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Abstract: The intersection of fractals, non-Euclidean geometry, spatial autocorrelation,
and urban structure offers valuable theoretical and practical application insights, which
echoes the overarching goal of this paper. Its research question asks about connections
between graph theory adjacency matrix eigenfunctions and certain non-Euclidean grid
systems; its explorations reflect accompanying synergistic influences on modern urban
design. A Minkowski metric with an exponent between one and two bridges Manhattan
and Euclidean spaces, supplying an effective tool in these pursuits. This model coalesces
with urban fractal dimensions, shedding light on network density and human activity
compression. Unlike Euclidean geometry, which assumes unique shortest paths, Manhattan
geometry better represents human movements that typically follow multiple equal-length
network routes instead of unfettered straight-line paths. Applying these concepts to urban
spatial models, like the Burgess concentric ring conceptualization, reinforces the need
for fractal analyses in urban studies. Incorporating a fractal perspective into eigenvector
methods, particularly those affiliated with spatial autocorrelation, provides a deeper under-
standing of urban structure and dynamics, enlightening scholars about city evolution and
functions. This approach enhances geometric understanding of city layouts and human
behavior, offering insights into urban planning, network density, and human activity flows.
Blending theoretical and applied concepts renders a clearer picture of the complex patterns
shaping urban spaces.

Keywords: Burgess model; fractal; Manhattan metric; Minkowski metric; non-Euclidean geometry

1. Introduction
There is considerable interest in the fractal (e.g., [1]) dimensions (e.g., [2]) of networks

(e.g., [3–13]). Its sizeable literature has reached the critical mass that prompts academics
now to write comprehensive literature reviews about fractals for specialized areas (e.g., [14]),
including their use in urban planning (e.g., [15,16]). The same scenario is beginning to
emerge for their complexity theory relative too (e.g., [17]), sometimes with special emphasis
on such facets as urban morphology (e.g., [18]) and urban spatial complexity (e.g., [19]). In
addition, some of the literature addresses relationships between graph spectra and fractal
dimensions (e.g., [20,21]), a clue that one of its cognate scholastic fields is spatial autocor-
relation. Synthesizing and extending these ideas, Griffith and Arlinghaus [22] furnish a
brief history and a conceptual overview of the problem of geographic network space fractal
dimensions, and whether or not Euclidean geometry should capitulate to non-Euclidean
geometry (e.g., [23,24]) as the two-dimensional geometric space supporting geographical
theories. This paper furnishes foundational technical and theoretical sustenance for their
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conceptual framework, deferring a comprehensive literature review to those publications
already existing and cited in this paragraph.

A fractal may be defined as a set for which the Hausdorff–Besicovitch dimension
(e.g., [25]), which can be non-integer, strictly exceeds its topological dimension. Its precise
computation can be made with the box-counting method (e.g., [26]), which is applicable to
two-dimensional images as follows (after [27]):

Definition 1. For geographic/geometric resolution extent 1/2k, the argument in N(1/2k) denoting
a count of the minimum number of squares/boxes of side-length 2k needed to cover all of the lines
forming a two-dimensional image, the Hausdorff–Besicovitch dimension, d, is given by

d = limit
k→∞

LN
[

N
(

1/2k
)]

k LN(2)
,

where LN denotes the natural logarithm. The dimension d calculated as the solution to this limit is
always at least as large as its topological counterpart.

Manhattan (also known as city block or taxicab—a name coined by Karl Menger in
1952; e.g., [28–33]; also see [34]) geometry is a geometric model conceptually introduced in
the 19th century by two mathematicians, Lithuanian Hermann Minkowski (i.e., his concep-
tions of grid-based distance and metric systems laying its groundwork) and Hungarian
Frigyes Riesz; this latter scholar is credited with formalizing it as Lp—more specifically
L1—space, adopting linear algebra nomenclature. Manhattan geometry constitutes one
category of non-Euclidean geometry that replaces the Pythagorean theorem with a metric
that equals the sum of the absolute values of the differences (i.e., the distance exponent is 1,
the value of p)—rather than the square root of the sums of these differences squared, or
L2—between each pair of two-dimensional coordinates’ georeferencing points. Summing
the absolute differences of such point coordinate pairs along each of two orthogonal axes is
mathematically equivalent to the L1-norm in linear algebra (i.e., the sum of the absolute
values of a vector’s components), which aligns perfectly with measuring straight-path
distance while navigating the street grid of Manhattan, New York, spawning its name.
Moreover, the plane can have a square grid superimposed upon it, resulting in a regular
square grid of points. This geometric space may be defined as follows (e.g., [35]; after [36]):

Definition 2. A two-dimensional Manhattan space comprises n2 points (ui, vi), ui = 1, 2, . . ., n
and vi = 1, 2, . . ., n and i = (vi − 1)n + ui, forming an n-by-n regular square mesh grid, whose
mesh cell side linking pairs of nearby points measures exactly one separation unit apart, resulting
in a regular square tessellation plane geometry figure coupled with an attendant regular square
lattice graph. Similarly, central place geometry is non-Euclidean and also replaces the Pythagorean
theorem with a metric equaling the shortest path between two points along arcs of a hexagonal lattice.
This space may be defined as follows, encapsulating the preceding distance definition (see [37];
after [38,39]).

Definition 3. A two-dimensional central place geometric space comprises n2 points (ui, vi),
ui = 1, 2, . . ., n and vi = 1, 2, . . ., n and i = (vi − 1)(2n − 1)/2 + ui for odd vi and
i = vi(2n − 1)/2 − n + 1 + ui for even vi, forming a regular hexagonal n-by-n grid (e.g., even vj

integer rows of points are located at ui integer values, whereas odd vj integer rows of points are

replaced by their integer values times
(√

3
)

/2 and located at the midpoint between the integer ui

values), whose polygon side linking pairs of nearby points measures exactly one separation unit
apart, resulting in a regular hexagonal tessellation plane geometry figure coupled with an attendant
regular hexagonal lattice graph. These are only two of a variety of regular polygon possibilities
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(e.g., [40]), such as ones constructed with identical isosceles triangles or rhombuses with only
two distinct non-90◦ angles [41] (especially Figure 1). These two lattices are, respectively, related to
the two preceding ones, with Kurlin [41] (§5) formally defining their metrics (subject to prevailing
isometry, rigid motion, and similarity properties).
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Figure 1. Arterial network structure in the Lansing, MI, metropolitan region, 2009. Left (a): express-
ways. Middle (b): (a) plus highways. Right (c): (b) plus streets. 

