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Abstract: For automobile and aerospace engineers, implementing Hall currents and thermal radiation
in cooling systems helps increase the performance and durability of an engine. In the case of solar
energy systems, the effectiveness of heat exchangers and solar collectors can be enhanced by the
best use of hybrid nanofluids and the implementation of a Hall current, thermophoresis, Brownian
motion, a heat source/sink, and thermal radiation in a time-dependent hybrid nanofluid flow over a
disk for a Bayesian regularization ANN backpropagation algorithm. In the current physical model
of Cobalt ferrite CoFe2O4 and aluminum oxide Al2O3 mixed with water, a new category of the
nanofluid is called the hybrid nanofluid. The study uses MATLAB bvp4c to unravel such intricate
relations, transforming PDEs into ODEs. This analysis enables the numerical solution of several BVPs
that govern the system of the given problem. Hall currents resulting from the interaction between
magnetic fields and the electrically conducting nanofluid, and thermal radiation as an energy transfer
mechanism operating through absorption and emission, are central factors for controlling these fluids
for use in various fields. The graphical interpretation assists in demonstrating the character of new
parameters. The heat source/sink parameter is advantageous to thermal layering, but using a high
Schmidt number limits the mass transfer. Additionally, a backpropagation technique with Bayesian
regularization is intended for solving ordinary differential equations. Training state, performance,
error histograms, and regression demonstration are used to analyze the output of the neural network.
In addition to this, there is a decrease in the fluid velocity as magnetic parameter values decrease and
a rise in the fluid temperature while the disk is spinning. Thermal radiation adds another level to
the thermal behavior by altering how the hybrid nanofluid receives, emits, and allows heat to pass
through it.

Keywords: thermophoresis and Brownian motion; heat source/sink; hybrid nanofluid; (CoFe2O4-Al2O3)
nanoparticles; Hall current; Bayesian regularization backpropagation algorithm; rotating disk;
numerical solutions

1. Introduction

Hybrid nanofluids are an improved form of thermal fluids developed by suspending
two or several dissimilar nanoparticles in a basic fluid. This novel approach takes advan-
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tage of the individual peculiarities of various nanoparticle types to improve the thermal
characteristics and stability of the fluid. For the base fluid, water, ethylene glycol, or oils
can be used and nanoparticles can be composed of metal oxides like Al2O3 or CuO, metals
like Cu or Ag, carbon-based materials like graphene, CNTs, and other nanomaterials. The
interactions between the particles can result in enhancements in thermal convergence, spe-
cific heat, and viscosity and convective heat transfer coefficients and rates better than those
of base nanofluids with single nanoparticles [1,2]. One of the greatest applications is its use
in cooling circuits for electronics and electric elements since controlling the temperature is
important for functionality and durability [3]. New hybrid nanofluids can greatly increase
the thermal conductivity of cooling systems, which means that electronics can be made
smaller but more powerful [4]. In the automotive and aerospace industries, they are used
in radiators and cooling systems to enhance thermal management efficiencies which, as a
result, leads to more fuel efficiency and fewer emissions.

Furthermore, there is also research on the application of hybrid nanofluids in solar
thermal systems [5]. Due to the enhancement of the ability of these fluids in heat transfer
and absorption, the efficiency of solar collectors can be improved, which will contribute to
better solutions based on renewable energy [6]. Some of the latest developments include
studies that have studied how the thermal characteristics of hybrid nanofluids could be
enhanced and how their viscosity, which is important in pumping and flow systems, could
be kept to an acceptable level [7]. Moreover, research has been carried out on thermal
properties, concentration variations, and their stability to provide the long-term stability
of hybrid nanofluids. These attributes cause the nanoparticles to aggregate or sediment
and thereby reduce the performance over time, so stabilization of the nanoparticles is
an important area of research. Research articles, which include the current one, present
extensive investigations on the use of hybrid nanofluids, accompanied by evaluation of
their performance and real-life applications [8]. The future work mentioned in these studies
targets continued innovation and the possibility of a hybrid nanofluid redefining thermal
systems in every field.

Thermophoresis and Brownian motion are paramount processes in the investigation
of particle motion in fluids of significance in nanofluids and aerosols. The Soret effect or
thermophoresis is any process that leads to the migration of particles in a fluid due to
a temperature gradient [9,10]. These natural occurrences make the particles travel from
regions of high temperatures to regions of low temperatures and this is brought about by
differential kinetic energy that is transferred to the particles by the fluid molecules at the
relative temperatures of the two regions. Thermophoresis plays a monumental role in the
aerosol deposition processes in thermal insulation, environmental control, etc., because it
affects the movement of particulate matter [11]. In nanofluids, the thermophoresis ability
may alter the stability and uniform distribution of nanoparticles, thereby affecting the
fluid’s thermal conductivity and heat transfer coefficients [12]. Brownian movement, on
the other hand, is the irregular or random movement of small particles in a fluid due to the
impact of the molecules in the fluid. This motion is more significant when the dispersed
phase is made of petite particle sizes and a general reason for the dispersion and blending
of nanoparticles in a fluid [13]. Brownian motion is very essential in nanotechnology and
materials science when analyzing and predicting the behavior of colloidal suspensions,
especially nanofluids, and is the key to the aggregation and stability of nanoparticles [14].

