neural network. Also, Leung et al. proposed a novel genetic algorithm [56] to
adjust the parameters and the structure of neural networks. Gao et al. proposed an efficient
genetic algorithm [57] with a new diffusing operator for neural network training. Recently,
Ahmadizar et al. combined a genetic algorithm with grammatical evolution for optimal
training of neural networks [58]. Additionally, Kobrunov and Priezzhev suggested a hybrid
genetic algorithm [59] for efficient neural network training. Although Genetic Algorithms
can satisfactorily train an artificial neural network, in many cases, they get trapped in local
minimum of the training error and this results in poor performance of the neural network
when applied to the test set. To improve the performance of genetic algorithms, it is pro-
posed to periodically apply a minimization technique to randomly selected chromosomes
of the genetic population.

This minimization method that is applied here is a modified version of the Simulated
Annealing method [60]. Simulated annealing has been applied in many cases, such as
police district design [61], portfolio problems [62], energy problems [63], etc. The new
method was tested on a wide series of classification and regression problems, and it was
compared against other optimization methods. From the experimental comparison of the
results, it appears that the proposed technique significantly improves the performance of
genetic algorithms in the training of artificial neural networks.

Genetic algorithms have been used in conjunction with Simulated Annealing in a
series of research papers in the recent literature, such as the work of Yu et al. that combines
genetic algorithm with simulated annealing for large scale system energy integration [64].
Also, Ganesh and Punniyamoorthy used hybrid genetic algorithms for optimization of
continuous-time prediction planning [65]. Additionally, Hwang and He suggested the
usage of simulated annealing to improve a genetic algorithm that was applied on engi-
neering problems [66]. Furthermore, Li and Wei applied a genetic algorithm that was
enhanced with a Simulated Annealing method on multi-reservoir systems [67]. A method
that combines a genetic algorithm with simulated annealing was also used in Smart City
problems recently [68].

The rest of this article is divided as follows: in Section 2, the proposed method is
discussed in detail. In Section 3, the used datasets are presented as well as the experimental
results, and finally, in Section 4, the results are discussed thoroughly and some guidelines
for future research are provided.

2. The Proposed Method

The new Simulated Annealing variant is described in this section, as well as the
overall algorithm, that will be used to train artificial neural networks for classification and
regression problems.

2.1. The New Simulated Annealing Variant

A new variant of the Simulated Annealing method is utilized as a local search proce-
dure in the Genetic Algorithm. This method has been applied to many problems and is
distinguished for its adaptability but also for the ability to aim for lower values of the objec-
tive function, especially if combined with intelligent techniques to reduce the temperature
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factor. In the proposed modification of the method, the optimization procedure initiates
from the current state of a chromosome and, by applying stochastic techniques, a search is
made for nearby representations with lower values of the error function. The steps of the
proposed method are illustrated in Algorithm 1.

Algorithm 1 The used variant of the Simulated Annealing algorithm.

procedure siman(x0)

1. Set k = 0, T0 > 0, ϵ > 0,rT > 0, rT < 1. The parameter T0 defines the initial
temperature of the algorithm.

2. Set Neps > 0, a positive integer number. This number defines the number of samples
that will be created in every iteration.

3. Set the parameter F ∈ [0, 1]. This value specifies the range of changes that can be
made to an element of a chromosome, as a percentage of its original value.

4. Set the positive integer parameter NR. This parameter indicates the number of
possible random changes in the chromosome.

5. Set xb = x0, fb = f (xb).
6. For i = 1 . . . Neps

(a) Set xt = xk as a candidate point.
(b) For j = 1 . . . NR

i. Set p = rand
(
1, size

(
xt)), a randomly selected position in the chromo-

some.
ii. Set xt

p = xt
p + rand(−F, F)xt

p

(c) EndFor
(d) If f

(
xt) ≤ f (xk) then xk+1 = xt

(e) Else Set xk+1 = xt with probability min
{

1, exp
(
− f (xt)− f (xk)

Tk

)}
(f) If f

(
xt) < fb then xb = xt, fb = f

(
xt).