  

Figure 1. Arterial network structure in the Lansing, MI, metropolitan region, 2009. Left (a): express-
ways. Middle (b): (a) plus highways. Right (c): (b) plus streets.

Consequently, the primary objective of this paper is to summarize results for unit-
square-based analyses upon which the density of a lattice grid increases. In doing so, it
engages the following research question: What can be said about the interface between
fractal dimensions, non-Euclidean metrics, and spatial autocorrelation eigenvectors?
Empirical examples motivate this exploration, and, in doing so, integrate fractals, non-
Euclidean geometric spaces (e.g., [42]), and spatial statistics. The fractal dimension
calculator utilized in this paper is the Fractalyse 2.4 software (NOTE: fractal dimensions
calculated for the following images supply a benchmark for comparative purposes: a
straight line, Sierpiński carpet, a Koch coastline, a Koch island, a Sierpiński gasket,
and a filled rectangle). It is a box-counting algorithm implementation for computing
fractal dimensions selected because (1) this research is broad and interdisciplinary,
suggesting that conceptually intuitive and easy-to-comprehend techniques are preferable,
and (2) more importantly, the real-world settings investigated in this paper together
with guidance from reality, which are the two crucial factors that should dictate tool
selection, suggest the use of this computational procedure, rather than the other way
around. This second point reflects a focus on the existing Chicago street layout (and the
geometric Burgess model it germinated), which mostly follows a grid pattern, and which
in turn aligns with the cells in the box-counting measurement. In contrast, spotlighting
neighborhood rather than transportation structure, for example, would have prompted
a computational procedure based upon spheres or circles, a fractal tool selection guided
by the general multiple nuclei model of Harris and Ullman, with special reference to
Chicago neighborhood compositions that exhibit adjacent well-defined polygons. In
other words, the adopted box-counting procedure constitutes a more customized tool fit
for both the chosen empirical conditions and their affiliated classic model description,
letting the geography of a situation be the choice guide.

In keeping with the aforementioned objective, the scope of this paper spans formal
mathematical results about actual as well as abstract two-dimensional networks that
are self-similar at different scales while possessing differing geometric and fractal di-
mensions, supplementing simpler rectangular with more complicated hexagonal lattice
configurations, ultimately relating fractal dimensions to network graph adjacency matrix
principal eigenvectors as well as salient facets of spatial autocorrelation. Accordingly,
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it addresses complexity issues by exploiting an analytical framework for studying and
understanding urban spatial structures that are made up of interacting fractal, non-
Euclidean metric, and spatial autocorrelation mechanisms, where the collective behavior
of these three ingredients is often surprising, unpredictable, and not easily reducible
to the sum of their individual analysis findings (see [43–47]). Therefore, the important
contribution made here concerns the interplay between systematic spatial trends and
fractal geometry that together can generate certain spatial autocorrelation patterns, and,
in some cases, a higher fractal dimension, which in turn can indicate more complex
spatial organizations, which then might show yet higher levels of spatial autocorrelation,
jointly yielding a better understanding of relationships between these two concepts, an
important goal of science.

2. Empirical Evidence
Analysis of selected real-world transportation networks and surface partitionings

yields empirical evidence implying that physical space is non-Euclidean in nature.
Griffith et al. [48] analyze minimum network paths between selected points in the hierar-
chical set of expressways, highways, and streets for the Lansing, MI, metropolitan region
(Figure 1) and minimum network paths between all stations in four selected limited-
access urban mass-transit rail networks (Figure 2)—namely, Pittsburgh, Dallas–Ft. Worth,
Toronto, and Washington, DC—and find that, based upon estimated Minkowski metric
function parameters, the Manhattan metric L1-norm provides the best characterization
of these minimum paths. Execution of this exercise involved a nonlinear regression of
inter-point distances, the response variable, on the distance formula with given (ui, vi),
i = 1, 2, . . ., n, coordinates and unknown exponent parameters; the number of ob-
servations was the number of distance pairs, namely n(n + 1)/2. Furthermore, the
restricted-access expressway distance formula yielded an exponent estimate that more
closely resembles a Manhattan metric (i.e., it is relatively close to one), whereas the
estimated distance expression for the combination of all three types of roads is approxi-
mately the midpoint between a Manhattan and a Euclidean metric (i.e., it is relatively
close to 1.5). These researchers supplement their exploratory work with an analysis of
minimum paths between residential houses and arterial road exits in two limited-access
neighborhoods (Figure 3) located in the Lansing, MI, metropolitan region—namely,
Whitehills and Bailey—and obtain the same implications.
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Figure 2. Mass-transit rail systems. Left (a): Pittsburgh light rail T. Left middle (b): Toronto subway
system. Right middle (c): Dallas–Ft. Worth DART. Right (d): Washington, DC, subway.

The centroids of selected surface partitionings were used to construct dual graphs for
these polygons. In order to improve network type coverage, five ideal planar graphs—namely,
a straight line with endpoints, a triangle, a K4 complete planar graph, a balloon graph, and a
dodecahedral graph—supplement these empirical surface dual graphs.
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Figure 3. Lansing, MI, limited-access residential neighborhoods; small gray dots denote houses, and
large gray dots denote arterial road exit locations. Left (a): Whitehills. Right (b): Bailey.

