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Abstract: The evaluation of mitochondrial DNA and genetic analysis is helpful for economically
significant species. Clarias gariepinus is a critical species in aquaculture. This study investigates the
genetic diversity and population differentiation of C. gariepinus from 19 countries using 164 sequences
of the mitochondrial DNA’s Cytochrome c oxidase I (COI) gene. The haplotype analysis revealed a total
of 17 haplotypes, with a nucleotide diversity (π) of 0.012 and a haplotype diversity (Hd) of 0.87. The
results of an AMOVA and fixation index indicated significant genetic variation and structure among
the populations. Additionally, neutrality tests and mismatch distribution analysis supported the
hypothesis of under-purifying selection in C. gariepinus. The findings suggested that the population
did not experience expansion. In conclusion, the genetic analysis highlighted substantial variation
among C. gariepinus populations from different locations, providing valuable insights for the global
management of this species.
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1. Introduction

The African catfish (Clarias gariepinus) is a well-known freshwater fish found in the
African savannah woodland [1]. It can survive in low-oxygen environments and tolerate
poor water quality due to its accessory air-breathing organs. However, this fish has a wide
range of temperatures [2]. Catfish are hardy and can withstand various environmental
fluctuations [3]. The African catfish is one of the most widely cultured fish globally,
accounting for 0.33% of total aquaculture production in Nigeria, Uganda, and Egypt [4].
This species is extensively used in aquaculture in South and Southeast Asian countries such
as Bangladesh, China, India, Indonesia, Malaysia, Myanmar, North Korea, the Philippines,
and Thailand [5].

Recently, farmers have observed a decline in the performance of African catfish,
including reduced growth, sperm quality, disease resistance, and an increased occurrence
of abnormal body and testes development [6]. While environmental factors may contribute
to these changes, genetic deterioration is a likely explanation [7].

Understanding the genetic diversity of organisms is crucial for examining and preserv-
ing their ecosystems. Genetic diversity plays a pivotal role in the conservation of species
within their natural habitats [8]. Several factors, such as pollution, unfavorable habitat,
and the environment, may cause a substantial change in population allele frequency [9].
The cytochrome c oxidase I (COI) gene was proven reliable for genetic diversity and geo-
graphical distribution studies in various fish species [10]. Studies showed that the COI
gene’s slow evolution makes it a suitable DNA marker for genetic studies [10]. Several
studies reported that the genetic variability of C. gariepinus is moderately high [11,12].
Barasa et al. [8] reported high genetic diversity and population differentiation of C. gariepi-
nus from Kenya. However, Kundu et al. [13] revealed that the genetic diversity of C.
gariepinus from Cameroon was reduced across its native and introduced range, which
inbreeding might have induced.
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Studying the global population genetic structure of C. gariepinus is essential due to
its significance in worldwide aquaculture and regional fisheries. This research aimed
to determine the haplotype diversity and genetic structure of C. gariepinus worldwide
using the COI marker. Therefore, a worldwide survey of the genetic diversity, haplotype
diversity, and population differentiation of C. gariepinus could provide recommendations
for managing this species in aquaculture and suggest conservation plans.

2. Materials and Methods
2.1. Genetic Diversity, Phylogenetic Analysis, and Genetic Structure

To assess the genetic diversity of C. gariepinus globally, based on all available sequences
on the GenBank, we collected 164 COI sequences of C. gariepinus from NCBI (GenBank;
Table S1). We used BioEdit [14] to analyze the quality of the COI sequences. Sequences
were aligned using the ClustalW [15] method in the MEGA X software [16], and all COI
gene sequences were standardized to 580 bp to eliminate any missing data through the
FaBox online toolbox [17].

Genetic diversity was determined by evaluating the number of haplotypes (H), segre-
gating sites (S), haplotype diversity (h), and nucleotide diversity (π) across all populations
and regions using DnaSP version 6 [18]. To explore the relationship among the haplo-
types of COI loci in the C. gariepinus population, we exported the sequence data for the
Median-joining haplotype Network from DnaSP v6.12.03 and conducted a haplotype net-
work analysis in the PopART program [19]. Phylogenetic trees were generated using the
Bayesian inference method implemented in the program Mr. Bayes 3.1.2 [20]. The GTR+I+G
model was selected using jModeltest 2.1.10 [21]. Then, the chosen model was initiated
with a random starting tree and was run with the Markov chain Monte Carlo (MCMC) for
106 generations. Clarias macrocephalus (MG407382) was selected as an outgroup to root the
phylogenetic tree. The trees were visualized using FigTree v1.4.4 [22].

An AMOVA was performed to estimate genetic diversity within and among popula-
tions. Furthermore, we calculated the fixation index (Fst) with 10,000 permutations using
Arlequin version 3.5 [23] to determine the genetic differentiation between populations. We
evaluated the degree of population differentiation using pairwise Fst values in Arlequin
3.5 (p < 0.05), treating all populations as a single group. The genetic relationships between
populations were visualized using the pairwise Fst matrix.