The concept of rotating disks is irreplaceable in numerous lines of industries and
scientific research based on their flow characteristics and heat transfer behavior. Rotating
disk systems that make use of centrifugal forces resulting from the rotation of the disk have
a displacement in the radial sense which greatly influences heat and mass transfer [15–17].
It is used in most technologies, for example, centrifugal separators that use disks that rotate
to separate particles from fluids depending on their densities. A similar application is in
high-speed disk drives and data storage devices, in which rotary disks rapidly provide
data access and storage data [18]. In the same way, disks that rotate are very important
in chemical reactors and mixing processes since the rotation improves the mixing effi-
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ciency of the reactants, thereby resulting in uniform reactions as well as superior-quality
products [19]. The latest studies related to this area have targeted the enhancement of the
efficiency of the rotating disk systems in as many ways as possible [20,21]. For instance,
the use of new iterations in material science in conjunction with the application of surface
coatings in enhancing the performance of rotating disks assembled in industrial separators
and reactors has been investigated. Micro-patterned surfaces and updated coating have
been several of the breakthroughs that have improved the heat transfer rates and lowered
fouling [22]. The research discussed here focuses on the development of these technologies
with an emphasis on the role of rotary disks in enhancing the efficiency of energy collection
and transformation processes [23]. The research studies different compositions of hybrid
nanofluid and investigates the influence of nanoparticle type and concentration on the
thermal behavior in the rotating disk system [24,25]. Addressing the current literature, it is
possible to observe that these systems are of vital importance in the processes of industry
growth and energy development, as well as in the usage of data storage solutions, which
testifies to their versatility and the potential for further developments.

Bayesian regularization (BR) is one advanced technique that improves ANNs by
controlling the overfitting and generalization capabilities of the artificial neural networks
on large and noisy data sets. This algorithm adopts the features of Bayes’ theorem for
the determination of the network weights where the network is adjusted to look for a
solution that best balances error and model size. Unlike previous approaches such as early
stopping, BR adapts the cost function by adding the regularization term, which results in
the sum of the squared weights, which trades off the fit to training data for the model’s
smoothness [26]. Therefore, it minimizes the chance of overfitting, enables the ANN to give
optimal results on unseen data, and is very applicable for computational fluid dynamics
and heat transfer complications like hybrid nanofluid flow problems [27]. Because of
the improved thermal and electrical conductivity characteristics of hybrid nanofluids,
the appropriate mathematical representation of hybrid nanofluids is best described by
nonlinear partial differential equations [28,29]. Researchers utilize Bayesian regularization
in the ANN so they can interpret the complex physical behaviors of hybrid nanofluids
while avoiding overfitting noisy or lacking data to the network [30]. This approach is
especially helpful in the description of time-variable swirling flows, in which additional
dynamic parameters such as the Hall current and thermal radiation also play a pivotal role.

The current study aims to give an extensive evaluation of the different approaches to
an unstable CoFe2O4-Al2O3 and water flow under the influence of a spinning disk in line
with the literature reviews above. The model equations are numerically solved, and the
results are analyzed and validated by comparing them with the results of the MATLAB
bvp4c tool. The training state, performance, error histograms, and regression demon-
stration of the ternary hybrid nanofluid are analyzed using the Bayesian regularization
backpropagation algorithm.

2. Problem Formulation

In the present study, an unsteady MHD hybrid nanofluid flow over a stretched rotating
disk is examined under the effects of a Hall current, heat source/sink, and thermal radiation.
The CoFe2O4 and Al2O3 are the two varieties of nanoparticles in the flow. For the problem
under consideration, we adopt the cylindrical coordinate system r, ϕ, z. The disk itself
rotates at an angular velocity Ω about the z-axis in the configuration when z = 0. In the
direction of the z-axis, there is always employed a uniform magnetic field, which is referred
to as B0, as shown in Figure 1. The surface temperature of the disk is labeled Ts, while the
temperature outside the disk is labeled T0. Thick disk stretching velocities, the thickness of
the plane, and the temperature gradient are all time and space varying, like the rotational
velocities of the disk. The following assumptions are made to simplify the problem:
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u =
cr

(1 − bt)
, v =

rΩ
(1 − bt)

, B(t) =
B0

(1 − bt)
1
2

, Ts = T0 − Tre f
r2Ω

ν f (1 − bt)
3
2

. (1)

An appropriate magnetic field is assumed to induce the Hall current [31]. The general-
ized Ohm’s law follows this approach when there is an electric field:

J +
ωeτe

B0
(J × B) = σ[µeV × B +

1
ene

∇pe], (2)

Figure 1. Flow configuration.