3. Manhattan Space: Infill Asymptotics
One of the simplest forms of a Manhattan space is a square with four points. If these

points and the four links among them align with the borders and corners of a unit square,
Manhattan spaces can be created by—usually simultaneously and symmetrically—adding
more vertical and horizontal lines between these border linkages. As the number of lines
increases infinitely, the resulting Manhattan space lattice grid gradually converges to a fully
filled-in unit square (Figure 4).
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3.1. Lattice-Based Matrix Algebra Results

The regular square lattice graph representation of a Manhattan space is reminiscent
of regular square tessellations appearing in spatial statistics (e.g., remotely sensed image
pixels and experimental agricultural field plots). Consequently:

Lemma 1. A planar graph that is a regular square lattice of n2 points forming an n-by-n square
region has the principal eigenvalue for its corresponding 0–1 binary adjacency matrix (with diagonal
values of 0) of λ1 = 4COS[π/(n + 1)].

Proof. See [49]. □

The inverse of this eigenvalue denotes the maximum value of positive spatial autocor-
relation for a feasible spatial autoregressive model, namely 1/4.

Lemma 2. limit
n→∞

4COS[π/(n + 1)] = 4.

Proof. As n approaches infinity, π/(n + 1) approaches 0.

COS(0) = 1
4 × 1 = 4. □

In other words, the principal eigenvalue of the adjacency matrix, C, for a Manhattan
space lattice has an upper bound of 4. This quantity coincides with the Manhattan space
infill asymptotic result of a fractal dimension of 2.

Lemma 3. If n = 2, then λ1 = 2.

Proof. Matrix C =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


The sum of each row is 2. By the Perron–Frobinius theorem, λ1 = 2. □

Moreover, the smallest fractal dimension for a Manhattan space, which has to be at
least 1, coincides with a principal eigenvalue of 2.

3.2. Lattice-Based Fractal Dimension Results

Griffith and Arlinghaus [22] outline the conceptual basis for establishing the fractal
dimension of a given n-by-n Manhattan space lattice. The numerical relationship between
n and its corresponding fractal dimension, calculated with Fractalyse, may be summarized
as follows:

limit
k→∞

fLN
[
22k, N

(
2k+1 − n

)]
kLN(2)

≈ 2 − 17.59249

(n + 50.40103)0.89149−0.26173
√

n+2.86705
(1)

where 22k and N(2k+1 − n) are box-counting results, and fLN denotes the presence of a
logarithm in the function. The nonlinear least squares estimation of Equation (1), regressing
the estimated fractal dimension (i.e., Y) on its corresponding value of n (i.e., X)—based upon
the first 25,000 values of n supplemented with every 25,000th one thereafter to 1,000,000,
and representing infinity by 1032—has the following diagnostics associated with it (from a
nonlinear regression analysis):
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Error sum of squares (ESS) = 0.00033 ≈ 0
Relative prediction error sum of squares (PRESS/ESS) = 1.01529
R2 > 0.99999 ≈ 1
Bivariate regression coefficients: (intercept) a = 0.00062 ≈ 0, (slope) b = 0.99967 ≈ 1

Equation (1) furnishes an extremely good description of the range of fractal dimensions,
from n = 2 to n = ∞. It approximates the closed form of the logarithm of the N(k) function
that is a mixture of 22k and LN[N(2k+1 − n)] counts. It gives the following out-of-sample
estimates of the fractal dimension:

n Fractal dimension Equation (1)
45 1.641 1.641

250 1.883 1.881
350 1.911 1.908
500 1.929 1.932

1000 1.934 1.962

These results highlight two features of the analysis. First, Fractalyse is sensitive to the
image grayscale and resolution, and consequently has an increasingly challenging task of
accurately estimating a dimension as the density of Manhattan space lines increases with
increasing asymptotics. Second, the difference for n = 1000 (i.e., 1,000,000 vertices on the
square lattice grid graph) is rather small, implying that the detected box-counting bias is
not excessive.

Because the software is slightly sensitive to grayscale and resolution characteristics,
this analysis does not measure the space-filling nature of one-dimensional lines without
thickness. However, it appears to measure space-filling by slender, but not truly one-
dimensional, line segments. Thus, one should not expect results from the software to exactly
match results from direct mathematical calculations based on suitably scaled generators
applied to basic patterns to create an infinite hierarchy of form. Nonetheless, because
Fractalyse does measure space-filling of lines of varying thickness, it appears to have utility
in application where, for example, real-world lines such as roads fill space in a number of
ways. Hadzieva et al. [50] assess it and then label it a sufficiently professional, reliable, and
consistent software tool to be used for research purposes.

4. Central Place Space: Infill Asymptotics
Arlinghaus [51] shows that scaled hexagonal nets, in one orientation, have

Hausdorff–Besicovitch dimension LN(2)/LN(
√

3), representing their space-filling character
by one-dimensional lines as an infinite process. Different net orientations produce different
dimensions. A direct mathematical procedure for a complete characterization of this infi-
nite process, independent of image grayscale or resolution characteristics, appears in her
1985 paper, with a follow-up in Arlinghaus and Arlinghaus [52] of a more detailed proof of
method and solutions to existing open questions involving uniqueness. Subsequent works
address a variety of related matters, including the use of square nets. Some of these issues
appear in the ensuing planning application (see Section 7.2) in this article.

The simplest central place space comprises nine hexagons forming a square region.
As for the preceding Manhattan space analysis, central place spaces can be constructed that
involve an increasing number of horizontal and vertical sets of points occurring between
the landscape defined by these original hexagons. As the number of smaller hexagons
approaches infinity, the central place space lattice, as measured in Fractalyse, also converges
on a filled-in unit square (Figure 5).
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4.1. Lattice-Based Matrix Algebra Results

This section summarizes an analysis of square-shaped regions of hexagonal tessella-
tions, beginning with a 3-by-3, and ending with a 74-by-74.

Lemma 4. For a hexagonal lattice, limit
n→∞

λ1= 6.