7. EndFor
8. Set Tk+1 = TkrT
9. Set k = k + 1.
10. If Tk ≤ ϵ stop.
11. Goto step 6.
12. Return xb

end siman

The method initiates from chromosome x0 and in every iteration and it produces ran-
dom points near to the original chromosome. The integer parameter NR defines the number
of changes that will be made in the chromosome and the double precision parameter F
controls the magnitude of changes. The algorithm starts from high values of the tempera-
ture T0, which are linearly decreased in each iteration. At high temperatures, the algorithm
more readily accepts values with higher function values, but at lower temperatures, it
focuses on improving the best function value it has discovered.

2.2. The Overall Algorithm

A genetic algorithm is used as the base algorithm for neural network training. Genetic
algorithms have been used also in the recent bibliography for neural network training in
various cases, such as for drug design [69], gear fault detection [70], forecasting models [71],
etc. The genetic algorithm is enhanced by the addition of a periodical application of the
new Simulated Annealing variant, described in the previous subsection. The main steps of
the overall algorithm are listed below.
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1. Initialization Step

(a) Define as Nc the number of chromosomes and as Ng the maximum number
of generations.

(b) Define the selection rate ps and the mutation rate pm with ps ∈ [0, 1] and
pm ∈ [0, 1].

(c) Set as NI the number of generations passed before the modified Simulated
Algorithm will be applied.

(d) Set as NK the number of chromosomes that will be altered by the modified
Simulated Annealing algorithm.

(e) Perform a random initialization of the Nc chromosomes. Each chromosome
represents a different set of randomly initialized weights for the neural network.

(f) Set k = 0.

2. For each chromosome gi, i = 1, . . . , Nc

(a) Formulate a neural network N(−→x ,−→gi )

(b) Calculate the fitness fi = ∑M
j=1
(

N
(−→x j,

−→gi
)
− yj

)2 of chromosome gi and for
the given dataset.

3. Genetic operations step

(a) Selection procedure. The chromosomes are sorted with respect to the asso-
ciated fitness values. The first (1 − ps)× Nc chromosomes having the lowest
fitness values are copied to the next generation. The rest of the chromosomes
are replaced by offspings produced in the crossover procedure.

(b) Crossover procedure: In the crossover procedure, pairs of chromosomes are
selected from the population using tournament selection. For each pair (z, w)
of selected parents two new chromosomes z̃ and w̃ are formulated using the
following scheme

z̃i = aizi + (1 − ai)wi

w̃i = aiwi + (1 − ai)zi (5)

where i = 1, . . . , n. The randomly selected values ai are chosen in the range
[−0.5, 1.5] [72].

(c) Mutation procedure:

i. For each chromosome gi, i = 1, . . . , Nc, conduct the following steps:

A. For every element j = 1, . . . , n of gi, a random number r ∈ [0, 1]
is produced. The corresponding element is altered randomly if
r ≤ pm.

ii. EndFor

4. Local method step

(a) If k mod NI = 0 then

i. For i = 1, . . . , NK do

A. Select a random chromosome gr

B. Apply the siman algorithm: gr = siman(gr) of Section 2.1.

ii. EndFor

(b) Endif

5. Termination Check Step

(a) Set k = k + 1
(b) If k ≥ Ng then goto Termination Step, else goto 2b.

6. Termination step

(a) Denote as g∗ the chromosome with the lowest fitness value.

(b) Formulate the neural network N(−→x ,
−→
g∗ )
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(c) Apply a local search procedure to g∗. The local search method used in the
current work is a BFGS variant of Powell [73].

(d) Apply the neural network N(−→x ,
−→
g∗ ) on the test of the objective problem and

report the result.