Assuming that the ion slip and thermoelectric pressure requirements for weakly
ionized gas are insignificant, the above equations are reduced to the following form:

Jr =
σµeB0

1 + m2 (mv − u), Jϕ =
σµeB0

1 + m2 (mu + v) (3)

where Ω, b, c, T0, Ts, Tre f , ωe, pe, τe, µe, ne, m, B0, σ, u, v stand for the disk rotating rate, pos-
itive constant, stretching rate, original temperature, surface temperature, cyclotron fre-
quency of electrons, constant reference temperature, electron pressure, electron collision

time, and magnetic parameter. Here, the electrical conductivity of the fluid is σ = ( e2nete)
me

),
and the Hall parameter is defined as m = (ωeτe). In the stated expectations, the governing
equations are (Refs. [32,33]) as follows:

∂w
∂z

+
1
r

∂

∂r
(ur) = 0 (4)

∂u
∂t

− v2

r
+ w

∂u
∂z

+ u
∂u
∂r

= νhn f (
∂2u
∂z2 )−

σhn f B2
0

ρhn f (1 + m2)(1 − bt)
(u − mv), (5)
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∂v
∂t

+
uv
r

+ w
∂v
∂z

+ u
∂v
∂r

= νhn f (
∂2v
∂z2 )−

σhn f B2
0

ρhn f (1 + m2)(1 − bt)
(v + mu), (6)

∂T
∂t

+ w
∂T
∂z

+ u
∂T
∂r

=
khn f

(ρCp)hn f
(

∂2T
∂z2 )− τ(

∂T
∂z

∂C
∂z

+
DT
T0

∂2T
∂z2 ) +

µhn f

(ρCp)hn f
[(

∂u
∂z

)2 + (
∂v
∂z

)2]− 1
(ρCp)hn f

∂

∂z
(qr) +

Q0(T − Ts)

(ρCp)hn f
, (7)

∂C
∂t

+ w
∂C
∂z

+ u
∂C
∂r

= DB(
∂2C
∂z2 ) + (

DT
T0

∂2T
∂z2 ) (8)

where ρhn f , σhn f , νhn f , khn f , (ρCp)hn f , qr, C, T, DT, DB, τ are the density of the hybrid nanofluid,
hybrid nanofluid electrical conducting, kinematic viscosity, thermal conductivity of the
hybrid nanofluid, fluid concentration of the hybrid nanofluid, radiative heat flux, specific
heat of the hybrid nanofluid, fluid temperature, thermophoresis diffusion coefficient, Brow-
nian diffusion coefficient, and heat capacities ratio of the hybrid nanofluid, respectively.
The Rosseland approximation can be used to express the radiative heat flux in this case
as follows:

qr = −4σ∗

3k∗
∂T4

∂z
= −

16σ∗T3
0

3k∗
(

∂T
∂z

), (9)

Because of Equations (7) and (8) can be expressed with BCs:

u =
cr

(1 − bt)
, v =

rΩ
(1 − bt)

, w = 0, T = Ts, C = Cs, atz = 0, (10)

∂u
∂z

= 0,
∂v
∂z

= 0,
∂T
∂z

= 0,
∂C
∂z

= 0, atz → ∞, (11)

Consider the following similarity transformations:

u =
cr

(1 − bt)
f ′(η), v =

rΩ
(1 − bt)

g(η), w = −2(
ν f Ω

1 − bt
)

1
2 ,

T = T0 − Tre f
r2Ω

ν f (1 − bt)
3
2

θ(η), C = C0 − Cre f
r2Ω

ν f (1 − bt)
3
2

ϕ(η), η =

√
Ω

ν f (1 − bt)
z.

(12)

Equations (4)–(8), (10) and (11) are reduced to

(
A1

A2
) f ′′′ + (g2 + 2 f f ′ − f ′2)− S(

η

2
f ′′ + f ′)− A3

A2(1 + m2)
M( f ′ − mg) = 0, (13)

(
A1

A2
)g′′ − S(

η

2
g′ + g)− 2( f g′ + f ′g)− A3

A2(1 + m2)
M(g − m f ′) = 0, (14)

A4

(
A5 +

4
3

Rd

)
θ′′ − PrS

(
η

2
θ′ +

3
2

θ

)
+ 2Pr

(
f θ′ − f ′θ

)
− A4

A1
PrEc

(
f ′′2 + g′2

)
+ PrQEθ + Pr

(
Ntθ′2

)
+ Nbθ′ϕ′ = 0, (15)

