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Abstract: This paper introduces the Accumulated Concept Graph (ACG), a visualization tool based
on the quantile method designed to analyze three-way data, including distributional data. Such
data often have complex structures that make it difficult to identify patterns using conventional
visualization techniques. The ACG represents each object with one or more monotonic line graphs.
As a result, the three-way data are visualized as a set of parallel monotonic line graphs that never
intersect. This non-intersecting property allows for the easy identification of both macroscopic
and microscopic patterns within the data. We demonstrate the usefulness of ACGs and principal
component analysis in the analysis of real three-way datasets.

Keywords: three-way data; distributional data; the quantile method; parallel monotone line graphs;
visualization; microscopic property; macroscopic property; PCA

1. Introduction

Visual perception is a powerful tool for humans, aiding in the recognition of complex
patterns within data. We can identify details and patterns more easily through visual input
than by analyzing large volumes of numeric data. This ability is a crucial factor in visual
data mining and is particularly beneficial during the exploratory data analysis phase, where
little is known about the data or the patterns within them [1]. Numerous ideas have been
proposed and examined within traditional data analysis (e.g., [1–5]).

The visualization of multi-dimensional data is a complex procedure, even more so
than traditional data visualization, yet it is essential for a comprehensive understanding of
the data. Symbolic data, a type of multi-dimensional data, allow for the aggregation of large
datasets (including big data that cannot be analyzed using classical approaches), reducing
them to a more compact format and thus enabling researchers to analyze and process the
data. The most thorough overview of the uniqueness, benefits, and available approaches
for symbolic data remains [6]. Due to the complexity of this problem, many different ideas
have been explored over the years (e.g., [7–18]). The most influential research in the field of
symbolic data visualization has likely been led by Noirhomme-Fraiture, who has authored
multiple works on symbolic data visualization, using a radial chart-based “zoomstar”
approach to describe various features and different data types (e.g., [8,9]). Visualization of
multiway (including three-way) data has also been covered in works such as [16–18].

The main drawback of the currently available approaches is that they can only handle
a limited number of features, require a very specific type of symbolic data, or are unable
to support datasets with varying types of symbolic data. Most of the focus has been on
visualizing the results of principal component analysis or clustering. However, detailed
visualizations designed for exploratory data analysis or human perception, which would
allow for the identification of both microscopic and macroscopic details in the data, have
been largely overlooked.
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The aim of this paper is to propose a solution that overcomes these shortcomings
by using a quantile method to analyze distributional symbolic data with Accumulated
Concept Graphs (ACGs) ([19]). The main advantage of distributional symbolic data is
that any other type of symbolic data can be transformed to have a distributional format.
The proposed approach enables readers to observe both macroscopic and microscopic
properties of the underlying aggregated data. In Section 2, we describe three ACGs for
the Hardwood dataset [20,21], which is a three-way dataset organizing ten hardwoods.
Each hardwood is composed of seven quantile vectors and described by eight features.
We define the Quantile Vectors ACG (QV-ACG), the Feature-Wise ACG (FW-ACG), and
the Total ACG (T-ACG) for the given numerical data: (10 objects) × (7 quantile vectors)
× (8 features). The QV-ACG represents each object using a set of seven monotonically
increasing line graphs, obtained by accumulating eight (0–1)-normalized feature values for
each quantile vector. The FW-ACG represents each object with a set of eight monotonically
increasing line graphs, obtained by accumulating seven (0–1)-normalized quantile values.
By further accumulating the FW-ACG, we obtain the T-ACG. In the T-ACG, each line
graph describing the hardwood is obtained by accumulating the eight feature-wise line
graphs in a given order. We describe various macroscopic and microscopic properties of
the Hardwood dataset using the ACGs, along with the results of the PCA.

In Section 3, we examine the Prefecture Profile Data I [22] dataset, another three-way
dataset. This dataset represents Japan’s 47 prefectures based on the number of people
employed in 10 different job categories over six distinct time periods. By applying the
quantile method with ACGs and PCA, we visualize and analyze this numerical data,
structured as (47 objects) × (6 quantile vectors) × (10 features).

In Section 4, we analyze another three-way dataset: Prefecture Profile Data II [22].
This dataset represents the 47 prefectures using seven different types of numerical data
tables. By applying the quantile method, we transform this general three-way data into the
following format: (47 objects) × (5 quantile vectors) × (11 features). We then visualize and
analyze the transformed data by combining ACGs with the quantile method of PCA

Section 5 summarizes the major collaborative properties of ACGs and PCA for the
given three-way datasets.