2.2. Neutrality and Population Size Change Test

The statistical tests Tajima’s D [24] and Fu’s Fs [25] are commonly used to distinguish
between sequences evolving neutrally under mutation–drift equilibrium and those evolving
non-neutrally due to balancing or directional selection processes. These tests help determine
whether mutations are selectively neutral or not. The analyses were performed using
Arlequin version 3.5 [23] by running 1000 simulations under a selective neutrality model.
The program DnaSP v6.12.03 was used to analyze the population size change.

3. Results
3.1. Haplotype Network and Genetic Diversity

The haplotype diversity (Hd) varied from 0.0 (China, Turkey, Algeria, Malaysia, and
Brazil) to 0.66 (Bangladesh) among populations. The average Hd was 0.87, and the average
nucleotide diversity (π) was 0.012 (Table 1). Additionally, among all populations analyzed,
Indonesia and Bangladesh showed the highest nucleotide diversity (0.01), while China,
Turkey, Algeria, Malaysia, and Brazil showed the lowest (0.00) (Table 1).

The median-joining (MJ) network comprised 17 haplotypes (Table S2), which indicates
the distribution of haplotypes across different populations in various countries (Figure 1).
Haplotype 1 was the core haplotype and was present in C. gariepinus populations from
Egypt, Nigeria, Zimbabwe, Ethiopia, Sudan, Syria, India, Bangladesh, Indonesia, Thailand,
and China. Haplotype 4 was found in Malaysia, the Philippines, Bangladesh, Thailand,
and India.
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Table 1. Genetic diversity values for the 161 sequences of Clarias gariepinus of mtDNA Cytochrome c
oxidase I sequences. n: Sample size; S: Number of segregating sites; h: Number of haplotypes; Hd:
haplotype diversity; π: Nucleotide diversity. Syria, Ethiopia, and Sudan had only one sequence,
which was removed automatically by the software.

Country
Genetic Diversity Neutrality Test

n S h Hd π Tajima (D) Fu’s Fs

Egypt 7 2 3 0.52 0.0016 −1.35 NS −1.79 NS
Nigeria 21 2 3 0.4 0.0015 −0.48 NS −0.14 NS

Indonesia 6 6 2 0.6 0.01 2.25 NS 6.77 NS
Bangladesh 3 6 2 0.66 0.01 NA NA
Thailand 13 8 3 0.41 0.007 0.06 NS 3.04 NS

India 20 9 3 0.46 0.0075 0.18 NS 4.34 NS
Zimbabwe 4 7 2 0.5 0.0098 −0.84 NS 4.6 NS

China 2 0 1 0 0 NA NA
Turkey 21 0 1 0 0 NA NA

Cameroon 13 7 2 0.5 0.0065 −0.43 NS 2.87 NS
Algeria 4 0 1 0 0 NA NA

Malaysia 2 0 1 0 0 NA NA
Philippines 5 2 2 0.4 0.0022 −1.12 NS 0.64 NS

Congo 10 1 2 0.5 0.0015 −0.35 NS 0.39 NS
Brazil 5 0 1 0 0 NA NA

Uganda 25 4 5 0.65 0.0026 −0.77 NS −3.2 NS
Total 161 22 17 0.87 0.012 0.31 −0.31

NS = not significant (p > 0·05); NA = not applicable.
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Figure 1. A median-joining network of Clarias gariepinus haplotypes. The size of the circle indicates
the relative frequency of the corresponding haplotype, and the colors represent the correspond-
ing population/country. The branches’ black lines point to the mutational changes between two
haplotypes. Cluster I indicates different haplotypes from India, Thailand, Indonesia, Bangladesh,
Cameroon, China, Turkey, Syria, Algeria, Zimbabwe, Ethiopia, Sudan, Nigeria, Uganda, and Egypt.
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Cluster II indicates different haplotypes from India, Cameroon, Philippines, Indonesia, Bangladesh,
Malaysia, Zimbabwe, DR Congo, and Brazil. Cluster III indicates different haplotypes from Uganda.

Figure 2 illustrates the distribution of COI haplotypes in the C. gariepinus population
across different countries. The African populations exhibited the highest variation with
12 distinct haplotypes, followed by India, Thailand, the Philippines, and Indonesia.
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Figure 2. Frequency of haplotypes in different countries. Colors show various haplotypes of COI in
the Clarias gariepinus population. The size of the circle is proportional to the number of specimens in
different geographic regions.