ϕ′′ + 2Sc( f ϕ′ − f ′ϕ)− 1
2

Sc(3ϕ + ηϕ′)S +
Nt
Nb

θ′′ = 0, (16)

with conditions

f ′(0) = ω, f (0) = 1, g(0) = 1, θ(0) = 1, ϕ(0) = 1, atη = 0, (17)

f ′′(∞) = 0, g′(∞) = 0, θ′(∞) = 0, ϕ′(∞) = 0, asη → ∞. (18)

where w, ω, S, Rd, M, Pr, Ec, QE are the rotation variable, Hall current parameter, Eckert
number, measure of unsteadiness, radiation variable, magnetic field number, Prandtl
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number, heat source number, slip variable, and Biot number, respectively. These mathemat-
ical forms and dimensionless parameters of constants A1, A2, A3, A4, A5 can be expressed
as follows:

w = ωeτe, ω =
Ω
c

, S =
b
Ω

,

Rd =
4σ∗T3

∞
k∗k f

, M =
σf B2

0

ρ f Ω
, Pr =

µ f (ρCp) f

ρ f k f
, QE =

Q0(1 − bt)
(ρCp) f Ω

,

Ec =
r2Ω2

(T0 − Ts)(1 − bt)2 , Nt =
τDT(T0 − Ts)

T0ν f
, Nb =

τDB(C0 − Cs)

ν f
, Sc =

ν f

DB
,

A1 =
µhn f

µ f
, A2 =

ρhn f

ρ f
, A3 =

σhn f

σf
, A4 =

(ρCp)hn f

(ρCp) f
, A5 =

khn f

k f

(19)

The local Nusselt numbers Nur [34] and the local Sherwood number Shr [35] are
defined as

Nur = −
(

1 +
16σ∗T3

0
3kk∗

)
r( ∂T

∂z )z=0

khn f (Ts − T0)
, (20)

Shr = −
r( ∂C

∂z )z=0

khn f (Cs − C0)
, (21)

where qw denotes the heat flux. The dimensionless forms are

Re−
1
2 Nur = −

(
khn f

k f

)(
1 +

4
3

Rd
)

θ(0), (22)

Re−
1
2 Shr = −ϕ′(0), (23)

where Re
1
2 = r

√
Ω

ν f (1−bt is the local Reynold parameter.

3. Hybrid Nanofluid Model

The various flow illustrations say that the ρhn f , µhn f , khn f , (ρCp)hn f of CoFe2O4-Al2O3
and water are defined as

µhn f = µb f (1 − ϕnp1)
−2.5(1 − ϕnp2)

−2.5 (24)

ρhn f = (1 − ϕnp2)[(1 − ϕnp1)ρb f + ϕnp1ρnp1] + ρnp2ρnp2 (25)

(ρCp)hn f = (1 − ϕnp2)[(1 − ϕnp1)(ρCp)b f + ϕnp1(ρCp)np1 + ρnp2(ρCp)np2] (26)

σhn f =
σnp2 + 2σn f − 2ϕnp2(σn f − σnp2)

σnp2 + 2σn f + ϕnp2(σn f − σnp2)
σn f (27)

where

σn f =
σnp1 + 2σb f − 2ϕnp1(σb f − σnp1)

σnp1 + 2σb f + ϕnp1(σb f − σnp1)
σb f (28)

khn f =
knp2 + (s − 1)kn f − (s − 1)ϕn p2(kn f − knp2)

knp2 + (s − 1)kn f + ϕnp2(kn f − knp2)
kn f (29)

where

kn f =
knp1 + (s − 1)kb f − (s − 1)ϕnp1(kb f − knp1)

knp1 + (s − 1)kb f + ϕnp1(kb f − knp1)
kb f (30)

Here, index np1 and np2 represent the nanoparticles of Cobalt Ferrite CoFe2O4 and
aluminum oxide Al2O3, whereas b f , n f , and hn f define the base fluid, nanoliquid, and
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hybrid nanoliquid. The solid volume fraction for ϕnp1 and ϕnp2 of CoFe2O4-Al2O3 and
water is taken as fixed in the present study. Table 1 shows the numerical values for various
thermal parameters for the base fluid and the nanoparticles.

Here, index np1 and np2 represent the nanoparticles of Cobalt Ferrite CoFe2O4 and
aluminum oxide Al2O3, while b f , n f , and hn f denote the base fluid, nanoliquid, and
hybrid nanoliquid. In the present analysis, the solid volume fraction for both ϕnp1 and
ϕnp2 of CoFe2O4-Al2O3 as well as water is chosen as constant. The numerical values for
the different thermal parameters of the base fluid and the nanoparticles are presented in
Table 1.

Table 1. Physical properties of nano-addictive base fluid [36,37].