2. Analysis of Distributional Data (Hardwood Data)
2.1. Accumulated Concept Graphs for the Hardwood Data

As a typical three-way data problem, we selected the following ten hardwoods based
on five species from the US Geological Survey [20]:

Acer East, Acer West; Alnus East, Alnus West; Fraxinus East, Fraxinus West;
Juglans East, Juglans West; and Quercus East, Quercus West.

Table 1 lists the eight histogram-valued features describing the selected hardwoods.
For example, Acer East is described by seven quantile vectors, corresponding to quantile
values for 0, 10, 25, 50, 75, 90, and 100 percentiles. The quantile vector QV 4, associated
with the 50th percentile, has feature values such as ANNT = 9.2, JANT = −5.1, JULT = 22.2,
and so on.

Table 1. Features for Hardwood data.

Feature Description

F1 Annual Temperature (ANNT) (◦C)
F2 January Temperature (JANT) (◦C)
F3 July Temperature (JULT) (◦C)
F4 Annual Precipitation (ANNP) (mm)
F5 January Precipitation (JANP) (mm)
F6 July Precipitation (JULP) (mm)
F7 Growing Degree Days on 5 ◦C base × 1000 (GDC5)
F8 Moisture Index (MITM)
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In Table 2, the quantile values for each feature satisfy the monotonicity property,
meaning that the seven quantile vectors follow a consistent vector order:

QV1 ≤ QV2 ≤ · · · ≤ QV7. (1)

Table 2. Acer East, represented with 7 quantile vectors by 8 feature values.

QV ANNT JANT JULT ANNP JANP JULP GDC5 MITM

1 −2.30 −24.6 11.5 415 10 56 0.5 0.62
2 0.60 −18.3 16.6 720 23 77 1.2 0.89
3 3.80 −12.3 18.2 835 40 89 1.5 0.94
4 9.20 −5.10 22.2 1010 69 100 2.5 0.97
5 14.4 2.30 25.8 1200 96 113 3.6 0.99
6 17.9 7.90 27.3 1355 127 135 4.8 0.99
7 23.8 18.9 28.8 1630 166 22 6.8 1.00

We apply (0–1) normalization to the quantile values of the ten hardwoods for each
feature. It is important to note that (0–1) normalization is essential to ensure consistent data
with unitless numbers. Table 3 shows the results for Acer East.

Table 3. Acer East, represented with 7 quantile vectors by 8 (0–1)-normalized feature values.

QV ANNT JANT JULT ANNP JANP JULP GDC5 MITM

1 0.25 0.11 0.16 0.07 0.01 0.12 0.05 0.59
2 0.32 0.22 0.36 0.14 0.03 0.17 0.13 0.88
3 0.41 0.33 0.42 0.16 0.06 0.20 0.17 0.93
4 0.54 0.45 0.57 0.20 0.10 0.22 0.29 0.97
5 0.68 0.58 0.70 0.24 0.14 0.25 0.42 0.99
6 0.76 0.68 0.76 0.28 0.19 0.30 0.56 0.99
7 0.91 0.87 0.81 0.34 0.25 0.49 0.80 1.00

Let xij, j = 1, 2, . . ., 8; i = 1, 2, . . ., 7, be the (0–1)-normalized quantile values in Table 3.
Then, the accumulated quantile values yij, j = 1, 2, . . ., 8, for the quantile vector QVi, i = 1, 2,
. . ., 7, are given by:

yij = xij + yi(j−1), j =1, 2, . . ., 8; i = 1, 2, . . ., 7, (2)

where we assume that yi0 = 0 for all i. We accumulate the (0–1)-normalized feature values
for each quantile vector and obtain the result in Table 4 for Acer East.

Table 4. Representation of Acer East by 7 accumulated quantile vectors.

QV ANNT JANT JULT ANNP JANP JULP GDC5 MITM

1 0.25 0.36 0.53 0.60 0.61 0.74 0.78 1.37
2 0.32 0.55 0.90 1.04 1.07 1.24 1.37 2.25
3 0.41 0.73 1.15 1.31 1.37 1.57 1.73 2.67
4 0.54 0.99 1.56 1.76 1.86 2.08 2.37 3.34
5 0.68 1.26 1.96 2.20 2.34 2.59 3.01 4.00
6 0.76 1.44 2.20 2.48 2.67 2.96 3.52 4.51
7 0.91 1.79 2.60 2.93 3.18 3.67 4.47 5.47

We organized the data into a long Excel column by vertically arranging the QV1–QV7
values from Table 4, with one space inserted between different quantile vectors. The
QV-ACG was then generated using the scatter plot command, as shown in Figure 1. By
swapping the positions of the quantile vectors and features, we create the FW-ACG for
Acer East, shown in Figure 2.
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Figure 1. The Quantile Vectors ACG (QV-ACG) for Acer East.
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Figure 2. The Feature-Wise ACG (FW-ACG) for Acer East.