The overall algorithm is also outlined graphically as a series of steps in Figure 1.

Figure 1. The overall proposed algorithm.
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3. Results

The proposed work was tested on a series of well-known classification and regres-
sion datasets from the recent bibliography and it was compared with other optimization
methods, used to train neural networks. The used datasets can be obtained freely from the
following websites:

1. The UCI dataset repository, https://archive.ics.uci.edu/ml/index.php (accessed on
18 June 2024) [74].

2. The Keel repository, https://sci2s.ugr.es/keel/datasets.php (accessed on
18 June 2024) [75].

3. The Statlib URL http://lib.stat.cmu.edu/datasets/ (accessed on 18 June 2024).

3.1. Classification Datasets

A series of classification datasets were used in the conducted experiments. Their
descriptions are as follows:

1. Appendictis a medical dataset, suggested in [76].
2. Australian dataset [77], used in credit card transactions.
3. Bands dataset, used to detect printing problems.
4. Balance dataset [78], which is related to some psychological experiments.
5. Circular dataset, which is an artificial dataset.
6. Cleveland dataset, a medical dataset [79,80].
7. Dermatology dataset [81], which is a dataset related to dermatological deceases.
8. Ecoli dataset, a dataset about protein localization sites of proteins [82].
9. Fert dataset. Fertility dataset related to relation of sperm concentration and demo-

graphic data.
10. Heart dataset [83], a medical dataset used to detect heart diseases.
11. HeartAttack dataset, used to predict heart attacks.
12. HouseVotes dataset [84], related to votes in the U.S. House of Representatives.
13. Liverdisorder dataset [85], used to detect liver disorders.
14. Parkinsons dataset, used to detect the Parkinson’s disease (PD) [86].
15. Pima dataset [87], a medical dataset used to detect the presence of diabetes.
16. Popfailures dataset [88], a dataset related to climate measurements.
17. Regions2 dataset, related to hepatitis C [89].
18. Saheart dataset [90], used to detect heart diseases.
19. Segment dataset [91], used in image processing tasks.
20. Sonar dataset [92], used to discriminate sonar signals.
21. Spiral dataset, an artificial dataset.
22. Wdbc dataset [93], a medical dataset used to detect cancer..
23. Wine dataset, used to detect the quality of wines [94,95].
24. Eeg datasets, a dataset related to EEG measurements [96] and the following cases

were used: Z_F_S, ZO_NF_S and ZONF_S.
25. Zoo dataset [97], used to classify animals in seven predefined categories.

3.2. Regression Datasets

The descriptions of the used regression datasets are as follows:

1. Airfoil dataset, a dataset provided by NASA [98].
2. BK dataset [99], used for points prediction in a basketball game.
3. BL dataset, it contains measurements from an experiment related to electricity.
4. Baseball dataset, used to calculate the income of baseball players.
5. Dee dataset, used to calculate the price of electricity.
6. EU, downloaded from the STALIB repository.
7. FY, This dataset measures the longevity of fruit flies.
8. HO dataset, downloaded from the STALIB repository.
9. Housing dataset, mentioned in [100].

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
http://lib.stat.cmu.edu/datasets/ 
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10. LW dataset, related to risk factors associated with low weight babies.
11. MORTGAGE dataset, related to economic data from USA.
12. MUNDIAL, provided from the STALIB repository.
13. PL dataset, provided from the STALIB repository.
14. QUAKE dataset, that is used to measure the strength of a earthquake.
15. REALESTATE, provided from the STALIB repository.
16. SN dataset. It contains measurements from an experiment related to trellising

and pruning.
17. Treasury dataset, related to economic data from USA.
18. VE dataset, provided from the STALIB repository.

