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Abstract: A local and a semi-local convergence analysis are presented for the Kurchatov-type method
to solve numerically nonlinear equations in a Banach space. The method depends on a real parameter.
By specializing the parameter, we obtain methods already studied in the literature under different
types of conditions, such us Newton’s, and Steffensen’s, and Kurchatov’s methods, the Secant method,
and other methods. This study is carried out under generalized conditions for first-order divided
differences, as well as first-order derivatives. Both in the local case and in the semi-local case, the
error estimates, the radii of the region of convergence, and the regions of the solution’s uniqueness
are determined. A numerical majorizing sequence is constructed for studying semi-local convergence.
The approach of restricted convergence regions is used to develop a convergence analysis of the
considered method. The new approach allows a comparison of the convergence of different methods
under a uniform set of conditions. In particular, the assumption of generalized continuity used to
control the divided difference provides more precise knowledge on the location of the solution as
well as tighter error estimates. Moreover, the generality of the approach makes it useful for studying
other methods in an analogous way. Numerical examples demonstrate the applicability of our
theoretical results.

Keywords: Kurchatov-type method; derivative-free method; local and semi-local convergence;
convergence ball; Banach space

1. Introduction

Many mathematical models that describe physical or technological processes require
solving nonlinear problems. These can include systems of nonlinear algebraic or transcen-
dental equations, nonlinear integral equations, nonlinear boundary value problems for
ordinary differential equations, and more complex problems described by nonlinear partial
differential equations. Generally, these problems are represented by an equation of the
form [1–3]

F(z) = 0. (1)

Here, F : D ⊂ B1 → B2 is a nonlinear operator, B1 and B2 denote Banach spaces, and D is
an open and convex set. Recall that Banach is a complete linear normed space, that is, a
linear space equipped with some norm such that every Cauchy sequence converges [4].
Moreover, the operator F : D → B2 is said to be Fréchet-differentiable at x ∈ D if there
exists a bounded linear operator A from D into B2 such that

lim
h→0

1
∥h∥∥F(x + h)− F(x)− A(h)∥ = 0.
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The linear operator A is denoted by F′(x), and is called the Fréchet derivative of F at x [4].
Furthermore, let {xn} be a sequence in B1. Then, a sequence {mn} ⊂ [0, ∞) for which

∥xn+1 − xn∥ ≤ mn+1 − mn for each n = 0, 1, 2, . . .

holds is a majorizing sequence for {xn} [4].
It is very rare to find an exact solution to such problems. Therefore, an important task

is the development and study of numerical methods for solving (1). Nonlinear problems
are usually solved by iterative methods, in particular, by methods with derivatives and
methods with divided differences.

The most widely used method for solving the nonlinear Equation (1) is Newton’s with
the quadratic convergence order [1,2]

z0 ∈ D,

zn+1 = zn − [F′(zn)]
−1F(zn), n ≥ 0. (2)

But it can be applied only for the differentiable operator F. If there are difficulties with the
calculation of the derivative, then we can apply the approximation of the derivative by the
first-order divided differences [3,5,6].

Definition 1. Let F be a nonlinear operator defined on a subset D of a Banach space B1 with values
in a Banach space B2, and let x, y be two points of D. A linear operator from B1 to B2 which is
denoted by [x, y; F] and satisfies the following conditions is called a first-order divided difference of
F at the points x and y:

(1) For all points, x, y ∈ D and x ̸= y

[x, y; F](x − y) = F(x)− F(y),

(2) If there exists a Fréchet derivative F′(x), then

[x, x; F] = F′(x),

For Fréchet-differentiable operators, the following equality holds:

[x, y; F] =
1∫

0

F′(x + t(y − x))dt.

One of the methods with divided differences is the Secant method [3,7]:

z−1, z0 ∈ D,

zn+1 = zn − [zn, zn−1; F]−1F(zn), n ≥ 0 (3)

with a convergence order that is equal to 1+
√

5
2 . The method of linear interpolation (Kur-

chatov method), such as Newton’s, has a quadratic convergence order and is described by
the formula [1,6]

z−1, z0 ∈ D,

zn+1 = zn − [2zn − zn−1, zn−1; F]−1F(zn), n ≥ 0. (4)

The order of convergence of method (4) is theoretically obtained under the assumption that
the first- and second-order divided differences of the nonlinear operator satisfy the classical
Lipschitz conditions. Derivative-free methods are often employed to solve nonlinear
problems involving a non-differentiable operator.
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In this article, we study the uniparametric family of Kurchatov-type methods

λ ∈ R, z−1, z0 ∈ D,

xn = (1 − λ)zn + λzn−1,

yn = (1 + λ)zn − λzn−1, An = [xn, yn; F],

and zn+1 = zn − A−1
n F(zn), n ≥ 0. (5)

It should be noted that by setting λ = 1 in method (5), the Kurchatov method (4) is obtained.
If λ = 0 and the operator F is differentiable, then we obtain the Newton method (2). Other
choices of λ are possible, leading to other methods [1,3,6].