The following important observations should be noted:

1. The resulting line graphs display the accumulated sizes of the quantile vectors for the
given set of features, and they do not intersect within the ACGs.

2. The shapes of the line graphs in the QV-ACG change when the order of features is
altered. However, their overall lengths, or accumulated sizes, remain unchanged.

We generated the QV-ACG (Figure 3) and FW-ACG (Figure 4) for the Hardwood
data, with two spaces placed between different hardwoods in the Excel column. The Total
ACG (T-ACG) was obtained in Figure 5 by further accumulating the line graphs for each
hardwood in the FW-ACG.
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The following insights can be drawn from these ACGs:

1. Among the hardwoods, Alnus West and Quercus West have the largest line graph
sizes for the 7th quantile in the QV-ACG, the 8th line graph in the FW-ACG, and the
T-ACG (macroscopic property).

2. In the T-ACG, East and West hardwoods show similarities in their final segments,
with the West hardwoods being larger than the East hardwoods.

3. In the QV-ACGs for each species, the difference between East and West is mainly
influenced by the 7th quantile vector. Removing the 7th quantile line graphs from
Figure 3 significantly reduces the differences between East and West for each species.

4. The lower portions of the graphs in both the QV-ACG and FW-ACG display similar
shapes for each species.

5. In both the QV-ACG and FW-ACG, the East hardwoods exhibit general similarity to
each other, with the exception of Alnus East.

6. In the QV-ACG and FW-ACG, Fraxinus West, Juglans West, and Quercus West display
a general similarity, whereas Acer West and Alnus West also exhibit comparable
characteristics.
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Figure 3. The QV-ACG for the Hardwood data.
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Figure 6 displays a scatter plot of the Hardwood data, utilizing the minimum value of
QV1 and the maximum value of QV7 for each hardwood. This plot effectively demonstrates
the macroscopic properties of the Hardwood data, as uncovered by the ACGs.
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2.2. Principal Component Analysis of the Hardwood Data

Principal component analysis (PCA) is a valuable tool for visualizing the relationships
between objects in factor planes defined by the principal components. In the PCA for
the Hardwood data [21], we calculate Spearman’s rank order correlation matrix from the
(10 × 7) 8-dimensional quantile vectors, with the results shown in Table 5. In this table,
the first principal component (Pc1) represents a size factor, with similar weights assigned
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to all eight features, and has a significantly high contribution ratio. The second principal
component (Pc2) represents a shape factor, distinguishing two groups: precipitation and
moisture index; temperature and growing degree days. Figure 7 illustrates the positions of
the eight features, clearly separating them into the two groups: (precipitation and moisture)
and (temperature and growing degree days).

Table 5. Principal components for the Hardwood data.

Spearman Pc1 Pc2

Eigenvalues 6.691 0.909
Contribution (%) 83.635 11.357

Eigenvectors Pc1 Pc2

ANNT 0.362 −0.363
JANT 0.346 −0.427
JULT 0.372 −0.208

ANNP 0.359 0.369
JANP 0.337 0.365
JULP 0.352 0.170
GDC5 0.365 −0.331
MITM 0.335 0.484
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Figure 7. Scatter plot by the eigenvectors.

Figure 8 shows the results of the PCA, where each hardwood is represented by six con-
nected lines spanning from the minimum to the maximum quantile vector. Three distinct
groups are evident: (Acer West, Alnus West), (East Hardwoods), and (Fraxinus West,
Juglans West, Quercus West). Alnus West and Quercus West are the largest. Additionally,
the minimum and maximum quantile vectors effectively highlight the similarities and dif-
ferences between hardwoods, as identified by the ACGs. The final arrow lines, connecting
the 90th and 100th percentile quantile vectors, are particularly long for the West hardwoods,
a characteristic that is also observed in both the QV-ACG and FW-ACG.

This highlights that visualizations using ACGs and the quantile method of PCA are
effective tools for gaining insights into the data.
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3. Analysis of Periodically Summarized Multiple Data Tables (Prefecture Profile Data I)
3.1. Accumulated Concept Graphs for the Prefecture Profile Data I

We have n periodically summarized data tables with the same structure, where each
table consists of N objects described by d features. This results in a three-way data table in
the form of n × N × d.