Proof. Each interior node in a hexagonal lattice has six neighbors. As this lattice increases
in size to infinity, every row sum of its adjacency matrix becomes 6. By the Perron–Frobinius
theorem, λ1 = 6. □

Alternatively, mapping the hexagonal grid onto a torus (e.g., [53]), creating a hexagonal
mesh toroid, and taking this topological object to an infinite size while preserving the
coverage of its individual regular hexagons achieves the same outcome. In other words,
the principal eigenvalue of the adjacency matrix, C, for a central place space lattice has an
upper bound of 6. This coincides with the Manhattan space infill asymptotic result of a
fractal dimension of 2.

Griffith [54,55] presents approximation equations for the principal eigenvalue of the
0–1 binary adjacency matrix for the hexagonal lattice. Updates for these equations when
the landscape forms a square-shaped region geographic landscape are as follows:

r̂ = 146.70990
[
1 − 2(84.12680)/(n + 164) + 730.66271/

(
n + 14)2]

ˆ
λ1(planar) =

{[
2(2r) + n(3r)2(n − 2)(4r) + (n − 2)(5r) +

(
n − 2)2(6r)

]
/n2}1/r

(2)

and
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λ̂1(torus) = (1.01812)(4)

COS

 π

n+
(√

3
)

/2

+

(
3− 2(1.01812)

4

)
(4)

COS

 π

n+
(√

3
)

/2

+COS2

 π

n+
(√

3
)

/2

 . (3)

These two approximations enable an extension of the analysis in this section beyond
n = 74, a constraint arising from restrictions on PC computer resources needed to calculate
the principal eigenvalue. Both approximations converge on 6 in their respective limits

4.2. Lattice-Based Fractal Dimension Results

The numerical relationship between n and its corresponding fractal dimension for a
central place landscape, calculated with Fractalyse, may be summarized as

≈ 2 − 5.20451(
n + 24.16895)0.73080−0.41160/

√
n+1.67932

. (4)

This equation is similar to Equation (1) in structure. The nonlinear least squares estimation
of Equation (4), regressing the estimated fractal dimension (i.e., Y) on its correspond-
ing value of n (i.e., X)—based upon values of n between 3 and 74 coupled with infinity,
represented by 1032—has the following diagnostics associated with it (from a nonlinear
regression analysis):

Nonlinear relative error sum of squares (RESS) = 0.00003 ≈ 0
Prediction error sum of squares (PRESS)/ESS = 1.28926
R2 > 0.99999 ≈ 1
Bivariate regression coefficients: (intercept) a = 0.00000, (slope) b = 1.00000
Probability (Shapiro–Wilk normality diagnostic for regression residuals) = 0.7318
=⇒ tFail to reject a null hypothesis of normality
The structure of Equations (1) and (4) qualitatively is the same. One difference is that the
4-by-4 graph is the smallest one used to estimate this latter equation (NOTE: the 3-by-
3 graph failed to yield consistent fractal dimension estimates; the estimated dimension
for n = 3 is 1.127, which better aligns with the other dimension estimates than the value
of 1.221 produced by Fractalyse, with other selected out-of-sample predictions being very
close to their calculated dimensions by Fractalyse—n = 100, 1.814 versus 1.81352; n = 200,
1.882 versus 1.88376; and, n = 400, 1.917 versus 1.92868).

5. Relationships Between Fractal Dimensions and Principal Eigenvalues
of Adjacency Matrices

The preceding sections reveal that a near-perfect correspondence exists between the
size of a square or hexagonal lattice, measured in terms of the number of nodes in its graph,
n2, and both its fractal dimension and its principal eigenvalue. These findings imply that a
relationship should exist between these two features of a graph too.

5.1. Manhattan Space

The following conjecture posits a relationship between the fractal dimension of Man-
hattan space and the eigenvalues of a regular square (i.e., planar) lattice:
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Conjecture 1. If a two-dimensional finite Manhattan space forms an n-by-n regular square
tessellation on a planar surface, with each of the n2 points of its associated grid constituting a planar
graph node, then the fractal dimension, d, of this space is approximated by

1 − 6.13737[
4.0000218.81029−λ18.81029

1 (planar)]1/18.81029 + 1995

[
λ2.202570

1 −λ2.20257
1 (planar)]1/2.20257

n1.64332+19468 +

6.13737
(4.0000218.81029− λ18.81029

1 )1/18.81029 ,
(5)

where λ1 is from Lemma 1, its asymptotic value of 4 is from Lemma 2, and
λ1(planar) = 2COS

[
π /

(
n2 + 1

)]
, the principal eigenvalue for a line graph with n2 nodes.

Evidence 1. Figure 6 presents scatterplots affiliated with Equation (5). Figure 6a portrays the
overlay of the relationships between the fractal dimension and λ1, and the predicted fractal dimension
and λ1. Figure 6b portrays the relationship between the box-counting fractal dimension determined
by Fractalyse and the fractal dimension predicted by Equation (5). In addition (from a nonlinear
regression analysis):

Nonlinear relative ESS (RESS) = 0.00077 ≈ 0
Relative prediction error sum of squares (PRESS/ESS) = 1.04456
Pseudo-R2 = 0.9992 ≈ 1
Bivariate regression coefficients: (intercept) a = 0.00163 ≈ 0, (slope) b = 0.99909 ≈ 1
The graphical depiction of Equation (5) resembles a left-truncated sinusoidal random variable distribu-
tion, which the powered difference entry in the denominator of its first and third terms reflects.
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Equation (5) has two noteworthy properties. First, regardless of the size of a line
graph, its calculation yields the correct dimension of 1. Second, its asymptotic dimension is
constrained to be 2 for λ1 = 4 (Lemma 2).

The principal implications here are as follows:

(1) As n increases, the delineated space converges on a bounded Euclidean plane by
becoming increasingly filled; and,

(2) The finite Manhattan space fractal dimension relates to the corresponding regular
lattice planar graph principal eigenfunction.