Motivation for the paper.
There are certain restrictions limiting the applicability of (5). This method was pro-

posed in [6]. The local convergence was studied under the condition that F ∈ C4(D), while
the semi-local convergence was analyzed for a non-differentiable integral operator F. Let
us look at a toy example. Choose D = (−1.5, 1.5) and define the function f : D → R as

f (t) =

{
α1t3 log t4 + α2t5 + α3t4, for t ̸= 0

0, for t = 0,

where α1, α2, α3 ∈ R and satisfy α1 ̸= 0, α2 + α3 = 0. It follows based on the definition of f
that f (3)(t) is not continuous at t = 0 ∈ D. Consequently the results in [6] cannot assure
that lim

n→∞
zn = z∗, which denotes a solution to the equation f (t) = 0. However, method (5)

converges to the solution z∗ = 1 ∈ D, if, e.g., z−1 = 0.95, z0 = 1.05, α1 = 1, α2 = 1, and
α3 = −1. These observations indicate that the conditions in [6] can be replaced by new
ones that are weaker.

The convergence analysis in [6] uses conditions on F ∈ C(4)(D). But such derivatives
do not appear in the method.

Novelty of the paper.
The new local and the semi-local convergence analyses are shown using conditions

only on the operators which are present in method (5), that is to say F and its divided
difference of order one. The analysis is valid in the Banach space for operators more general
than an integral equation. The generalized continuity used to control the divided difference
allows for tighter estimates of ||zn − z∗|| as well as better knowledge on the location of the
solution z∗.

As can be seen in Sections 2 and 3, the developed approach is very general. Thus, it can
be used to extend the applicability of other methods along the same lines [4,8–15]. Another
advantage of this approach is that a comparison between different methods studied under
different conditions becomes possible.

This paper is structured as follows: We conduct a local and a semi-local convergence
analysis of method (5) under generalized conditions for first-order divided differences,
as well as first-order derivatives, using the approach of restricted convergence regions.
These results are presented in Sections 2 and 3, respectively. In both cases, the uniqueness
regions for the solution of the nonlinear problem are obtained. Furthermore, in Section 4,
we present numerical examples to demonstrate the reliability of the theoretical results. The
concept of our investigation is succinctly represented in Figure 1.
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convergence analysis of the method 

nonlinear problem 
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software implementation of the iterative method 
and verification of the applicability of theoretical results 

Figure 1. The concept of the investigation.

2. Local Convergence

The results of the local analysis are important, since they illustrate how difficult it is to
select initial points.

Certain real functions play a role in the local convergence analysis of method (5). The
notations U(x, r) and U[x, r] denote open and closed balls, respectively, centered at the
point x with the radius r. Let us set S = [0, ∞).

Define the functions g1 : S → S and g2 : S → S as

g1(t) = (|1 − λ|+ |λ|)t and g2(t) = (|1 + λ|+ |λ|)t. (6)

Suppose the following:

(C1) There exists the function ω0 : S × S → S, which is continuous on S × S and strictly
increasing in both variables such that equation ω0(g1(t), g2(t))− 1 = 0 has at least
one positive root. We denote using ρ0 the smallest such root and set S0 = [0, ρ0).

(C2) There exists the function ω : S0 × S0 → S, which is continuous on S0 × S0 and strictly
increasing in both variables such that for function h : S0 → S, given by

h(t) =
ω(t + g1(t), g2(t))

1 − ω0(g1(t), g2(t))
(7)

equation h(t)− 1 = 0 has at least one root in the interval (0, ρ0). We denote using r∗

the smallest such root and set S1 = [0, r∗).
It follows according to these definitions that for each t ∈ S1,

0 ≤ ω0(g1(t), g2(t)) < 1 (8)

and
0 ≤ h(t) < 1. (9)

The parameter r∗ is shown to be a radius of convergence for method (5) in Theorem 1.
Define the parameter

ρ∗ = max{|1 − λ|+ |λ|, |1 + λ|+ |λ|}r∗. (10)

There is a connection between the real functions ω0 and ω and the operators in
method (5).
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(C3) There exists a solution z∗ ∈ D to the equation F(z) = 0, L ∈ L(B1, B2) such that
L−1 ∈ L(B2, B1) and

∥L−1([x, y; F]− L)∥ ≤ ω0(∥x − z∗∥, ∥y − z∗∥)

for each x, y ∈ D. Set D0 = D ∩ U(z∗, ρ0).
(C4) ∥L−1([x, y; F]− [z, z∗; F])∥ ≤ ω(∥x − z∥, ∥y − z∗∥) for each z, y, x ∈ D0.
(C5) U(z∗, ρ∗) ⊂ D0.

Remark 1.
(1) Some popular selections, but not necessarily the most flexible for the operator, are L = I

or L = F′(x̄), or in particular, L = F′(z∗), where x̄ is an auxiliary point. In the case of
L = F′(z∗), the solution z∗ is simple. However, this assumption is not made or implied by the
conditions (C1)–(C5). Consequently, our results can be used to find solutions to multiplicity
greater than one using method (5).