In the Prefecture Profile Data I [22] dataset, the number of people employed in ten dif-
ferent job categories, as shown in Table 6, was recorded across 47 prefectures of Japan,
from Hokkaido to Okinawa, for the years 1980, 1985, 1990, 1995, 2000, and 2005. We
represent these data as (47 objects) × (6 quantile vectors) × (10 features). As part of our
analysis, Tables 7 and 8 present a summary of the (0–1)-normalized quantile vectors and
the accumulated quantile vectors for Hokkaido, respectively.

Table 6. Ten job types in Prefecture Profile Data I [22].

Feature Description

F1 Professional skills
F2 Management jobs
F3 Office works
F4 Sales jobs
F5 Service jobs
F6 Security jobs
F7 Agricultural forestry and fisheries
F8 Transportation and communication
F9 Industrial process work

F10 Unclassified jobs

Table 7. The (0–1)-normalized quantile vectors for Hokkaido for Prefecture Profile Data I.

Hokkaido F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1980 0.040 0.070 0.054 0.064 0.055 0.059 0.129 0.087 0.134 0.002
1985 0.096 0.134 0.121 0.137 0.119 0.128 0.279 0.185 0.286 0.009
1990 0.165 0.204 0.198 0.216 0.189 0.202 0.408 0.287 0.448 0.025
1995 0.243 0.280 0.279 0.303 0.269 0.285 0.532 0.395 0.608 0.041
2000 0.327 0.331 0.360 0.392 0.358 0.377 0.642 0.501 0.764 0.082
2005 0.413 0.373 0.442 0.476 0.455 0.480 0.744 0.601 0.920 0.180
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Table 8. The accumulated quantile vectors for Hokkaido for Prefecture Profile Data I.

Hokkaido F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1980 0.040 0.110 0.164 0.228 0.282 0.341 0.47 0.557 0.691 0.693
1985 0.096 0.23 0.351 0.488 0.607 0.735 1.015 1.200 1.486 1.495
1990 0.165 0.369 0.567 0.783 0.972 1.174 1.582 1.869 2.317 2.342
1995 0.243 0.524 0.802 1.106 1.374 1.659 2.192 2.587 3.195 3.236
2000 0.327 0.658 1.018 1.410 1.768 2.145 2.787 3.288 4.052 4.134
2005 0.413 0.786 1.228 1.703 2.158 2.638 3.382 3.983 4.903 5.083

Figure 9 presents the QV-ACG, where each prefecture is represented by six monotone
line graphs, with a spacing of one unit between each line graph and a gap of two units be-
tween different prefectures. Similarly, Figure 10 shows the FW-ACG, where each prefecture
is depicted by ten monotone line graphs, with the same spacing arrangement.

AppliedMath 2024, 4, FOR PEER REVIEW 9 
 

 

 
Figure 9. The QV-ACG for Prefecture Profile Data I. 

 
Figure 10. The FW-ACG for Prefecture Profile Data I. 

From the QV-ACG and FW-ACG, we can observe the following: 
1. Tokyo is the largest prefecture, while Tottori is the smallest. The length of the line 

graphs primarily reflects the population size of each prefecture. 
2. By analyzing the patterns in the QV-ACGs and FW-ACGs, it is easy to identify simi-

lar prefectures. For example, Aomori and Iwate, Akita and Yamagata, Tochigi and 
Gunma, and Toyama and Ishikawa share similar patterns. Additionally, it is straight-
forward to distinguish between rural and urban areas. 

3. As a microscopic observation, Tokyo, Kanagawa, and Osaka have significantly 
higher numbers of people employed in unclassified jobs compared to other prefec-
tures. 