3.3. Experimental Results

A series of experiments were conducted to test the efficiency of the used method as
well as its stability. The experiments were conducted using the freely available optimization
environment of Optimus, which can be downloaded from https://github.com/itsoulos/
GlobalOptimus/ (accessed on 18 June 2024). The experiments were conducted 30 times
using different seeds for the random generator each time. The experiments were validated
using the method of 10-fold cross validation. The average classification error is reported
for the classification datasets and the average regression error is shown for the regression
error. The errors are reported on the test set. The experiments were executed on a system
equipped with 128 GB of RAM. The used operating system was the Debian Linux operating
system. The values of the parameters for all used algorithms are shown in Table 1.

Table 1. Values for the experimental parameters.

Parameter Meaning Value

Nc Number of chromosomes 500

Ng Number of generations 200

LI Number of generations for local search 20

LK Number of chromosomes in local search 20

ps Selection rate 0.10

pm Mutation rate 0.05

H Number of weights 10

F Range of changes in Simulated Annealing 0.10

NR Number of changes in Simulated Annealing 20

The comparative results for the classification datasets are listed in Table 2 and the
results for the regression datasets are shown in Table 3. The following applies to all tables
with experimental results:

1. The column DATASET denotes the name of the used dataset.
2. The column BFGS denotes the application of the BFGS optimization method to train a

neural network with H processing nodes. The method used here is the BFGS variant
of Powell [73].

3. The column PSO denotes the application of a Particle Swarm Optimizer with Nc
particles to train a neural network with H processing nodes. In the current work the
improved PSO method, as suggested by Charilogis and Tsoulos, is used [101].

4. The column GENETIC stands for the application of a Genetic Algorithm with the
parameters shown in Table 1 to train a neural network with H processing nodes.
The genetic algorithm used here is a variant proposed by Tsoulos [102].

5. The column PROPOSED denotes the application of the proposed method, with the
parameters of Table 1 on a neural network with H hidden nodes.

https://github.com/itsoulos/GlobalOptimus/
https://github.com/itsoulos/GlobalOptimus/
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6. The row AVERAGE denotes the average classification or regression error for
all datasets.

Table 2. Experimental results using a series of optimization methods for the classification datasets.
Numbers in cells denote average classification error as measured on the test set. The bold notation is
used to identify the method with the lowest average classification error.

Dataset BFGS PSO Genetic Proposed

APPENDICITIS 18.00% 25.00% 24.40% 22.60%

AUSTRALIAN 38.13% 38.30% 36.64% 32.42%

BALANCE 8.64% 7.97% 8.36% 8.10%

BANDS 36.67% 36.61% 34.92% 34.53%

CIRCULAR 6.08% 4.24% 5.13% 4.35%

CLEVELAND 77.55% 62.31% 57.21% 42.62%

DERMATOLOGY 52.92% 17.69% 16.60% 12.12%

ECOLI 69.52% 61.30% 54.67% 47.18%

FERT 23.20% 24.00% 28.50% 25.20%

HEART 39.44% 34.67% 26.41% 16.59%

HEARTATTACK 46.67% 37.83% 29.03% 20.13%

HOUSEVOTES 7.13% 7.87% 7.00% 7.13%

LIVERDISORDER 42.59% 39.82% 37.09% 32.88%

PARKINSONS 27.58% 23.58% 16.58% 16.63%

PIMA 35.59% 35.17% 34.21% 30.08%

POPFAILURES 5.24% 7.80% 4.17% 5.44%

REGIONS2 36.28% 31.43% 33.53% 27.69%

SAHEART 37.48% 34.80% 34.85% 34.56%

SEGMENT 68.97% 53.88% 46.30% 28.41%

SONAR 25.85% 24.70% 22.40% 19.80%

SPIRAL 47.99% 46.31% 47.67% 44.54%

WDBC 29.91% 9.98% 7.87% 5.66%

WINE 59.71% 32.71% 22.88% 10.59%

Z_F_S 39.37% 38.73% 24.60% 11.10%

ZO_NF_S 43.04% 30.38% 21.54% 6.86%

ZONF_S 15.62% 6.92% 4.36% 2.48%

ZOO 10.70% 9.20% 9.50% 7.60%

AVERAGE 35.18% 29.01% 25.79% 20.64%

Table 3. Experimental results for different optimization methods on a series of regression datasets.
Numbers in cells denote average regression error as measure on the test set. The bold notation is
used to express the method with the lowest average regression error.