(2) The proof of Theorem 1 that follows shows that the condition (C4) can be replaced by
(C′

4) ∥L−1([x, y; F] − [z, z∗; F])∥ ≤ ω(∥x − z∥, ∥y − z∗∥) for each y, x ∈ D1 and
z = zn+1 = zn − A−1

n F(zn), z ∈ U(z∗, ρ0), where ω is as ω. In this case, ω ≤ ω
and the results are more precise. However, the condition (C′

4) is verified only in special cases.

Next, the local convergence of method (5) relies on the conditions (C1)–(C5) and the
preceding notation.

Theorem 1. Suppose that conditions (C1)–(C5) hold and choose z0, z−1 ∈ U(z∗, r∗) such that
z0 ̸= z−1. Then, for x0 = (1 − λ)z0 + λz−1 and y0 = (1 + λ)z0 − λz−1, the sequence {zn}
generated by method (5) is well defined in U(z∗, r∗) for each n = 0, 1, . . . and converges to the
solution z∗ ∈ U(z∗, r∗) of the equation. Moreover, the following error estimates hold for each
n = 0, 1, . . .:

∥zn+1 − z∗∥ ≤ ω(∥zn − z∗∥+ ∥xn − z∗∥, ∥yn − z∗∥)
1 − ω0(∥xn − z∗∥, ∥yn − z∗∥) ∥zn − z∗∥ (11)

< h(r∗)∥zn − z∗∥ = ∥zn − z∗∥ < r∗.

Proof. The estimate (11) is shown through mathematical induction. According to hypothesis
z0, z−1 ∈ U(z∗, r∗). We can write, in turn, that

x0 − z∗ = (1 − λ)z0 + λz−1 − z∗ = (1 − λ)(z0 − z∗) + λ(z−1 − z∗),

so
∥x0 − z∗∥ ≤ |1 − λ|∥z0 − z∗∥+ |λ|∥z−1 − z∗∥ = (|1 − λ|+ |λ|)r∗ ≤ ρ∗. (12)

Similarly, we obtain

∥y0 − z∗∥ ≤ (|1 + λ|+ |λ|)r∗ ≤ ρ∗. (13)

Thus, according to condition (C5), we have y0, x0 ∈ U[z∗, ρ∗]. Notice that y0 ̸= x0,
since z0 ̸= z−1. Thus, the divided difference A0 is well defined. Next, we show that
A0 = [x0, y0; F] is invertible.

Using (6), (8), (12) and (13) and condition (C3), we determine, in turn, that

∥L−1(A0 − L)∥ ≤ ω0(∥x0 − z∗∥, ∥y0 − z∗∥) ≤ ω0(ρ
∗, ρ∗) < 1. (14)

The Banach Lemma on invertible linear operators [4] and (14) implies that A−1
0 ∈

L(B2, B1) and

∥A−1
0 L∥ ≤ 1

1 − ω0(∥x0 − z∗∥, ∥y0 − z∗∥) . (15)
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Moreover, the iterate z1 is well defined by the third substep of method (5) for n = 0.
We need to show that z1 ∈ U(z∗, r∗) and (9) holds if n = 0. The third substep of
method (5) gives

z1 − z∗ = z0 − z∗ − A−1
0 F(z0) = A−1

0 (A0 − [z0, z∗; F])(z0 − z∗). (16)

According to (8)–(11), (15) and (16) and conditions (C3) and (C4), we determine, in
turn, that

∥z1 − z∗∥ ≤ ∥A−1
0 L∥∥L−1(A0 − [z0, z∗; F])∥∥z0 − z∗∥

≤ ω(∥x0 − z0∥, ∥y0 − z∗∥)
1 − ω0(∥x0 − z∗∥, ∥y0 − z∗∥)∥z0 − z∗∥

≤ ω(∥z0 − z∗∥+ ∥x0 − z∗∥, ∥y0 − z∗∥)
1 − ω0(∥x0 − z∗∥, ∥y0 − z∗∥) ∥z0 − z∗∥ (17)

< h(r∗)∥z0 − z∗∥ ≤ ∥z0 − z∗∥ < r∗

showing that (11) if n = 0 and the iterate z1 ∈ U(z∗, r∗), where we used

∥x0 − z0∥ ≤ ∥x0 − z∗∥+ ∥z0 − z∗∥.

The preceding calculations can be repeated simply by exchanging z−1, z0, A0 with
zm−1, zm, Am, respectively, where m is a natural number. So, we obtain

∥zm+1 − z∗∥ ≤ ω(∥xm − zm∥, ∥ym − z∗∥)
1 − ω0(∥xm − z∗∥, ∥ym − z∗∥)∥zm − z∗∥

≤ ω(∥zm − z∗∥+ ∥xm − z∗∥, ∥ym − z∗∥)
1 − ω0(∥xm − z∗∥, ∥ym − z∗∥) ∥zm − z∗∥ (18)

< h(r∗)∥zm − z∗∥ = ∥zm − z∗∥ < r∗

which completes the induction for (11) and also shows that the iterate zm+1 ∈ U(z∗, r∗).
Finally, according to (18), there exists α ∈ [0, 1) such that

∥zm+1 − z∗∥ ≤ α∥zm − z∗∥ ≤ αm+1∥z0 − z∗∥ < r∗. (19)

Consequently, according to (19), we conclude that the iterate zm+1 ∈ U(z∗, r∗) and
lim

m→∞
zm = z∗.