0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500 3000

Tottori

Ishikaw
a

Ibaraki

Hokkaido
Aom

ori
Iw

ate
M

iyagi Akita
Yam

agata
Fukushim

a

Tochigi
Gunm

a
Saitam

a
Chiba

Tokyo
Kanagaw

a
Niigata

Toyam
a

Fukui
Yam

anashi
Nagano Gifu

Shizuoka
Aichi

M
ie Shiga

Kyoto
Osaka

Hyogo
Nara

W
akayam

a

M
iyazaki

Shim
ane

Okayam
a

Hiroshim
a

Yam
aguchi
Tokushim

a
Kagaw

a
Ehim

e Kochi
Fukuoka

Saga
Nagasaki

Kum
am

oto
Oita

Kagoshim
a

Okinaw
a

0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500 3000 3500

Aom
ori

Iw
ate

M
iyagi Akita
Yam

agata
Fukushim

a
Ibaraki Tochigi

Gunm
a

Saitam
a

Chiba
Tokyo

Kanagaw
a

Niigata
Toyam

a
Ishikaw

a
Fukui

Yam
anashi

Nagano
Gifu

Shizuoka
Aichi

M
ie Shiga

Kyoto
Osaka

Hyogo
Nara

W
akayam

a
Tottori

Shim
ane

Okayam
a

Hiroshim
a

Yam
aguchi
Tokushim

a

Ehim
e

Kagaw
a

Kochi
Fukuoka

Saga
Nagasaki

Kum
am

oto
Oita

M
iyazaki

Kagoshim
a

Okinaw
a

Hokkaido
Figure 9. The QV-ACG for Prefecture Profile Data I.

From the QV-ACG and FW-ACG, we can observe the following:

1. Tokyo is the largest prefecture, while Tottori is the smallest. The length of the line
graphs primarily reflects the population size of each prefecture.

2. By analyzing the patterns in the QV-ACGs and FW-ACGs, it is easy to identify
similar prefectures. For example, Aomori and Iwate, Akita and Yamagata, Tochigi
and Gunma, and Toyama and Ishikawa share similar patterns. Additionally, it is
straightforward to distinguish between rural and urban areas.

3. As a microscopic observation, Tokyo, Kanagawa, and Osaka have significantly higher
numbers of people employed in unclassified jobs compared to other prefectures.

4. In 1980, many rural prefectures, such as Akita and Aomori, show very low starting
values in the first six positions in the line graph (corresponding to service jobs), while
the last four positions (related to production jobs) display noticeably higher values.

5. In many cases, such as in Kochi, Iwate, and Tochigi, the line graphs for service
jobs remain short. In contrast, prefectures like Ibaraki and Chiba show a significant
increase in the length of line graphs for service and management jobs in later years.

It is important to emphasize that visualizing data through ACGs allows us to effec-
tively capture both the macroscopic and microscopic similarities and differences between
prefectures in two-dimensional figures.
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Figure 10. The FW-ACG for Prefecture Profile Data I.

3.2. Principal Component Analysis for the Prefecture Profile Data I

We derive the Spearman’s rank–order correlation matrix from the (47 × 6) 10-dimen-
sional quantile vectors. Table 9 presents the resulting principal components. The first princi-
pal component, Pc1, represents the size factor, with a very high contribution ratio. In the sec-
ond principal component, Pc2, F7 (agriculture, forestry, and fishery) has a notably large pos-
itive value. Similarly, in the third principal component, Pc3, F10 (unclassified jobs) shows
a significantly large positive value. Figure 11a,b illustrate the relationships among the
ten features, as represented by pairs of eigenvectors (Pc1, Pc2) and (Pc1, Pc3), respectively.

Table 9. The principal components for Prefecture Profile Data I.

Spearman Pc1 Pc2 Pc3

Eigenvalues 9.035 0.651 0.161
Contribution (%) 90.354 6.514 1.612

Eigenvectors Pc1 Pc2 Pc3

F1 0.331 −0.057 0.077
F2 0.327 −0.119 −0.256
F3 0.331 −0.087 −0.121
F4 0.331 −0.078 −0.094
F5 0.331 −0.030 −0.055
F6 0.322 −0.026 0.112
F7 0.211 0.954 0.152
F8 0.328 0.041 0.180
F9 0.325 −0.039 −0.363

F10 0.306 −0.233 0.838

Figures 12 and 13 show the results of the PCA. In these figures, the zoomed-in results
are obtained by removing ten large prefectures from Tokyo to Shizuoka. We have the
following facts.
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Figure 12. Results of PCA in the factor plane by (Pc1, Pc2) for Prefecture Profile Data I.
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Figure 13. Results of PCA in the factor plane by (Pc1, Pc3) for Prefecture Profile Data I.

1. In 1980, with the exceptions of Tokyo, Kanagawa, and Osaka, other prefectures existed
in a narrow region in the factor planes. As time goes on, each prefecture spreads in
their respective direction in the factor planes.

2. In the factor plane by (Pc1, Pc2), many prefectures grow up with addition of other job
types to F7, i.e., agriculture, forestry, and fishery.

3. In the factor plane by (Pc1, Pc3), nine large prefectures from Tokyo to Fukuoka are
affected by job type F10, i.e., unclassified jobs. In the zoomed-in factor plane, Aomori,
Kumamoto, Kyoto, Ibaraki, and Hiroshima show the same tendency.