One higher-order implication is that an undeniable bond exists between fractals and spatial
autocorrelation (e.g., [56]).
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5.2. Central Place Space

The following conjecture posits a relationship between the fractal dimension of central
place space (e.g., see [57,58]) and the eigenvalues of a regular hexagonal lattice:

Conjecture 2. If a two-dimensional finite central place space forms an n-by-n planar regular
hexagonal tessellation, with each of the n2 points of its associated grid constituting a planar graph
node, then the fractal dimension, d, of this space is approximated by

1 − 12.26546[
6.0001519.17466−λ19.17466

1 (planar)]1/19.17466 + 1004

[
λ0.36328

1 −λ0.36328
1 (planar)]1/0.36328

n1.22959+681 +

12.26546
(6.0001519.17466−λ19.174666

1 )1/19.17466 ,

(6)

where the asymptotic value of 6 for λ1 is from Lemma 4, λ1 is the average of Equations (2) and (3)
for values of n > 74, and λ1(planar) = 2COS

[
π /

(
n2 + 1

)]
.

Evidence 2. Figure 7 presents scatterplots affiliated with Equation (6). Figure 7a portrays the
overlay of the relationships between the fractal dimension and λ1, and the predicted fractal dimension
and λ1. Figure 7b portrays the relationship between the box-counting fractal dimension determined
by Fractalyse and the fractal dimension predicted by equation (6). In addition (from a nonlinear
regression analysis):

Nonlinear RESS = 0.00000
Relative prediction error sum of squares (PRESS/ESS) = 1.03186
Pseudo-R2 = 0.99999 ≈ 1
Bivariate regression coefficients: (intercept) a = 0.00080 ≈ 0, (slope) b = 0.99956 ≈ 1
The graphical depiction of Equation (6) also resembles a left-truncated sinusoidal random
variable distribution.

AppliedMath 2025, 5, x FOR PEER REVIEW 6 of 14 
 

 

 

 

(a) 

 

(b) 

Figure 7. Respectively, black asterisks and the dashed line denote predicted values, and gray solid 
circles and solid lines denote observed values. Left (a): Equation (6) overlay scatterplots for observed 
and predicted fractal dimensions versus principal eigenvalues for central place spaces. Right (b): 
scatterplot of fractal dimensions versus Equation (6) predicted values. 

  

Figure 7. Respectively, black asterisks and the dashed line denote predicted values, and gray
solid circles and solid lines denote observed values. Left (a): Equation (6) overlay scatterplots for
observed and predicted fractal dimensions versus principal eigenvalues for central place spaces.
Right (b): scatterplot of fractal dimensions versus Equation (6) predicted values.

Equation (6) also has two noteworthy properties. First, regardless of the size of a line
graph, its calculation yields the correct dimension of 1. Second, its asymptotic dimension is
constrained to be 2 for λ1 = 6 (Lemma 4).

Therefore, the principal implications for central place geometry derived here parallel
those for Manhattan space.
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5.3. Dual Planar Graphs for Irregular Surface Partitionings

Equations (5) and (6) are constrained such that their asymptotic principal eigenvalues
coincide with a filled square’s fractal dimension of 2. But many graphs, especially ones
without a pattern, do not have a known maximum principal eigenvalue; even some pat-
terned graphs have infinite extreme eigenvalues [59]. The following conjecture posits a
relationship between the fractal dimension of these unpatterned graphs and the eigenvalues
of their dual planar networks based upon 23 conveniently available but arbitrary empirical
and ideal planar graphs selected to cover a reasonable range of principal eigenvalues
(example networks appear in Figure 8):
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Figure 8. Dual graphs based upon centroid points (their counts denoted by P) from irregular
surface partitionings. Top left (a): Portugal NUTS-2 (P = 5). Top middle (b): Italy NUTS-2 (P = 18).
Top right (c): Syracuse US census block groups (P = 146). Bottom left (d): Texas counties (P = 254).
Bottom middle (e): Sheffield UK enumeration districts (P = 930). Bottom right (f): Chicago US census
block groups (P = 6628).

Conjecture 3. If a two-dimensional finite surface is partitioned into n mutually exclusive and
collectively exhaustive irregular polygons, with the centroid of each polygon constituting a node of a
planar graph, then the fractal dimension, d, of this network is approximated by

1− 242[
λ17.54513

n (max)+1.46498)8.97926−λ8.9792
n (planar)]1/8.9792 +

2
λn(planar)+ 6.48816/n0.41957 +

242
[λ17.54513

n (planar)+1.46498)8.97926−λ8.9792
1 ]1/8.9792 − 2

λ1+ 6.48816/nP0.41957 ,
(7)

where λn(planar) = 2COS[ π /(n + 1)] for a line graph, and

λn(max) = {1 + 2COS[π /(n − 1)]}/2
+
√

2n − {13 + 4COS[π/(n − 1)]− 2COS[2π/(n − 1)]}/4
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for the maximum connectivity planar case [59].

Evidence 3. Figure 9 presents scatterplots affiliated with Equation (7). Figure 9a portrays the
overlay of the relationships between the fractal dimension and λ1, and the predicted fractal dimension
and λ1. Figure 9b portrays the relationship between the box-counting fractal dimension determined
by Fractalyse and the fractal dimension predicted by Equation (7). In addition:

Nonlinear relative ESS (RESS) = 0.00105
Relative prediction error sum of squares (PRESS/ESS) = 1.15904
Pseudo-R2 = 0.9518
Bivariate regression coefficients: (intercept) a = 0.05339, (slope) b = 0.96194
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observed and predicted fractal dimensions versus principal eigenvalues for central place spaces.
Right (b): scatterplot of fractal dimensions versus Equation (7) predicted values.

For a straight line with two or more nodes (i.e., a line graph), Equation (7) equals 1; for an
infinite triangular graph (see [60]), Equation (7) equals 2. In contrast to Equations (5) and (6),
the graphical depiction of Equation (7) resembles a logistic-type S-shaped curve. Its description
is poorer than those for the other two geometries because the specimen graph links vary in
length and lack a global pattern. Potentially, more evidence for this case might be gleaned
from studies of two-dimensional Thiessen polygon (also known as Voronoi diagram cells)
surface partitionings.