ρ (kg/m3) k (W/mk) Cp (J/kgk) σ (S/m)−1

Pure water 997.1 0.613 4197 0.05
CoFe2O4 4908 3.6 700 1.1 × 107

Al2O3 3970 40 765 35 × 10−6

4. Numerical Solution

In the present section, the procedure for the numerical integration of temperature
equations and dimensionless nonlinear momentum is explained. Using one of the above-
mentioned collection methods, the bvp4c technique that uses the Lobatto IIIA formula,
Equations (13)–(17) are solved numerically. This method also has its boundary conditions
that need to be fulfilled to arrive at the above-noted results. Subsequently, a totally different
method, which is known as finite difference, is used to adjust the initial guess that was
made earlier for further iterations. To apply this method, it is necessary to reduce the
problem into a system of first-order ODEs. We take the following actions to achieve this:

f = F1, f ′ = F2, f ′′ = F3, f ′′′ = FF1,

g = F4, g′ = F5, g′′ = FF2,

θ = F6, θ′ = F7, θ′′ = FF3,

ϕ = F8, ϕ′ = F9, ϕ′′ = FF4,

(31)

FF1 =
SA2

A1
(

η

2
F3 + F2)−

A2

A1
(F2

4 + 2F1F3 − F2
2 ) +

A3

A1
(1 + m2)M(F2 − mF4), (32)

FF2 =
SA2

A1
(

η

2
F5 + F4)−

2A2

A1
(F1F5 − F2F4) +

A3

A1
(1 + m2)M(F4 − mF2), (33)

FF3 = (
PrS
A4

(
η

2
F7 +

3
2

F6)−
2Pr
A4

(F1F7 − F2F6) +
PrEc
A1

(F2
3 + F2

5 ) + Pr(NtF2
7 + NbF7F9)− PrQEF6)/(A5 +

4
3

Rd), (34)

FF4 = −2Sc(F1F9 − F2F8) +
1
2

Sc(3F8 + ηF9)S − Nt
Nb

FF3, (35)

with conditions

F1(0) = 0, F2(0) = ω, F4(0) = 1, F6(0) = 1, F8(0) = 1, (36)

F3(∞) = 0, F5(∞) = 0, F7(∞) = 0, F9(∞) = 0. (37)

5. Intelligent Computing: ANN-BR Scheme

There are two basic forms of training neural networks: supervised and unsupervised,
where, as in the case of unsupervised learning, the neural network is on its own trying
to decipher perceived input values. However, in this study, supervised learning is used,
in which the input and output values are given to the network. The network then takes
the input data passed into the network and transforms them to produce an output that is
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compared with the target outputs. The system then uses the method of error propagation to
correct the weights that govern the neural network for further tuning. Moreover, the classic
form of modeling such complex fluid flows can be a problem as it demands solving complex
parabolic equations regarding the substance. ANNs can be thought of as an alternative as
they allow the modeling of nonlinear variables even if we do not know their equations.
Though they have an impressive capability to learn the relationships within the data, ANNs
are prone to overfitting, whereby the model learns from the training data set with excessive
finesse and thus has low chances of correctly predicting unknown data sets. This can be
solved by applying a BRS for the training of the ANNs; this allows for the embedding
of preexisting data about the model parameters into the model and reduces overfitting.
In the training of the weights of networks, the Bayesian regularization scheme (BRS) is
employed. A brief overview of the BRS is as follows: According to a report, BRS-optimized
networks are said to be stable, reliable, and more accurate than the networks used in
supervised-learning-based backpropagation [38]. The BRS works under the L-M method
without cross-validation checks being performed on the validation samples in the weight-
tuning procedures. In the case of the BRS, what is applied is a nonlinear regression. The
mathematical procedure it is based on is then transformed/substituted into an equivalent
statistical optimization problem by the use of ridge regression. For detailed information
about the BRS in terms of subject terms, mathematical theory, and theoretical convergence
proof, interested readers are referred to [39].

For the purpose of implementing the proposed ANN-BRS, the routine called “nftool”
in MATLAB is used, and, for the weight training of the neural network, the BRS is applied.
As per the normal execution of the “nftool” routine, efficient backpropagation is performed
via L-M methods, which usually consider a training/testing/validation sample grid of
targets and inputs to reasonably accurately/efficiently train the networks; however, the
adaptive L-M procedure is known to be challenged by validation checks, which may lead
to the issue of premature convergence, namely, a lack of accuracy or instability for the
majority of multiple stiff modeling cases. Nonetheless, the use of the proposed ANN-
BR scheme means that the Bayesian distribution-based statistical procedure is used to
overcome or eliminate the validation checks which may arise in the validation process of
the L-M methodology but, at the same time, are subject to relatively more computations in
the BRS. However, noting these facts, the best compromise is struck when there is a trade
off between accuracy and complexity in the suggested ANN-BR scheme.