These findings, obtained through the PCA, may be useful in understanding the Prefec-
ture Profile Data I together with the QV-ACG data, shown in Figure 9, and the FW-ACG
data, shown in Figure 10.
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4. Analysis of Multiple Different Sized Data (Prefecture Profile Data II)
4.1. Total ACG of the Prefecture Profile Data II

In the Prefecture Profile Data II [22] dataset, seven different data tables, summarized in
Table 10, describe the profiles of 47 Japanese prefectures in 2010. Each feature is represented
by a numerical value drawn from a set of possible feature values.

Table 10. Seven different data tables for Prefecture Profile Data II.

Table Feature Description

1 Number of employed persons
(19 job types, 1000 people)

1. Agriculture and forestry; 2. Fisheries; 3. Mining and quarrying of stone and
gravel; 4. Construction; 5. Manufacturing; 6. Electricity; gas, head supply, and water;
7. Information and communications; 8. Transport and postal activities; 9. Wholesale
and retail trade; 10. Finance and insurance; 11. Real estate and goods rental and
leasing; 12. Scientific research, professional, and technical services;
13. Accommodations, eating, and drinking services; 14. Living-related and personal
services and amusement services; 15. Education, learning support; 16. Medical,
healthcare, and welfare; 17. Compound services; 18. Services (not elsewhere
classified); 19. Government, expect elsewhere classified.

2 Nominal GDP (JPY 10 billion)
3 Temperature 1. Minimum temperature; 2. Maximum temperature
4 Area (Square kilometer)

5 People in 18 age categories
1. [0, 4], 2. [5, 9], 3. [10, 14], 4. [15, 19], 5. [20, 24], 6. [25, 29], 7. [30, 34], 8.[35, 39],
9. [40, 44], 10. [45, 49], 11. [50, 54], 12. [55, 59], 13. [60, 64], 14. [65, 69], 15. [70, 74],
16. [75, 79], 17. [80, 84], 18. [85-]

6 Number of people 1. Birth; 2. Death; 3. Marriage; 4. Divorce.

7 Number of households Private household: 1. Number of households; 2. Number of household members.
Industrial households: 3. Number of households; 4. Number of household members.
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Figure 14. The T-ACG for Prefecture Profile Data II.

By merging the seven data tables from Table 10 into one large table, we create
a two-way dataset with a size of (47 prefectures) × (49 features). The Total ACG (T-ACG)
shown in Figure 14 is obtained by accumulating the (0–1)-normalized 49 features. From
this figure, we can observe the following insights:

1. The largest ten prefectures are consistent with those identified in the QV-ACG and
FW-ACG for Prefecture Profile Data I, while Tottori remains the smallest.
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2. Macroscopically similar prefectures include: (Aomori and Iwate), (Tochigi and Gunma),
(Toyama and Ishikawa), (Fukui and Yamanashi), (Gifu and Mie), (Okayama and Ku-
mamoto), and (Shiga, Nara, and Oita).

Figure 15 presents a scatterplot of the 47 prefectures, using two values: F1 (agriculture
and forestry) and the total accumulated value, F49. This figure effectively illustrates the
macroscopic properties of the 47 prefectures as revealed by the T-ACG in Figure 14.
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Figure 15. Plot by the minimum and the maximum values of the T-ACGs.

Further findings using the QV-ACG, FW-ACG, and PCA are discussed in the next section.

4.2. The Quantile Method of the ACGs for the Prefecture Profile Data II

In the analysis of the Hardwood data and Prefecture Profile Data I, the quantile
methods effectively detected the microscopic patterns within the datasets. To extend this
approach, we combined the seven tables from Table 10 into a single table, as shown in
Table 11, where each of the eleven features is represented by five quantile values. In Table 11,
features F4, F5, F9, F10, and F11 include a value labeled as “Dummy”, which we assume to
be zero. Consequently, our dataset takes the following form: (47 prefectures) × (5 quantile
vectors) × (11 features).

Table 11. Eleven features described by five quantile values.