6. Selected Relationships Between the Fractal Dimension Concept and
Spatial Statistics

This foregoing principal eigenfunction of a planar graph represents the geographic
distribution of network accessibility across its set of nodes (e.g., [61,62]). In keeping with
this notion, Equation (5) relates Manhattan space and spatial statistics, consistent with
relationships between fractal networks and both graph theory and combinatorics [63]. The
network structure meaning of the principal eigenvector of a planar graph is a location-by-
location index of accessibility based upon all possible topological ways of moving between
a pair of nodes traversing exactly h links: ∑D

h=0 Ch, where C is the binary 0–1 adjacency ma-
trix and D is the diameter of a network (graph). This eigenvector is known analytically [54]
to be E1 in which element eij1 = 2

n+1 SIN
(

i π
n+1

)
SIN

(
j π

n+1

)
, i = 1, 2, . . ., n and j = 1, 2, . . .,

n for a regular square lattice graph. Figure 10 furnishes selected geographic mappings of
this eigenvector. All six of these maps indicate that the center of a given Manhattan space
has the highest degree of accessibility and that the periphery of this space has the lowest.
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This accessibility index has a concentric circle decline with increasing distance from the
center of the unit square. As Manhattan space becomes increasingly dense through infill
asymptotics, its Euclidean counterpart increasingly reflects this same property.
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Figure 10. Geographic distribution of the principal eigenvector for Manhattan space with increasing
values of P, where P2 is the number of points; accessibility is directly proportional to the darkness of
the grayscale. Top left (a): P = 3. Top middle (b): P = 10. Top right (c): P = 33. Bottom left (d): P = 99.
Bottom middle (e): P = 197. Bottom right (f): P = 400.

Maps similar to those appearing in Figure 10 can be constructed for Equations (6) and (7).

7. Concentric Circles, Grids, Fractally-Bound Pattern Compression, and
Urban Planning

The preceding discussion addresses selected mathematical properties of planar graph
fractal dimensions, explicitly referencing non-Euclidean geometries, with an aim of furnish-
ing a context for empirical and numerical applications. It includes an example of Chicago
(Figure 8f), based upon 2000 census block group areal units. This section extends this
Chicago focus as it tackles a particular fractal application involving real-world as well as
abstract map images.

7.1. A Classical Chicago Urban Setting

Although models themselves are abstract and artificial, they often serve as powerful
tools for visualizing and clarifying complex issues in real-world contexts. Simple formula-
tions, in particular, can offer significant insight. One such model, developed in the early
20th century, is the Burgess description of urban spatial structure, which initially was ap-
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plied to Chicago. Its concentric ring pattern remains a useful starting point for investigating
urban road networks today. In particular, it provides a foundation for analyzing street
patterns using more modern tools, such as Fractalyse.

In the third decade of the last century, mapping Chicago’s road network alongside the
Park and Burgess [64] concentric ring zones would have been a daunting task. However,
with today’s advanced technology, this task is relatively straightforward. This execution
parsimony is specifically exemplified in the work of Arlinghaus and Griffith [65], who
overlay the Burgess rings on a map of Chicago’s modern road network using Google
Earth. Their process requires several technical steps, including aligning the historical street
patterns of the 1920s with the city’s current infrastructure. To do this, these authors used
a map titled “Chicago’s Gangland” [66], which is available online through the Univer-
sity of Chicago Library. This map, though useful, has an unknown projection, so these
two researchers employed a piecewise strategy, similar to creating a globe from multiple
segments, to fit the map’s features to the Google Earth globe.

Visualizing the combined map of Chicago’s road network and the Burgess rings
requires digital tools like Google Earth, which are not available in a printed format. Nev-
ertheless, a full interpretation of the street patterns within the rings is still challenging.
Fortunately, by mapping the city’s street data using Tiger Line files from the United States
Census Bureau and then overlaying it with the Burgess rings, this visualization becomes
clearer. The Arlinghaus and Griffith [65] analysis shows how GIS software can be used to
map such street patterns, producing a layered image that reveals distinct layouts.

Figure 11 presents the Burgess rings superimposed on a GIS map of Chicago’s streets.
This image reveals open spaces, such as river valleys, expressways, and parks, as well as
a decrease in street density as one moves outward from the city center. Circular spatial
samples in the image highlight typical street patterns within each ring, allowing for a closer
examination of the existing road network. Using Fractalyse, the two authors of this earlier
paper calculated numerical measures of street density within each ring, confirming the
visual observation that street density diminishes as one moves further from the center.

One reason for undertaking such an analysis is to develop a strategy to measure phe-
nomena in the otherwise onerous and uncontrollable laboratory of the real world. Another
is to make measurement replication coherent across different urban areas. Meanwhile,
factors other than mere projected street density may be of interest as well. Although such
street pattern density might be of interest in planning applications that must consider
parking situations surrounding a large venue, such as a baseball park or big apartment
building, its extent also might be critical in transportation planning applications that need
to consider routing alternatives as well as physical access to the target population to be
served. This paper additionally illustrates that a strategy similar to that employed for
measuring density also works for magnitude.

In order to assess space-filling degree, the Fractalyse box-counting method was used
to create a numerical measure of each of the four bounded areas (Figure 11 zone E is
unbounded) in the set of concentric zones in the Burgess-rings-superimposed-upon-streets
visualization. With scale held constant, moving in a direction away from the city center, the
space-filling values of the four bounded rings increase in the following manner: 1.25, 1.466,
1.496, and 1.593 (Figure 12). This numerical pattern appears because more of the analysis
box is filled with lines by the larger regions. If one zooms in to fill the analysis box, then
the scale is altered and no longer held constant. Consistent areal sampling can overcome
such difficulties, although such sampling certainly has issues of its own.
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dim = 1.198. Region E, irregular patterns not uncommon with open space: dim = 1.181.
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Figure 12. Disassembly of four interior rings of the Park–Burgess [64] model into components and
associated space-filling dimensions. The dimension increases as the pattern enlarges in coverage:
from left to right, (a) 1.25 → (b) 1.466 → (c) 1.496 → (d) 1.593. Here, the extent, rather than the density,
of the pattern is being measured.