A region is determined in the next result which contains only z∗ as a solution to the
equation F(z) = 0.

Proposition 1. Suppose the following:

(a) The condition (C3) holds in U(z∗, r1) for some r1 > 0.
(b) There exists r2 ≥ r1 such that

ω0(r2, 0) < 1. (20)

Set D1 = D ∩ U[z∗, r2].

Then, the only solution to the equation F(z) = 0 in the region D1 is z∗.

Proof. Suppose that there exists x̃ ∈ D1, solving the equation F(z) = 0, and z̃ ̸= z∗. It
follows that the divided difference M = [z̃, z∗; F] is well defined. Then, according to (a)–(b),
we obtain

∥L−1(M − L)∥ ≤ ω0(∥z̃ − z∗∥, 0) ≤ ω0(r2, 0) < 1. (21)
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Then, according to (21) and the Banach Lemma on invertible linear operators, we
determine that M−1 ∈ L(B2, B1). Thus, from the identity

z̃ − z∗ = M−1(F(z̃)− F(z∗)) = M−1(0 − 0) = M−1(0) = 0,

we determine that z̃ = z∗.

Remark 2. Clearly, if all the conditions (C1)–(C5) hold in Proposition 1, then we can certainly
choose r1 = r∗.

3. Semi-Local Convergence

This analysis uses majorizing sequences [3,4] developed to control the iterate {zn}.
The conditions and computations are similar to the local analysis of method (5). But

the roles of z∗, ω0, and ω are exchanged with z0, v0, and v, respectively, where v0 and v are
real functions.

Suppose the following:

(H1) There exists the function v0 : S × S → S, which is continuous on S × S and nonde-
creasing in both variables such that equation v0(g1(t), g2(t))− 1 = 0 has at least one
positive root. We denote using R0 the smallest such root. Set S2 = [0, R0).

(H2) There exists the function v : S2 × S2 → S, which is continuous on S2 × S2 and
nondecreasing in both variables. Define the sequence {an} for a−1 = 0, a0 ≥ 0,
a1 ≥ a0, and each n = 0, 1, . . . as

an+2 = an+1 +
v(an+1 − an + |λ|(an − an−1), |λ|(an − an−1))

1 − v0(|1 − λ|an + |λ|an−1|, |1 + λ|an + |λ|an−1)
(an+1 − an). (22)

The sequence {an} shall be shown to be majorizing for {zn} in Theorem 2. But first, a
general convergence condition is given for the sequence {an}.

(H3) There exists R ∈ [0, R0) such that for each n = 0, 1, . . .,

v0(|1 − λ|an + |λ|an−1|, 1 + λ|an + |λ|an−1) < 1 and an ≤ R0.

It follows based on the initial conditions that a−1 ≤ a0 ≤ a1. Then, according to
(22) for n = 0, the condition (H3), and the hypothesis that the functions v0 and v are
nondecreasing in each variable, it follows that a1 ≤ a2. Suppose that am ≤ am+1 for all
integers m = 0, 1, 2, . . . , n. Then, according to the same hypothesis about the functions
v0 and v and (H3), it follows that am+1 ≤ am+2, which completes the induction for

0 ≤ an ≤ an+1 ≤ R0

and there exists a∗ ∈ [0, R0] such that

lim
n→+∞

an = a∗.

There is a connection between the real functions v0 and v and the operators in
method (5).

(H4) There exists a point z0 ∈ D, L ∈ L(B1, B2) such that L−1 ∈ L(B2, B1) and

∥L−1([x, y; F]− L)∥ ≤ v0(∥x − z0∥, ∥y − z0∥).

Let z−1, z0 ∈ D. Then take ∥z0 − z−1∥ ≤ a0. We can write, based on the first two
substeps of method (5),

xn − z0 = (1 − λ)zn + λzn−1 − z0 = (1 − λ)(zn − z0) + λ(zn−1 − z0),

∥xn − z0∥ ≤ |1 − λ|∥zn − z0∥+ |λ|∥zn−1 − z0∥ ≤ (|1 − λ|+ |λ|)a∗
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and similarly,

∥yn − z0∥ ≤ |1 + λ|∥zn − z0∥+ |λ|∥zn−1 − z0∥ ≤ (|1 + λ|+ |λ|)a∗

provided that these iterates exists and belong in U(z0, γ).
In particular, for n = 0, the condition (H4) gives

∥L−1(A0 − L)∥ ≤ v0((|1 − λ|+ |λ|)a∗, (|1 + λ|+ |λ|)a∗) < 1.

Hence, A−1
0 ∈ L(B2, B1) and the iterate z1 is well defined by the third substep of

method (5). Let us choose a1 ≥ a0 + ∥A−1
0 F(z0)∥.

Set D3 = D ∩ U(z0, R0).
(H5) ∥L−1([x, y; F]− [z, u; F])∥ ≤ v(∥x − z∥, ∥y − u∥) for each y, x, z, u ∈ D3.

and
(H6) U(z0, γ) ⊂ D3, where γ = max{|1 − λ|+ |λ|, |1 + λ|+ |λ|}a∗.