Feature Description

F1 1. Agriculture and forestry; 2. Fisheries; 3. Mining and quarrying of stone and graves; 4. Construction; 5. Manufacturing

F2 1. Electricity, gas, heat supply, and water; 2. Information and communications; 3. Transport and postal activities; 4. Wholesale and
retail trade; 4. Finance and insurance;

F3 1. Real estate and goods rental and leasing; 2. Scientific research, professional, and technical services; 3. Accommodations, eating, and
drinking services; 4. Living-related and personal services and amusement services; 5. Education, learning support;

F4 1. Medical, healthcare, and welfare; 2. Compound services; 3. Services (not elsewhere classified); 4. Government, expect elsewhere
classified; 5. Dummy

F5 1. Nominal GDP; 2. Minimum temperature; 3. Maximum temperature; 4. Area; 5. Dummy.
F6 1. [0, 4], 2. [5, 9], 3. [10, 14], 4. [15, 19], 5. [20, 24]
F7 1. [25, 29], 2. [30, 34], 3. [35, 39], 4. [40, 44], 5. [45, 49]
F8 1. [50, 54], 2. [55, 59], 3. [60, 64], 4. [65, 69], 5. [70, 74]
F9 1. [75, 79], 2. [80, 84], 3. [85-], 4. Dummy, 5. Dummy.

F10 1. Birth; 2. Death; 3. Marriage; 4. Divorce; 5. Dummy.

F11 Private household: 1. Number of households; 2. Number of household members. Industrial households: 3. Number of households; 4.
Number of household members; 5. Dummy.
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For each of the eleven features, we calculated the (0–1)-normalized quantile val-
ues for the 47 prefectures. Given that the features have different units, it is essential to
emphasize the importance of (0–1)-normalization. Tables 12 and 13 display the (0–1)-
normalized quantile vectors and the accumulated quantile vectors for Hokkaido, respec-
tively. Figures 16 and 17 show the QV-ACG and FW-ACG for Prefecture Profile Data
II, respectively.

Table 12. The (0–1) normalized quantile vectors for Hokkaido for Prefecture Profile Data II.

QV F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

1 0.270 0.124 0.043 0.166 0.081 0.075 0.059 0.089 0.164 0.086 0.117
2 0.540 0.144 0.078 0.455 0.081 0.159 0.120 0.196 0.349 0.210 0.243
3 0.776 0.247 0.164 0.580 0.081 0.250 0.148 0.293 0.548 0.282 0.259
4 0.946 0.334 0.248 0.806 0.516 0.334 0.251 0.383 0.548 0.396 0.587
5 1.000 0.374 0.331 0.806 0.516 0.398 0.321 0.476 0.548 0.396 0.587

Table 13. The accumulated quantile vectors for Hokkaido for Prefecture Profile Data II.

QV F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

1 0.270 0.394 0.437 0.603 0.684 0.759 0.818 0.907 1.070 1.156 1.273
2 0.540 0.684 0.763 1.217 1.298 1.458 1.578 1.774 2.123 2.333 2.576
3 0.776 1.023 1.187 1.767 1.848 2.097 2.281 2.574 3.122 3.405 3.663
4 0.946 1.280 1.528 2.334 2.850 3.184 3.434 3.817 4.365 4.761 5.349
5 1.000 1.374 1.705 2.511 3.027 3.425 3.746 4.222 4.770 5.167 5.754
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Figure 16. The QV-ACG for the Prefecture Profile Data II.

The following insights can be drawn from the QV-ACG and FW-ACG:

1. The ten largest prefectures remain in the same order in terms of macroscopic size,
consistent with the T-ACG: Tokyo > Kanagawa > Osaka > Aichi > Saitama > Hokkaido
> Chiba > Hyogo > Fukuoka > Shizuoka.

2. The smallest prefecture is not Tottori but Tokushima.
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3. Some prefecture pairs that appeared similar in the T-ACG become dissimilar in the
QV-ACG and FW-ACG. For instance, Akita and Yamagata differ in features F1~F4,
Tochigi and Gunma differ in F9~F11, and Toyama and Ishikawa differ in F4~F11.
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Figure 17. The FW-ACG for the Prefecture Profile Data II.

Overall, the QV-ACG and FW-ACG provide more detailed information than the T-
ACG in the analysis of Prefecture Profile Data II.

4.3. The Quantile Method of PCA for the Prefecture Profile Data II

We calculate the Spearman’s rank–order correlation matrix from the (47 × 5) 11-
dimensional quantile vectors. Table 14 presents the resulting principal components. In this
table, the first principal component (Pc1) represents the size factor, with a notably high
contribution ratio. In Pc2, features F1~F4 have positive values, with F1 carrying a significant
weight, while features F5~F11 show relatively negative weights, as illustrated in Figure 18a.
In Pc3, F4 has a substantial positive weight, while F1 and F5 exhibit large negative weights.
The remaining features span a broad range of values, as shown in Figure 18b.

Table 14. The principal components for the Prefecture Profile Data II.