One might conjecture that because the concentric circles/rings of the Burgess graphical
model reflect different land use densities, they should contain different underlying road
pattern densities. The application of a single fractal iteration sequence would not generate
an appropriate pattern, or its compression. The preceding analysis furnishes solid support
for these ideas. In contrast, the next sections consider how to employ multiple fractal-style
analyses to create urban form, and then from there, how to move back again to the abstract
world of eigenvalues. Rather than offering a rigid set of predetermined rules, the sections’
narratives reflect upon these actions as they develop so that the gained flexibility offers a
possibility for application in multiple, perhaps unforeseen, arenas.

7.2. Fractally Bounded Planning

Empirical evidence from Chicago, using the Burgess model, implies the appropri-
ateness of calibrating networks to different fractal dimensions depending upon land use
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types. This idea, coupled with that of truncating a fractal iteration sequence based upon
desired parcel size, as in a marina example [67], offers a clear way to build urban networks.
The first step is possibly defining an advanced determination of the permitted extent of
space-filling by a road network as a new class of zoning. Traditional parcel code usage
regulations primarily decree such filling by buildings and land use types. A second step
is to employ the proper fractal dimensions, generated as absolute (rather than as relative)
values based upon an iteration of self-similar generators applied to an initiator. Fractal
generation of this geometric sort is independent of resolution and various other issues that
cloud the utility of otherwise reputable software such as Fractalyse.

With regard to a practical implication, Arlinghaus [51] first portrayed the utility of
employing geometric generation, based upon a hexagonal pattern, to characterize all possi-
ble classical central place webs, using that approach to solve previously unsolved classical
Christaller central place theory problems. This solution relies on creating geometric generators
to be applied iteratively and then employing the Hausdorff–Besicovitch dimension calcula-
tions to capture the space-filling character of central place nettings centered on hierarchies
of metropolitan areas, cities, towns, and villages. Later, in 1989, Arlinghaus and Arling-
haus [68] presented the details of number-theoretic components supporting these geometric
constructions. In 1991, Arlinghaus [57] adjusted this sequential process applied to hexagons
to work with squares, in keeping with urban road networks perhaps more than hexagons
do. This revision exemplifies an instance in which letting the possibly irregular demands of
the uncontrolled real-world laboratory dictate which abstract tool to employ, rather than the
reverse, is important in a practical situation: the best practice is to account for problems before
an analysis, rather than trying to explain multiple outliers after the analysis.

This category of idea is similar to urban downtown planning: fill an area with build-
ings as allowed by zoning, and put in as many roads as possible to facilitate movement;
superimpose a park if desired, but as an overlay on the fundamental strategy; and use the
value of d = 2 as the upper bound beyond which space-filling by roads is not permitted.
Employing a maximum value allows looser space-filling within a region outside its cen-
tral area, corresponding in the real world, perhaps, to many patterns of typical suburban
residential developments. These constructions are complex in visual appearance and are
perhaps best realized in color; a summary of a number of such approaches, along with
associated extensions of number theory connections, is visualized in interactive models in
Arlinghaus and Arlinghaus [68].

In their 2014 work, Arlinghaus and Griffith [69] suggest extending the Burgess model
by adding more concentric rings, potentially reflecting different residential zoning types.
Their approach involves introducing traffic circles or rotaries at ring boundaries, depending
upon the type of fractal pattern used to fill the zones. As one moves from one ring to another,
cul-de-sacs also appear, forming enclaves that could be linked to specific zoning patterns.
The process for creating these patterns begins by generating a fractal road grid, which is
then modified according to parcel size based upon statute land use and zoning regulations.

Aligning the patterns at the boundaries of adjacent rings can be challenging, because
road networks from neighboring rings may not match perfectly due to differences in
iteration sequences used to fill space. One solution could involve aligning the core road
network boundary points and inserting traffic circles where appropriate. Any remaining
points could become cul-de-sacs, which might be beneficial for residential areas seeking
privacy or for industrial areas that want a lower profile. In this approach, cul-de-sacs serve
a functional purpose—acting as a vestigial element in an otherwise efficient road network,
unlike in traditional urban planning where their use is often questioned.

The varying spatial needs of different zoning categories create distinct neighborhoods
within a road network. This structure promotes easy accessibility within each ring while
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limiting access between rings, potentially enhancing safety. It also may add visual interest
to an otherwise monotonous grid pattern. Of course, the urban model, zoning strategy,
and/or planning context can be adjusted to suit specific needs, but fractally bounded plans
can serve as a useful guide in real-world urban planning.

7.3. Eigenvalues and the Direct Mathematical Generation of Fractals

One way to calculate the Hausdorff–Besicovitch dimension is through the use of a
generator applied at successive scales, building upon some initial shape. This process
involves repeatedly applying this generator to create new self-similar shapes, forming an
infinite sequence that converges to a finite value. Selecting the generator is a nuanced
task. While the scaling effect is clear, the role of eigenfunctions (i.e., eigenvectors and
eigenvalues) remains subtle, often only implicitly present in a generator’s geometry.