Dataset BFGS PSO Genetic Proposed

AIRFOIL 0.003 0.001 0.001 0.001

BK 0.36 0.33 0.26 0.18

BL 1.09 2.49 2.23 0.42

BASEBALL 119.63 82.81 64.60 57.47
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Table 3. Cont.

Dataset BFGS PSO Genetic Proposed

DEE 2.36 0.43 0.47 0.23

EU 607.61 407.35 252.97 216.65

FY 0.19 0.05 0.65 0.23

HO 0.62 0.03 0.37 0.06

HOUSING 97.38 43.28 35.97 23.77

LW 0.26 0.03 0.54 0.27

MORTGAGE 8.23 1.47 0.40 0.05

MUNDIAL 0.05 0.08 1.22 0.28

PL 0.11 0.06 0.03 0.02

QUAKE 0.09 0.06 0.12 0.06

REALESTATE 128.94 81.41 81.19 72.95

SN 0.16 0.40 0.20 0.05

TREASURY 9.91 2.32 0.44 0.26

VE 1.92 0.32 2.43 1.63

AVERAGE 54.38 34.61 24.67 20.81

The statistical comparison between the used methods for the classification datasets is
shown in Figure 2.

Figure 2. Statistical comparison of the used optimization methods for the classification datasets.

As the comparison of the experimental results and their statistical comparison shows,
the genetic algorithm method significantly outperforms the others in terms of accuracy.
However, the proposed technique, which is an extension of genetic algorithms, significantly
improves their performance on almost all datasets. In several datasets, the reduction in
error in the test set can reach up to 80% compared to genetic algorithms.

Nevertheless, the proposed method significantly may increase the total execution time
and this can be observed from the graph of Figure 3.
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Figure 3. Time comparison of the average execution time for the classification datasets.

The proposed technique significantly improves the performance of the genetic al-
gorithm in minimizing the training error of the artificial neural networks but requires
significantly more computing time. However, the required computing time could be
significantly reduced either by using parallel computing techniques.

Additionally, in order to explore the stability and the robustness of the proposed
method, further experiments were conducted with different values for the critical parame-
ters of the method. The results in Table 4 depict the application of the proposed method on
classification datasets, with different values for the critical parameter F, which controls the
magnitude of changes in the Simulated Annealing variant.

Table 4. Experimental results using different values for the critical parameter F. The experiments
were executed on the classification datasets. The numbers in cells denote average classification error,
as measured on the test set.

Dataset F = 0.05 F = 0.10 F = 0.15

APPENDICITIS 22.30% 22.60% 24.20%

AUSTRALIAN 33.78% 32.42% 28.72%

BALANCE 8.16% 8.10% 8.26%

BANDS 34.81% 34.53% 33.97%

CIRCULAR 4.22% 4.35% 4.38%

CLEVELAND 46.24% 42.62% 44.58%

DERMATOLOGY 16.69% 12.12% 9.94%

ECOLI 50.64% 47.18% 45.24%

FERT 26.60% 25.20% 25.90%

HEART 23.96% 16.59% 15.15%

HEARTATTACK 25.70% 20.13% 19.97%

HOUSEVOTES 6.74% 7.13% 7.44%

LIVERDISORDER 34.50% 32.88% 32.50%

PARKINSONS 16.53% 16.63% 15.68%

PIMA 33.18% 30.08% 26.33%

POPFAILURES 4.52% 5.44% 5.89%

REGIONS2 30.86% 27.69% 26.40%
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Table 4. Cont.