Spearman Pc1 Pc2 Pc3

Eigenvalues 10.155 0.660 0.146
Contribution (%) 92.322 6.003 1.325

Eigenvectors Pc1 Pc2 Pc3

F1 0.249 0.699 −0.529
F2 0.296 0.387 0.187
F3 0.304 0.256 0.334
F4 0.305 0.172 0.487
F5 0.305 −0.196 −0.411
F6 0.307 −0.211 −0.270
F7 0.308 −0.217 −0.179
F8 0.309 −0.207 −0.082
F9 0.310 −0.179 0.057

F10 0.310 −0.176 0.128
F11 0.309 −0.172 0.188
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Table 14. The principal components for the Prefecture Profile Data II. 

Spearman Pc1 Pc2 Pc3 

Eigenvalues 10.155 0.660 0.146 

Contribution (%) 92.322 6.003 1.325 

Eigenvectors Pc1 Pc2 Pc3 

F1 0.249 0.699 −0.529 

F2 0.296 0.387 0.187 

F3 0.304 0.256 0.334 

F4 0.305 0.172 0.487 

F5 0.305 −0.196 −0.411 

F6 0.307 −0.211 −0.270 

F7 0.308 −0.217 −0.179 

F8 0.309 −0.207 −0.082 

F9 0.310 −0.179 0.057 

F10 0.310 −0.176 0.128 

F11 0.309 −0.172 0.188 
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Figure 18. Scatter plots by (Pc1, Pc2) and (Pc1, Pc3) for Prefecture Profile Data II. 
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Figure 18. The FW-ACG for the Prefecture Profile Data II.

Figures 19 and 20 are the results of the quantile method of PCA in the factor planes
(Pc1, Pc2) and (Pc1, Pc3). Figure 21 is the zoomed-in result in the factor plane (Pc1, PC3).
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Figure 19. The FW-ACG for the Prefecture Profile Data II.

The following observations have been made:

1. The ten largest prefectures in the factor planes (Pc1, Pc2) and (Pc1, Pc3) align with the
results from the QV-ACG and FW-ACG analyses.

2. Many prefectures are concentrated in a narrow region of the factor plane (Pc1, Pc2).
3. Tottori is isolated from other prefectures in the plane (Pc1, Pc3), where QV3~QV5

almost overlap.
4. In the zoomed-in factor plane, most prefectures show an upward trend, except Tottori.

Notably, Gunma displays significant movement in the final portion due to feature F9,
while Tokushima exhibits the smallest size. Among similar prefecture pairs, Okayama
and Kumamoto trace comparable curves.

It is important to note that the results from both PCA and ACGs complement each
other, enhancing the analysis and understanding of the three-way data.
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Figure 20. The FW-ACG for the Prefecture Profile Data II.
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Figure 21. The FW-ACG for the Prefecture Profile Data II.

5. Discussion

This paper demonstrates the effectiveness of Accumulated Concept Graphs (ACGs)
and their collaborative use with the quantile method of PCA for analyzing three-way
datasets. The advantages of ACGs, as illustrated by the examples, are as follows:

1. Universal Approach with Data Specificity: ACGs are versatile and can be applied to
various types of symbolic data while still capturing detailed microscopic properties
within unaggregated data.

2. Simplicity: Transforming three-way data into a distributional format is computation-
ally efficient, making it suitable for large datasets.
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3. Microscopic and Macroscopic Properties: ACGs highlight macroscopic differences
between objects through the total lengths of line graphs, while microscopic differences
are revealed through the local shapes created by accumulated values at specific points.

4. Outlier Detection: Unlike traditional visualizations like parallel coordinates or radar
charts, ACGs feature parallel monotone line graphs that never intersect, making it
easier to detect outliers.

5. Enabling Classical Analysis on Symbolic Data: ACGs and the transformation of
symbolic data into a distributional format allow classical methods like PCA to be
applied to symbolic data, which would otherwise be computationally demanding
or impractical.

Additionally, ACGs can be easily created using scatter plots in Excel, and the proposed
methods can be extended to more complex symbolic data. Future work could explore how
ACGs can enhance other areas of data analysis, such as clustering, especially considering
the computational challenges of existing clustering methods for symbolic data.

In conclusion, this paper proposes a visualization technique using simple line graphs,
termed Accumulated Concept Graphs, for three-way and symbolic data. This approach
enables the visualization of both macroscopic and microscopic details embedded in the data.
The primary contribution of the method is its ability to provide a simple yet comprehensive
visual overview of complex relationships within the dataset. By facilitating exploratory
data analysis through visual interpretation, the proposed method aids analysts in making
informed decisions about further analyses. Furthermore, this method can be applied to
datasets with intricate internal structures that are difficult to visualize using currently
available techniques.
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