Arlinghaus [57] demonstrates this method using a K = 7 Christaller central place
model, illustrating how eigenvalues emerge in the process. She generates a fractal sequence
using a single shape, a 4-star graph, that slides across a geographic landscape using vectors
to create a repeating pattern. Figure 13 depicts this process: starting with a four-star shape
(Figure 13a), a vector is applied to shift it to the right (Figure 13b), with this transformation
repeating (Figure 13c); next, a vector orthogonal to the first one is applied to shift this four-
star shape in a different direction (Figure 13d), continuing the transformation (Figure 13e);
finally, both vectors are used to fill the remaining space (Figure 13f). The eigenvectors
create a fractal pattern, with the corresponding eigenvalues determining how much these
eigenvectors are stretched or compressed. If each eigenvector has a unit length (i.e., 1), the
other eigenvalues are positive and negative integers. If this geometric form is overlaid on a
coordinate system, the eigenvalues may be integral multiples of the basic value. Figure 13
shows where these eigenvectors are lurking in this process, as they correspond to the edges
of the polygon onto which the generator is applied.
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Figure 13. Use of a 4-star shape to generate a pattern identical to that portrayed in Arlinghaus [57].
Here, however, a horizontal vector stretches to slide this 4-star graphic across the plane, and then
a vertical vector performs an equivalent transformation to fill space with 4-stars in positions that
create the required pattern. These vectors function as two sets of eigenvectors with eigenvalues
corresponding to the stretching of the vectors required to create the appropriate pattern.
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The sequence appearing in Figure 13 illustrates the first layer of the pattern under study.
To generate additional layers, consider a single teragon (Figure 14a). Begin by introducing
the four-star graph again (Figure 14b). Apply a vector to transform it (Figure 14c) and then
repeat this transformation in the same direction (Figure 14d). Next, apply an orthogonal
vector to shift the graph (Figure 14e) and continue applying this transformation in both
directions (Figure 14f).
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Figure 14. Use of a 4-star shape to generate pattern identical to that in Arlinghaus [57]. Here,
however, one vector stretches to slide this 4-star graphic across the plane, and then an orthogonal
vector performs an equivalent transformation to fill space with 4-stars in positions that create the
required pattern. These vectors function as two sets of eigenvectors with eigenvalues corresponding
to the stretching of the vectors required to create appropriate pattern.

Combinations of the vectors in Figure 14 expand pattern to fill space. Figure 15a
portrays this space-filling process together with the pattern of basic vectors in relation to
each other: both orientation and length. Figure 15b shows that the process creates eight
scaled-down teragons similar to their initial one (e.g., Figure 14a), as required for the
construction to possess fractal-based self-similarity. Once again, the positions of the vectors,
in relation to the boundaries of polygons appearing in Arlinghaus [57]—i.e., a Christaller
K = 4 style of central place hierarchy—show where these eigenvectors are located within
the underlying geometry.

The previously displayed construction sequences, suggesting infinite processes, lead to
the same results. A crucial difference is that the role of eigenvectors and their accompanying
eigenvalues is hidden in the background in the first, while it is displayed in the second,
creation. A focus on a planning application, and a need to look for a systematic description
of that application, lead back to the theoretical realm for an explanation about how geometry
and linear algebra are linked.
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the infinite process using 4-star graphs.

8. Discussion, Conclusions, Implications, and Future Research
In conclusion, this paper offers both theoretical and practical contributions to the fields

of urban spatial structure and fractality (e.g., [70,71]). It provides an overview of empirical
findings regarding a relationship between the non-Euclidean geometry of Manhattan space
and fractals, expanding on existing discussions in the literature, some of which pertain to
more general Minkowski spaces. This paper also includes enough technical detail to enable
readers with a keen interest in its content to replicate and build upon the outlined work.

The empirical analysis this paper exploits focuses on minimum path metrics that
describe distances between locations in non-Euclidean urban spaces. A general Minkowski
metric, with exponents between those of Manhattan space (exponent of one) and Euclidean
space (exponent of two), best represents these distances. Minkowski geometry [72] is
most suitable here because it is the domain of normed real finite dimensional vector
spaces, one with an appealing connection to differential geometry, as well as an invaluable
precursor to the development of Finsler geometry (i.e., a branch of differential geometry
that generalizes Riemannian geometry by allowing interpoint distances to depend not
only on their relative locations but also on a direction between them). The results from the
more general Minkowski metric also relate to the fractal dimensions of the physical spaces
involved. A key takeaway from this inquiry is that both theoretical and applied ideas based
upon fractals and the Manhattan distance metric are valuable when developing or refining
mathematical spatial theories.

Finally, as highlighted by Arlinghaus and Griffith [65], the classical Burgess (concentric
ring) model of urban spatial structure presents a promising foundation for incorporating
fractal elements into city street networks. Cells in a street pattern conceptually correspond
to abstract cells in analytic procedures. These two authors detail the mechanics of this
reformulation using fractal geometry and suggest potential applications in urban planning.
While these ideas open exciting new avenues for exploration, much more research is needed
to fully understand the connection between urban spatial structure and fractality, a topic
that already has been under investigation for nearly four decades (e.g., [73]).

In closing, this paper alludes to various potentially fruitful future research endeav-
ors. For example, the purposeful samples of abstract and empirical network specimens
studied here and elsewhere warrant a reliability-of-findings assessment of their statistical
significance (i.e., sampling error, given drawing a bona fide random sample of networks is
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impractical/infeasible), uncertainty components, and error corruptions (e.g., measurement,
computational/numerical, specification, and stochastic). Meanwhile, in keeping with the
notion of measurement error concerns, because four different fractal dimension calculation
methods exist—grid/box-counting, dilation, radial, and correlation (e.g., see [50])—a com-
parative replication of this study most likely would be illuminating, particularly because
the literature, especially studies focusing on street-based approaches, often resorts to the
correlation implementation. A third conspicuous future research theme, one underscoring
replicability, is a comparative analysis across a set of cities other than Chicago (the Burgess
model birthplace) and conceptualizations devised in terms of the Hoyt sector and/or the
Harris and Ulmann multiple nuclei urban spatial structure models. A fourth possibility
derives from the future tendency of more people working from home, and hence receiving
more direct deliveries of food and other consumer items customarily purchased on their
journey home from work: the scalability of urban surface networks will need to match,
or at least accommodate, these new changes in behavioral patterns across urban street
networks that may become non-Euclidean in various ways. Fractals pose an ideal means to
scale responses to such changing trends. Of course, one can glean other research themes
from this article.
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