6. Discussion of Results

A variation in the volume concentration of nanoparticles for f ′(η) and g(η) is demon-
strated in Figure 2a,b. This study particularly shows that, when the volume volumetric
concentration of the hybrid nanofluid is raised, the thermal boundary layer becomes thicker,
which results in an upsurge in f ′(η). On the other hand, as the volume percentage of the
hybrid nanofluid rises, the azimuthal velocity g(η) rises. The variation in the temperature
profile with the volume fraction of ϕ1 is depicted in Figure 2c. This is shown to induce a
progressive variation of ϕ1 that decays the temperature field. The first reason is because
nanoparticle incorporation increases the thermal conductivity of fluids, which, in return,
enhances fluid temperature. Figure 3a–c amplify further the velocity profiles and thermal
profile against the Hall current m. The features are made clear by both velocity fields in
Figure 3a,b, which show that both the velocity fields are enhanced by the act of the Hall cur-
rent m. A presentation of the energy profile against the Hall current difference is presented
in Figure 3c. It elucidates that the thermal profile is augmented by the positive-disparity
Hall current m. As in the case of a Hall current, it also gives rise to resistance, which
improves the thermal performance of the fluid flow, as plotted in Figure 3c. Figure 4a,b
delineate the comparative of the magnetic parameter M on axial velocity f ′(η) and swirl
velocity field g(η). Shown in Figure 4a is the nature of M versus axial velocity field f ′(η).
Lorentz forces, a variation in Lorentz forces, or an increase in resistivity cause the rate at
which the fluid flows to reduce. Similar diminishing patterns are seen for improving the
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value of M with thinner boundary layers in the variations of the swirl velocity g(η) given
in Figure 4b. The fact that resistance to the swirl can be linked to the fact that the magnetic
field is induced in the swirl direction shows that it directly opposes the improvement of
g(η). Thus, it follows that the boundary layer is thinned in this zone and g(η) decreases.

Figure 2. (a–c) Impact of ϕ1 on f ′(η), g(η), and θ(η).

Figure 3. (a–c) Impact of m on f ′(η), g(η), and θ(η).
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Figure 4. (a,b) Impact of M on f ′(η) and g(η).

Figure 5a–c reveal the dependencies of f ′(η), g(η), and θ(η) on the rotation number
ω. Therefore, it cannot be clearer that, in the event of the enhancement of angular velocity,
the high rotation rate results in increased abstraction, and, in addition, the rotation rate
increases contrary to the quantity of stretching. Plots of the radial velocity of f ′(η) as
influenced by ω are presented in Figure 5a. As far as the physical meaning of an increase in
the rotational number is concerned, the centrifugal force rises and acts on fluid, pressuring
it and accelerating the fluid particles in the radial direction at a faster rate. In a like manner,
Figure 5b shows the effect of rotation variable ω on g(η), whereby increasing ω enhances
the plot of the cross-radial velocity. In Figure 5c, the effects of ω on θ(η) are depicted. The
documentaries prove that the increasing value of the rotation rate results in a decrease in
temperature in the hybrid nanofluid.

Figure 5. (a–c) Impact of ω on f ′(η), g(η), and θ(η).
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Figure 6a,b show the temperature and concentration outline obtained when investi-
gating the impact of the Brownian motion factor. From the experimental data analysis, it
can be seen that the increase in the Nb value leads to an increase in the concentration and
temperature of the nanoparticles. Brownian motion is the erratic and chaotic movement of
nanoscale particles that are dispersed within a medium and can be ascribed to sample and
seal collisions. It is noticed that, when the thermophoretic effect increases, the Brownian
motion also increases the temperature due to more kinetic energy. The temperature and con-
centration outlines of nanoparticles relative to the thermophoresis factor Nt are presented
in Figure 7a,b. In Figure 3, it can be seen that, with the increase in the value of Nt, the
temperature is high and the concentration profile is low. When it comes to heat transfers,
it has factors in the transportation system, and one of those factors is the thermophoresis
factor. This phenomenon leads to the migration of the particles from the high-temperature
zone to the low-temperature zone, increasing both the temperature and the thickness of the
boundary layer.

Figure 6. (a,b) Impact of Nb on θ(η) and ϕ(η).

Figure 7. (a,b) Impact of Nt on θ(η) and ϕ(η).

The projected change in behavior concerning the thermal profile due to the Ec increase
is shown in Figure 8a. From this graph, it is clear that the variation in the nanoliquid
thermal profile reduces with the rising Ec values. Due to the higher viscosity of the liquid,
the viscous force takes control of the boundary layer and gives rise to frictional heating
within the boundary layer from a physical point of view. From this observation, it is
possible to deduce that the temperature of the fluid is directly proportional to Eckert’s
number. Therefore, as the value of Ec rises, the nanoliquid thermal profile reduces. Details
of the Prandtl number’s effect on the temperature distribution are shown in Figure 8b.
This means that, as greater values of the Prandtl number Pr are taken, the value of the
temperature distribution of the fluid flow is decreased. The thermal profile distribution
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of the fluid which is affected by Rd is shown in Figure 8c. It is observed that all the Rd
boosting parameters raise the thermal profile, as given below. The proportion of heat
transfer conduction to the heat transfer by thermal radiation is referred to as thermal
radiation. The primary mode of heat exchange used in the operation of heat pipes is
conduction, as opposed to thermal conduction. The thermal radiation parameter values
rise, and hence they raise the fluid temperature and the thermal boundary layer thickness
magnitude. Figure 8d shows the change in the fluid concentration due to Sc. It is employed
to study the decrease in the role of the fluid concentration for a larger c. Moreover, there
is a promotion in the mass transfer due to the rise in Sc while the thickness of the solutal
boundary layer declines. Therefore, as Sc increases, the liquid concentration decreases.