Dataset F = 0.05 F = 0.10 F = 0.15

SAHEART 35.68% 34.56% 32.67%

SEGMENT 32.53% 28.41% 26.15%

SONAR 21.40% 19.80% 19.80%

SPIRAL 45.15% 44.54% 44.23%

WDBC 7.38% 5.66% 4.91%

WINE 16.06% 10.59% 8.82%

Z_F_S 18.20% 11.10% 8.60%

ZO_NF_S 16.80% 6.86% 6.22%

ZONF_S 2.92% 2.48% 2.42%

ZOO 7.60% 7.60% 6.80%

AVERAGE 23.08% 20.64% 19.82%

The proposed method is shown to improve when the critical parameter F increases
from 0.05 to 0.10 but does not improve further for a larger increase in the value of the
parameter. Therefore, for small changes in chromosome values, there is no significant
improvement from applying the minimization technique, but larger variations yield more
significant reductions in classification error. Also, an experiment was conducted using
different values for the parameter NR, which determines the number of changes in the
chromosomes. The results for this experiment and for the classification datasets are shown
in Table 5 and the statistical comparison is shown in Figure 4.

Table 5. Experiments using the parameter NR of the proposed algorithm. The experiments were
performed by applying the proposed method on the used classification datasets. The numbers in
cells stand for the average classification error, as measured on the corresponding test set.

Dataset NR = 10 NR = 20 NR = 30

APPENDICITIS 23.70% 22.60% 22.50%

AUSTRALIAN 32.60% 32.42% 31.51%

BALANCE 8.36% 8.10% 8.05%

BANDS 34.28% 34.53% 33.75%

CIRCULAR 4.48% 4.35% 4.51%

CLEVELAND 43.38% 42.62% 43.24%

DERMATOLOGY 13.97% 12.12% 11.26%

ECOLI 47.79% 47.18% 47.06%

FERT 26.50% 25.20% 26.70%

HEART 20.67% 16.59% 16.18%

HEARTATTACK 23.20% 20.13% 20.43%

HOUSEVOTES 7.30% 7.13% 7.44%

LIVERDISORDER 32.50% 32.88% 33.09%

PARKINSONS 16.63% 16.63% 15.26%

PIMA 31.89% 30.08% 28.04%

POPFAILURES 4.43% 5.44% 5.48%
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Table 5. Cont.

Dataset NR = 10 NR = 20 NR = 30

REGIONS2 29.71% 27.69% 26.99%

SAHEART 34.28% 34.56% 33.26%

SEGMENT 29.19% 28.41% 27.46%

SONAR 20.95% 19.80% 20.05%

SPIRAL 44.17% 44.54% 44.20%

WDBC 6.48% 5.66% 5.45%

WINE 12.76% 10.59% 10.41%

Z_F_S 13.50% 11.10% 8.70%

ZO_NF_S 15.14% 6.86% 7.28%

ZONF_S 2.44% 2.48% 2.38%

ZOO 7.40% 7.60% 7.60%

AVERAGE 21.77% 20.64% 20.31%

Figure 4. Statistical comparison for the results obtained by the proposed method as applied on the
classification datasets, using different values of the parameter NR.

In the case of this parameter, no noticeable differences are observed as the value of the
parameter increases. This means that even a limited number of changes (e.g., 10–20) can
yield significant reductions in classification errors. Finally, an experiment was conducted
to measure the effect of the parameter NI to the produced results. The experimental results
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for different values of the NI parameter are shown in Table 6 and the statistical comparison
is depicted in Figure 5.

Once again, the performance of the proposed technique appears not to be significantly
affected by the change of parameter NI . The method performs slightly better for lower
values of the NI parameter, since the smaller this parameter is, the more often the variant
of Simulated Annealing will be applied to the genetic population. However, this reduction
is limited and, therefore, there does not appear to be a drastic effect of this particular
parameter on the behavior of the algorithm.