Remark 3. As in the local convergence analysis, possible choices for L = I or L = F′(z0) or
L = [u1, u2; F], where u1, u2 are auxiliary points with u1 ̸= u2, the last choice can be taken in the
case when the operator F is not necessarily differentiable.

The main semi-local convergence analysis of method (5) follows.

Theorem 2. Suppose that the conditions (H1)–(H6) hold. Then, the sequence {zn} generated by
method (5) is well defined in U(z0, a∗) and remains in U(z0, a∗) for each n = 0, 1, . . ., and there
exists a solution z∗ ∈ U[z0, a∗] such that the sequence {zn} converges to z∗ and

∥zn − z∗∥ ≤ a∗ − an. (23)

Proof. Mathematical induction is used to establish the estimate

∥zm+1 − zm∥ ≤ am+1 − am (24)

for each m = −1, 0, . . .. Estimate (24) holds for m = −1, 0 based on the initial conditions
∥z0 − z−1∥ ≤ a0 < a∗ and ∥z1 − z0∥ = ∥A−1

0 F(z0)∥ ≤ a1 − a0 < a∗. Moreover, we
determine that the iterates z1, z−1 ∈ U(z0, a∗). According to the arguments below the
condition (H3), the iterates ym+1, xm+1 ∈ U(z0, γ).

We also have the estimate

∥L−1(Am+1 − L)∥ ≤ v0(∥xm+1 − z0∥, ∥ym+1 − z0∥) < 1.

Thus, A−1
m+1 ∈ L(B2, B1),

∥A−1
m+1L∥ ≤ 1

1 − v0(∥xm+1 − z0∥, ∥ym+1 − z0∥)
, (25)

and the iterate zm+2 is well defined by the third substep of method (5). Furthermore, based
on the condition (H6), the iterate zm+1 ∈ U(z0, a∗). Then, we can write, based on the third
substep of method (5),

F(zm+1) = F(zm+1)− F(zm)− Am(zm+1 − zm) = ([zm+1, zm; F]− Am)(zm+1 − zm)
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leading to

∥zm+1 − zm∥ ≤ ∥A−1
m+1L∥∥L−1F(zm+1)∥

≤ v(∥zm+1 − xm∥, ∥zm − ym∥)∥zm+1 − zm∥
1 − v0(∥xm+1 − x0∥, ∥ym+1 − x0∥)

≤ v(am+1 − am + |λ|(am − am−1), |λ|(am − am−1))(am+1 − am)

1 − v0(|1 − λ|am + |λ|am−1, |1 + λ|am + |λ|am−1)
(26)

≤ am+2 − am+1.

The induction for (24) is completed, and

∥zm+2 − z0∥ ≤ ∥zm+2 − zm+1∥+ ∥zm+1 − z0∥
≤ am+2 − am+1 + am+1 − a0 = am+2 − a0 ≤ a∗ − a0.

Hence, the iterate zm+2 ∈ U(z0, a∗). Therefore, the sequence {am} is majorizing for
{zm}. So, there exists z∗ ∈ U[z0, a∗] such that lim

m→+∞
zm = z∗. According to (26), we

obtained the estimate

∥L−1F(zm+1)∥ ≤ v(am+1 − am + |λ|(am − am−1), |λ|(am − am−1))(am+1 − am). (27)

If m → +∞ in (27), we conclude that F(z∗) = 0. Finally, from (24) and the triangle
inequality,

∥zm+i − zm∥ ≤ am+i − am, i = 0, 1, 2, . . . . (28)

Thus, by letting i → +∞ in (28), we deduce (23).

Next, a region is specified that contains only one solution.

Proposition 2. Suppose the following:

(i) The equation F(z) = 0 has a solution y∗ ∈ U(z0, R2) for some R2 > 0.
(ii) The condition (H3) holds in the ball U(z0, R2).
(iii) There exists R3 ≥ R2 such that

v0(R3, R2) < 1. (29)

Define the region D4 = D ∩ U[z0, R3].

Then, the only solution to the equation F(z) = 0 in the region D4 is y∗.

Proof. Suppose that the equation F(z) = 0 has a solution q ∈ D4 such that q ̸= y∗. Then,
the divided difference T = [q, y∗; F] is well defined. In view of the conditions (ii) and (29),
we determine, in turn, that

∥L−1(T − L)∥ ≤ v0(∥q − z0∥, ∥y∗ − z0∥) ≤ v0(R3, R2) < 1.

Hence, T is invertible.
Finally, from the identity

q − y∗ = T−1(F(q)− F(y∗)) = T−1(0) = 0,

we deduce that q = y∗.