Figure 8. (a–d) Impact of Ec, Pr, and Rd on θ(η) and Sc on ϕ(η).

To obtain the influence of the various physical parameters on the local Nusselt number
for both the hybrid nanofluid (HNF) and nanofluid (NF), mathematical results are attained
for Pr = 1.0, S = 0.8, Rd = 1.0, Ec = 0.5, QE = 0.02, ω = 0.4, Nb = 0.5, and Nt = 0.2
and are enumerated in Table 2. It shows that the Nusselt number rises with an increase
in all parameters. To obtain the impact of the various physical parameters on the local
Sherwood parameter with both the hybrid nanofluid and nanofluid, mathematical results
are attained for Pr = 1.0, S = 0.7, Rd = 1.0, Ec = 0.5, QE = 0.02, ω = 0.4, Nb = 0.5,
and Nt = 0.7 and are enumerated in Table 3. It shows that the Sherwood number rises
with increasing Schmidt number Sc, unsteadiness parameter S, rotation variable ω, and
Brownian number Nb, while the Sherwood number decreases with an increase in the
thermophoresis parameter Nt.
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Table 2. Nur for various values of emerging variables such as M = 2.0, m = 0.5, Sc = 0.2, ϕ1 = ϕ2 = 0.02.

Pr S Rd Ec QE Nb ω Nt Nu (NF) Nu (HNF)

0.6 0.8 1.0 0.5 0.02 0.5 0.4 0.2 1.622040 2.253789
0.8 1.938445 2.693621
1.0 2.225704 3.090755
1.0 0.3 1.780332 2.444007

0.4 1.885911 2.599171
0.5 1.980055 2.736396
0.8 0.7 2.084430 2.817053

0.8 2.133092 2.912269
0.9 2.180144 3.003371
1.0 0.1 2.003443 2.796124

0.2 2.047613 2.847932
0.3 2.091787 2.899743
0.5 0.03 2.167230 2.984875

0.05 2.141414 2.947895
0.07 2.115612 2.910932
0.01 0.6 2.203083 3.031185

0.8 2.249686 3.087599
1.0 2.297263 3.145064
0.5 0.7 2.466676 3.381189

0.9 2.686264 3.666367
1.1 2.933866 3.984960
0.4 0.5 2.229809 3.060558

0.7 2.263984 3.099753
0.9 2.299029 3.139820

Table 3. Shr for various values of emerging variables such as M = 2.0, m = 0.5, Pr = Rd = 1,
Ec = 0.5, QE = 0.02, ϕ1 = ϕ2 = 0.02.

Sc S Nb ω Nt Nu (NF) Nu (HNF)

1.5 0.7 0.5 0.4 0.7 1.605421 1.940375
1.7 1.820324 2.149919
1.9 2.017342 2.341895
1.5 0.4 1.509153 1.833637