Table 6. Experiments using the proposed method on the classification datasets for various values of
the parameter NI . Numbers in cells denote average classification error, as measured on the test set.

Dataset LI = 10 LI = 20 LI = 30

APPENDICITIS 24.20% 22.60% 24.10%

AUSTRALIAN 30.49% 32.42% 33.22%

BALANCE 8.50% 8.10% 8.44%

BANDS 34.08% 34.53% 34.22%

CIRCULAR 4.29% 4.35% 4.36%

CLEVELAND 44.58% 42.62% 43.10%

DERMATOLOGY 10.63% 12.12% 12.54%

ECOLI 45.24% 47.18% 47.67%

FERT 25.90% 25.20% 27.30%

HEART 15.44% 16.59% 19.26%

HEARTATTACK 19.87% 20.13% 21.83%

HOUSEVOTES 7.44% 7.13% 6.65%

LIVERDISORDER 32.50% 32.88% 32.85%

PARKINSONS 15.89% 16.63% 15.79%

PIMA 28.96% 30.08% 31.28%

POPFAILURES 5.13% 5.44% 4.76%

REGIONS2 25.74% 27.69% 28.98%

SAHEART 32.67% 34.56% 34.33%

SEGMENT 26.55% 28.41% 28.62%

SONAR 19.80% 19.80% 21.69%

SPIRAL 43.82% 44.54% 43.85%

WDBC 5.48% 5.66% 5.95%

WINE 8.82% 10.59% 11.65%

Z_F_S 8.60% 11.10% 12.13%

ZO_NF_S 6.22% 6.86% 9.06%

ZONF_S 2.42% 2.48% 2.64%

ZOO 6.80% 7.60% 7.10%

AVERAGE 20.00% 20.64% 21.24%
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Figure 5. Statistical comparison for the results obtained by the proposed method as applied on the
classification datasets, using different values of the parameter LI .

4. Conclusions

A new variant of the Simulated Annealing method is introduced in the current work,
which aims to improve the effectiveness of Genetic Algorithms in the task of training neural
networks. This new method improves the performance of genetic population chromosomes,
which are randomly selected from the population. This method brings random changes to
the selected chromosomes and the course of the optimization is determined by parameters,
such as the temperature of the method. For high temperature values, the method accepts
error values that may be higher than the initial one, in order to achieve the optimal
exploration of the research space, but as the temperature decreases, the method focuses on
the optimal values of the error function. The main contributions of the current work are
as follows:

1. Periodic application of an intelligent stochastic technique based on Simulated Anneal-
ing. This technique improves the training error of randomly selected chromosomes.

2. By using parameters, the changes that this stochastic method can cause in the chromo-
somes are controlled.

3. This stochastic technique can be used without modification in both classification and
data fitting problems.

The new training method is quite general and has been successfully applied to a variety
of data classification and data fitting problems. This new technique significantly improves
the performance of Genetic Algorithms in almost all data sets that were used, and in fact,
in several of them, the reduction in the error can reach up to 80%. The proposed method
achieved a significant reduction in error compared to all the techniques with which it was
compared. This reduction starts on average from 20% for the case of genetic algorithms
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and ends in a reduction of 45% for the case of the BFGS optimization method. Furthermore,
the technique’s behavior and performance are not significantly affected by any variations in
its critical parameters except for the F parameter, which controls the magnitude of changes
that can be made to a chromosome. However, the effect of this parameter seems to decrease
for large values.

However, this new technique may affect the execution time of the Genetic Algorithm as
it adds a new computational part. This overhead in computational time may be reduced by
using modern parallel programming techniques from recent literature [103]. Furthermore,
the effect of the temperature reduction mechanism on the performance of the Simulated
Annealing variant could be studied and more sophisticated minimization techniques could
be tested. Also, an effort could be made to apply the new technical training to other
machine learning models, as, for example, the Radial Basis Function (RBF) networks [104].
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