Remark 4.
(i) Under the conditions (H1)–(H6), we can let y∗ = z∗ and R2 = a∗.
(ii) It follows from the proof of Theorem 2 that the iterates {zn} ⊂ U(z0, a∗ − a0).
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4. Numerical Examples

This section presents the results of verifying the convergence conditions of
theorems 1 and 2 for method (5) and shows the applicability of the considered method for
solving different nonlinear problems. The study was conducted for a nonlinear equation, a
system of nonlinear equations, a Hammerstein integral equation, and a boundary value
problem. These problems and similar ones are often used to test the applicability of iterative
methods (see [1,3,4]). The nonlinear Hammerstein integral equations are a special case
of Fredholm integral equations of the second kind and have a physical foundation, as
they originate from electromagnetic fluid dynamics.The experiments were conducted in
GNU Octave 7.3.0 software. The condition ∥zn+1 − zn∥ ≤ ε was used for stopping the
iterative process. The calculations were performed with ε = 10−8 (for problems 1 and 2)
and ε = 10−5 (for problem 3), and the norms ∥ · ∥∞ and ∥ · ∥C[a,b] were used.

Example 1. Consider the system of m nonlinear equations

Fi(z) =
m

∑
j=1

zj + ezi − 1 = 0, i = 1, . . . , m.

Here, B1 = B2 = Rm, D = (−1, 1)m ⊂ Rm and the exact solution is z∗ = (0, . . . , 0)T .

It is easy to see that the elements of the Jacobian matrix and the divided difference
matrix have the following forms:

F′(z)i,j =

{
ezi + 1, i = j,
1, i ̸= j,

and [x, y; F]i,j =

{
exi−eyi
xi−yi

+ 1, i = j,
1, i ̸= j.

Let us consider a local case and choose L = F′(z∗). Then, we have

F′(z∗)i,j =

{
2, i = j,
1, i ̸= j,

[F′(z∗)]−1
i,j =

{
α, i = j,
β, i ̸= j,

and L−1([x, y; F]− L) = L−1diag
{

ex1−ey1
x1−y1

− 1, . . . , exm−eym
xm−ym

− 1
}

. Therefore, we can write
that function ω0 and ω have the following forms:

ω0(∥x − z∗∥, ∥y − z∗∥) = (e − 1)∥L−1∥
2

(∥x − z∗∥+ ∥y − z∗∥)

and

ω(∥x − z∥, ∥y − z∗∥) = emin{1,ρ0}∥L−1∥
2

(∥x − z∥+ ∥y − z∗∥).

Let m = 25 and λ = 0.4. Then, ρ0 ≈ 0.2206, D0 ≈ U(z∗, 0.2206), r∗ ≈ 0.1111,
U(z∗, r∗) ≈ (−0.1111, 0.1111), ρ∗ ≈ max{0.1111, 0.2000} = 0.2000, U(z∗, ρ∗) ⊂ D0.

Table 1 shows results that are obtained for the initial approximations z0 = (0.1, . . . , 0.1)T

and z−1 = (0.11, . . . , 0.11). Method (5) converges at three iterations. Thus, error estimate (11)
holds for all n ≥ 0, and the sequence {zn}n≥−1 remains in U(z∗, r∗) and converges to an
exact solution.

Table 1. Error estimates (11) for Example 1.

n ∥zn+1 − z∗∥ Right Side of Estimate (11)

−1 1.0000 × 10−1 -
0 2.0480 × 10−4 3.4786 × 10−2

1 3.3397 × 10−9 2.4639 × 10−5

2 4.1561 × 10−14 4.0265 × 10−10
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Let us consider a semi-local case. Choosing L as L = [x0, y0; F], we obtain the following
functions:

v0(∥x − z0∥, ∥y − z0∥) =
e∥L−1∥

2
(∥x − z0∥+ ∥y − z0∥+ ∥x0 − z0∥+ ∥y0 − z0∥)

and

v(∥x − z∥, ∥y − u∥) = eκ0∥L−1∥
2

(∥x − z∥+ ∥y − u∥).

Let m = 25, λ = 0.2 and the initial approximations z0 = (0.1, . . . , 0.1)T ,
z−1 = (0.11, . . . , 0.11)T . Then, we determine that R0 ≈ 0.1784, D3 ≈ (−0.0785, 0.2784)m,
and κ0 = 0.2784, and the majorizing sequence

{an} = {0, 0.0100, 0.1098, 0.1221, . . . 0.1237},

converges to a∗ ≈ 0.1237. The convergence ball is U(z0, a∗) ≈ (−0.0237, 0.2237)m, and
γ ≈ max{0.1237, 0.1732} = 0.1732 and U(z0, γ) ≈ (−0.0732, 0.2732)m ⊂ D3.

Table 2 shows that the error estimates (23) hold for all n ≥ 0 and (24) holds for all
n ≥ −1. The sequence {zn}n≥−1 remains in U(z0, a∗) and converges to an exact solution.

Table 2. Error estimates (23) and (24) for Example 1.

n ∥zn+1 − z∗∥ a∗ − an+1 ∥zn+1 − zn∥ an+1 − an

−2 1.1000 × 10−1 1.2369 × 10−1 - -
−1 1.0000 × 10−1 1.1369 × 10−1 1.0000 × 10−2 1.0000 × 10−2

0 2.0480 × 10−4 1.3894 × 10−2 9.9795 × 10−2 9.9795 × 10−2

1 1.4398 × 10−9 1.5640 × 10−3 2.0480 × 10−4 1.2330 × 10−2

2 4.5643 × 10−15 3.4364 × 10−5 1.4398 × 10−9 1.5296 × 10−3

Example 2. Consider the nonlinear integral equation

F(z(t)) = z(t)− α

1∫
0

tsz3(s)ds = 0.