0.5 1.543047 1.870739
0.6 1.575134 1.906338
0.7 0.7 1.937827 2.201451

0.9 2.119779 2.344831
1.1 2.233280 2.434675
0.5 0.6 1.774717 2.151670

0.7 1.842365 2.242591
0.8 1.898369 2.323622
0.4 0.2 2.650721 2.740184

0.4 2.255309 2.434796
0.6 1.830026 2.110249

Results with Discussion of ANN-BRS Illustrative Outcomes

The numerical simulation needed for the ANN-BRS is then used for convective flow
dynamics involving the hybrid nanofluid model given by Equations (13)–(18). In the
following technique, the ANN-BRS is applied to the parameters of the hybrid nanofluid
model formulation. Visual representations of the best training performance convergence
at different stages of the proposed model development are shown in Figure 9a–d. Ac-
cording to these figures, the fluid model performs best at epochs 1000, 245, 1000, and
1000, which are, for cases 1–4, associated with 4.1201 ×10−6, 2.6825 × 10−1, 8.3653 × 10−4,
and 3.1663 ×10−5, respectively. The transitional state required to solve the modeled prob-
lem using the structure of an ANN is depicted in Figure 3a–d. These diagrams offer a
visual representation of the dynamic process as the model solves problems at different
phases. In these figures, the gradient values are connected with 3.8532× 10−3, 7.552× 10−3,
3.1364 × 10−3, and 1.9459 × 10−1 for cases 1–4. Figure 10a has gradient information with a
value of 1.3996 ×10−2, Mu with a value of 50, and a sum square and Num parameter of
35.0944 and 26.8682, respectively, at epoch 1000. Figure 10b has gradient information with a
value of 8.6865 ×10−2, Mu with a value of 50,000,000,000.0001, and a sum square and Num
parameter of 7.0401 and 11.4182, respectively, at epoch 245. Figure 10c has gradient infor-
mation with value 3.2655 ×10−3, Mu with value 5, and a sum square and Num parameter
of 19.1884 and 24.015, respectively, at epoch 1000. Figure 10a has gradient information with
a value of 2.9538×10−2, Mu with value 5, and a sum square and Num parameter of 36.0363
and 33.8784, respectively, at epoch 1000. The suggested model’s regression performance
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for cases 1–4 is shown in Figure 11a–d. A consistent pattern emerges from a study of all
the images, showing that, for the training, testing, and validation data sets, the correlation
values indicated by the letter "R" cluster closely around unity. An essential finding is that
the ANN design for the suggested model is highly precise, as evidenced by its closeness
to unity. The error histogram for the suggested model is shown in Figure 12a–d. Based
on these figures, it can be observed that the estimated values for cases 1–4 are related to
−0.3426, −0.1369, 0.08825, and 0.06399. The suggested fluid flow model’s convergence and
precision are demonstrated visually in these diagrams (Figure 12a–d) and Figure 13.

(a) (b)

(c) (d)

Figure 9. (a–d) Graphical view for illustration of best training performance for ANN-BR outcomes.

(a) (b)

Figure 10. Cont.
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(c) (d)

Figure 10. (a–d) Graphical view for illustration of training state for ANN-BR outcomes.

(a) (b)

(c) (d)

Figure 11. (a–d) Graphical view for illustration of regression performance for ANN-BR outcomes.
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(a) (b)

(c) (d)

Figure 12. (a–d) Graphical view for illustration of error histogram for ANN-BR outcomes.

Figure 13. NurRe−
1
2 with Pr.

7. Conclusions

An understanding of the effects of a Hall current and thermal radiation on the temporal
variation of hybrid nanofluid flow over a disk surface would be useful in the advancement
of thermal energy management and fluid dynamics using artificial intelligence and com-
putational optimizing myths such as neural networks and Bayesian processes. The Hall
current from the intervention of the magnetic field induces a Lorentz force, which alters the
velocity and temperature profile of the electrically conducting nanofluid. This interaction
helps enhance the ability to handle heat transfer actions and the flow of fluids. When a
flow is complex and it occurs over a disk, thermal radiation happens through the rotation
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of fluids and helps in cooling the system more and keeping the temperature levels fairly
constant. Finally, ANN-BRs are used on the reference data set to estimate the approximate
solutions of the hybrid nanofluid models.

• The obtained outcome proved that there was an increase in the both radial and
azimuthal velocity distribution for the Hall current number.

• In the case of the development of the external magnetic field consequences, radial
components diminished while the azimuthal velocity was lesser.

• An increase in heat transfer rate for M, Rd, and QE and a reduction in heat transfer
rate for Pr, Ec, and m occurred.

• The slip parameter increased the temperature distribution accompanied by the up-
surge.

• Heat transfer rate to a rotating disk can be accurately regulated with the help of
volume fractions ϕ1 and ϕ2 of energy-carrying nanoparticles.

• There are certain implications when involving thermal radiation and a Hall current
in the design and optimization of systems that involve hybrid nanofluids. Such
understanding can be useful in a range of industries, such as aerospace and automotive
engineering and renewable energy systems.
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Nomenclature

u,v,w Velocity components m.s−2 τe Electron collision time
z, ϕ, r Polar coordinates σ Electric conductivity of Sm−1

ν Kinematic viscosity m2.s−1 T Fluid temperature (K)
B0 Magnetic field strength N.m.A−1 M Magnetic field number
µ Dynamic viscosity kg.m−1.s−1 S Unsteadiness parameter
cp Specific heat capacity J.K−1.kg−1 Ω Disk rotating rate
θ Dimensionless parameter b Positive constant
qr Radiative heat flux W.m−2 c Stretching rate
g Swirling velocity flow T0 Origin temperature
f ′ Axial velocity flow Tre f Constant reference temperature
f Radial velocity flow pe Electron pressure
ϕ1 Volume fraction of CoFe2O4 ne Value of density of electrons
ϕ2 Volume fraction of Al2O3 m Hall current parameter
Ts Surface temperature µe Magnetic permeability
ωe Cyclotron frequency of electrons Sc Schmidt parameter
Rd Radiation parameter Pr Prandtl parameter
τ Heat capacity ratio DT Thermophoresis coefficient m2.s−1

Nur Nusselt number QE Heat source/sink number
Nb Brownian motion DB mass diffusivity m2.s−1

ω Rotating parameter Shr Sherwood number
Nt Thermophoresis number C Fluid cenentration
ρ Density of fluid kg.m−3 cp Specific heat capacity J.K−1.kg−1

J Current density Ec Eckert number
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