Here, B1 = B2 = C[0,1], α > 0 is some constant and the exact solution is z∗(t) = 0.

Then, we can write

F′(z(t))h(t) = h(t)− 3α

1∫
0

tsz2(s)h(s)ds

and

[x(t), y(t); F]h(t) = h(t)− α

1∫
0

ts
(

x2(s) + x(s)y(s) + y2(s)
)

h(s)ds.

Since z∗(t) = 0, then F′(z∗(t))h(t) = h(t) − 3α
1∫

0
ts(z∗(s))2h(s)ds = h(t) = Ih(t),

where I is the identity operator. In the local case, we obtain for L = F′(z∗(t)) the follow-
ing functions:

ω0(∥x − z∗∥, ∥y − z∗∥) = 2α(∥x − z∗∥+ ∥y − z∗∥)

and
ω(∥x − z∥, ∥y − z∗∥) = 2 min{1, ρ0}α(∥x − z∥+ ∥y − z∗∥).

Let us choose λ = 0.1 and α = 1. Then, ρ0 ≈ 0.2273, D0 ≈ U(z∗, 0.2273), r∗ ≈ 0.1708,
ρ∗ ≈ max{0.1708, 0.2050} = 0.2050, and U(z∗, ρ∗) ⊂ D0.
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Let us choose λ = 0.01 and α = 1. Then ρ0 ≈ 0.2475, D0 ≈ U(z∗, 0.2475), r∗ ≈ 0.1807,
ρ∗ ≈ max{0.1807, 0.1843} = 0.1843, and U(z∗, ρ∗) ⊂ D0.

To solve the integral equation, the quadrature method using Simpson’s rule with
h = 1

m was applied. The calculation was carried out for m = 50, α = 1, and λ = 0.1. The
initial approximations were z0(t) = 0.1t and z−1(t) = 0.1t + 0.01 for t ∈ [0, 1]. Table 3
shows that the error estimates (11) hold for all n ≥ 0, and the sequence {zn}n≥−1 remains
in U(z∗, r∗) and converges to an exact solution.

Table 3. Error estimate (11) for Example 2.

n ∥zn+1 − z∗∥ Right Side of Estimate (11)

−1 1.0000 × 10−1 —
0 4.0245 × 10−4 1.5167 × 10−2

1 1.0295 × 10−8 4.2258 × 10−6

2 2.6081 × 10−13 1.0769 × 10−10

3 6.6072 × 10−18 2.7281 × 10−15

Figure 2 shows the error value |z∗(t)− zn(t)| at each iteration. These graphs illustrate
the decrease in the error at each iteration and its distribution over the specified interval.
The maximum error values at each iteration are presented in Table 3.

Figure 2. Error for problem 2.

Let us consider a semi-local case and choose z0(t) = 0.1t, z−1(t) = 0.1t+ 0.01, t ∈ [0, 1],
L = [x0, y0; F]. Then, x0(t) = 0.1t + 0.01λ, y0(t) = 0.1t − 0.01λ, and

∥I − L∥ ≤ α
[
(0.1 + 0.01λ)2 + |(0.1 + 0.01λ)(0.1 − 0.01λ)|+ (0.1 − 0.01λ)2

]
= p.

Moreover, the values α and λ are chosen so that p < 1. As a result, we obtain the estimate

∥L−1∥ ≤ 1
1 − p

,
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and the functions

v0(∥x − z0∥, ∥y − z0∥) =
α(2 + |0.1 + 0.01λ|)

1 − p
(∥x − z0∥+ ∥y − z0∥)

+
α

1 − p
∥3z2

0 − x2
0 − y2

0 − x0y0∥

and
v(∥x − z∥, ∥y − u∥) = 3ακ0

1 − p
(∥x − z∥+ ∥y − u∥).

Let us choose λ = 0.1 and α = 1. Then, p = 0.030001, R0 ≈ 0.2099, D3 ≈ U(z0, 0.2099),
κ0 = 0.3099, a∗ ≈ 0.1213, γ ≈ max{0.1213, 0.1455} = 0.1455, and U(z0, γ) ⊂ D3.

Let us choose λ = 0.01 and α = 1. Then, p = 0.0300, R0 ≈ 0.2287, D3 ≈ U(z0, 0.2287),
κ0 = 0.3287, a∗ ≈ 0.1214, γ ≈ max{0.1214, 0.1238} = 0.1238, and U(z0, γ) ⊂ D3.

Table 4 shows that the error estimates (23) hold for all n ≥ 0 and (24) holds for all
n ≥ −1. The sequence {zn}n≥−1 remains in U(z0, a∗) and converges to an exact solution.
These results are obtained for α = 1, m = 50, and λ = 0.1.

Table 4. Error estimates (23) and (24) for Example 2.

n ∥zn+1 − z∗∥ a∗ − an+1 ∥zn+1 − zn∥ an+1 − an

− 2 1.1000 × 10−1 1.2128 × 10−1 – –
−1 1.0000 × 10−1 1.1128 × 10−1 1.0000 × 10−2 1.0000 × 10−2

0 4.0245 × 10−4 1.0882 × 10−2 1.0040 × 10−1 1.0040 × 10−1

1 1.0295 × 10−8 5.8292 × 10−4 4.0246 × 10−4 1.0299 × 10−2

2 2.6081 × 10−13 3.4152 × 10−6 1.0295 × 10−8 5.7951 × 10−4

3 6.6072 × 10−18 9.2440 × 10−10 2.6081 × 10−13 3.4143 × 10−6

Example 3. Consider the nonlinear boundary-value problem [4]{
u′′(t) = 2(u(t)− 0.5t + 1)3, 0 < t < 1,
u(0) = 0, u(1) = 0.

Here, B1 = B2 = C[0,1] and the exact solution is u∗(t) = 1
1+t +

1
2 t − 2.

Let ti = ih, i = 0, . . . , m, h = 1
m , and m be a natural number and denote θi ≈ u(ti),

i = 1, . . . , m − 1. To solve problem 3, we use the finite difference method. As a result, we
obtain the system of nonlinear equations F(z) = 0, where

Fi(z) = θi+1 − 2θi + θi−1 − 2h2(θi − 0.5ti + 1)3 = 0, i = 1, . . . , m − 1, θ0 = θm = 0

and z = (θ1, . . . , θm−1)
T .

The considered method (5) converges at five iterations for m = 100, λ = 0.5, and
ε = 10−5. The initial approximation z0 = u∗(t) − 0.5 and z−1 = u∗(t) − 0.51, t = ti,
i = 1, . . . , m − 1. Figure 3 shows the error value |u∗(ti) − θi|, i = 0, . . . , m at the last
iteration, max

i=0,...,m
|u∗(ti)− θi| ≈ 1.5021 × 10−5.

Example 4. Let B1 = B2 = R and D = (0, 2) and let F : Ω → R be defined by

F(z) = z3 − 1.

The exact solution for F(z) = 0 is z∗ = 1.
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Figure 3. Error for problem 3.

Let us show that the assumptions C1–C5 hold. We can write that F′(z) = 3z2 and
[x, y; F] = x2 + xy + y2. Let us choose L = F′(z∗). Next, we obtain

[x, y; F]− F′(z∗) = x2 + xy + y2 − 3(z∗)2 = x2 − (z∗)2 + y2 − (z∗)2 + xy − xz∗

+xz∗ − (z∗)2 = (x − z∗)(x + 2z∗) + (y − z∗)(x + y + z∗),

[x, y; F]− [z, z∗; F] = x2 + xy + y2 − z2 − zz∗ − (z∗)2 = x2 − z2 + xy − zy

+zy − zz∗ + y2 − (z∗)2

= (x − z)(x + z + y) + (y − z∗)(y + z + z∗),

Therefore,

ω0(|x − z∗|, |y − z∗|) = A0|x − z∗|+ B0|y − z∗|,

A0 = max
x∈D

|x + 2z∗|
3(z∗)2 , B0 = max

x,y∈D

|x + y + z∗|
3(z∗)2 ,

ω(|x − z|, |y − z∗|) = A|x − z|+ B|y − z∗|,

A max
x,y,z∈D0

|x + y + z|
3(z∗)2 , B = max

x,y∈D0

|x + y + z∗|
3(z∗)2 .

Let λ = 0.1. Then, g1(t) = t, g2(t) = 6
5 t, A0 = 4

3 , B0 = 5
3 , and

ω0(g1(t), g2(t))− 1 =
4
3

t + 2t − 1 =
10
3

t − 1 = 0.

The last equation has root ρ0 = 3
10 and D0 =

(
7
10 , 13

10

)
. Then, A = 13

10 , B = 6
5 , and the

equation h(t)− 1 = 0 has the form(
2A + 6

5 B
)
t

1 − 10
3 t

− 1 =
101
25 t

1 − 10
3 t

= 0.

The solution of this equation is r∗ = 75
553 , ρ∗ = max

{ 75
553 , 90

553
}
= 90

553 , and

U(z∗, ρ∗) =

(
463
553

,
643
553

)
⊂ D0.
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So, assumptions C1–C5 hold.

5. Conclusions

We have developed unified local and semi-local convergence of a family of Kurchatov-
type methods depending on one parameter for solving nonlinear operator equations under
generalized conditions in a Banach space. Moreover, we have studied the uniqueness
of the solution of the nonlinear Equation (1). Numerical examples that demonstrate the
applicability of our theoretical results are also provided. Some of the advantages of the
new approach are as follows:

• A comparison between different methods becomes possible, since their convergence is
studied under uniform conditions;

• The assumptions involve only the operators which are present in the method, in con-
trast to earlier studies using assumptions involving derivatives not in the
method [6,7,16–19];

• The generalized continuity assumption imposed on the divided difference leads to
better information on the location of the solution z∗ and fewer iterates to obtain the
error tolerance than before, since the bounds on ∥zn − z∗∥ are tighter;

• Finally, the generality of the new approach helps with the extension of the applicability
of other methods in a similar way [4,8–15]. This is the direction of our future research.
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