3.2. Phylogenetic Analysis

The result of phylogenetic analysis indicated that three major clades, including Clade
I, represented haplotypes belonging to populations of Africa and Asia (Egypt, Nigeria,
Zimbabwe, Algeria, Ethiopia, Sudan, Uganda, Syria, Turkey, India, Bangladesh, Indonesia,
Thailand, China, Cameroon); Clade II represented haplotypes from India, Bangladesh,
Thailand, Malaysia, Philippines, Indonesia, Cameroon, DR Congo, Brazil; and Clade III
represented haplotypes from Uganda, which showed a high posterior probability value
(Figure 3). The phylogenetic tree revealed that the haplotype variation in Uganda is high,
which confirmed the results for the median-joining haplotype network (Figure 1). The
population of Uganda with five different haplotypes (Hap 11, 12, 13, 14, 15) is distributed
into Clade III of the phylogenetic tree (Figure 3).
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3.3. Molecular Variance Analysis

An analysis of molecular variance (AMOVA) was conducted on populations of C.
gariepinus in various countries to assess their genetic structure. The findings revealed
that 76% of the genetic variation existed among populations, while 23.9% was within
populations, with significant differences among populations at p < 0.001.

The FST value of 0.75 for each pair of populations significantly differed from zero
(p < 0.001), indicating a substantial genetic structure among the populations (refer to
Table 2). Additionally, Table 3 displays the degree of population differentiation. The
pairwise FST values demonstrated noteworthy distinctions between all populations from
different countries. The genetic structure of Uganda populations displayed a highly signifi-
cant difference (p > 0.05) from the other populations, except for populations from India and
Thailand (p < 0.05).

Table 2. AMOVA analysis was carried out using the Arlequin program for 164 sequences of Clarias
gariepinus based on COI.

Source of Variance df Sum of
Squares

Variance
Component

% Total of
Variance Significance

Among
populations 18 1766.958 10.414 76.03 p < 0.001

Within
populations 145 476.085 3.283 23.97 p < 0.001

Total 163 2243.043 13.697 100 p < 0.001
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Table 3. Heatmap of pairwise FST values estimated from mitochondrial DNA sequence data. The significant p-values are present in the upper diagonal; FST values
are in the lower diagonal.

Egypt Congo Nigeria Ethiopia Uganda Cameron Algeria Zimbabwe Sudan Malaysia Indonesia Syria Philippines Turkey Bangladesh Thailand India China Brazil
Egypt 0 * * * * * * * * * * *
Congo 0.99369 0 * * * * * * * * * * * * *
Nigeria −0.03424 0.87068 0 * * * * * * * *
Ethiopia −0.83333 0.99535 −0.88707 0 * * * * * * *
Uganda 0.98645 0.81673 0.90522 0.98523 0 * * * * * * * * * * * *

Cameron 0.20429 0.65997 0.13968 −0.38625 0.76875 0 * *
Algeria 0.61763 0.99652 −0.03011 1 0.98693 0.11628 0 * * * * * * * * * *

Zimbabwe 0.75296 0.85974 0.69942 0.33333 0.92261 0.45197 0.66839 0 * * * * * *
Sudan −0.83333 0.99535 −0.88707 0 0.98523 −0.38625 1 0.33333 0 * * * * *

Malaysia 0.99245 0.80769 0.82461 1 0.77335 0.49473 1 0.63977 1 0 * * * *
Indonesia 0.42429 0.50665 0.35525 −0.2 0.69402 0.00512 0.32458 0.38803 −0.2 0.15493 0 *

Syria −0.83333 0.99535 −0.88707 0 0.98523 −0.38625 1 0.33333 0 1 −0.2 0 * * * *
Philippines 0.99068 0.65901 0.84572 0.98993 0.76146 0.5835 0.99425 0.77465 0.98993 −0.29032 0.3609 0.98993 0 * * *

Turkey 0.83709 0.99853 0.15808 1 0.99182 0.38071 1 0.89312 1 1 0.664 1 0.99829 0 * * * * *
Bangladesh 0.69744 0.4377 0.57085 0 0.68054 0.11114 0.58264 0.39575 0 −0.2 −0.23918 0 0.17909 0.87578 0

Thailand 0.70883 0.14103 0.66687 0.54345 0.35719 0.38266 0.66734 0.60324 0.54345 −0.20999 0.10486 0.54345 0.00253 0.81736 −0.17659 0 *
India 0.52531 0.1565 0.51258 0.2865 0.31308 0.24204 0.48252 0.45213 0.2865 −0.13015 −0.00514 0.2865 0.05509 0.64584 −0.22063 −0.03022 0
China −0.22709 0.99582 −0.27778 0 0.98587 −0.00703 1 0.52941 0 1 0.14286 0 0.99196 1 0.36842 0.61306 0.41187 0
Brazil 0.99471 0.33333 0.84762 1 0.80016 0.5857 1 0.7797 1 1 0.3617 1 0.66667 1 0.22103 0.04619 0.07859 1 0

* indicates significant difference (p < 0.05). Red and green cells represent the level of significant and non-significant pairwise FST values, respectively.
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3.4. Demographic History and Neutrality

The analysis of the combined COI sequences revealed that Tajima’s D and Fu’s Fs
were not statistically significant. Specifically, the values for Tajima’s D and Fu’s Fs were
0.31 (p > 0.05) and −0.13 (p > 0.05), respectively, as indicated in Table 1. Tajima (D) values
for Zimbabwe, Cameroon, Philippines, Congo, Egypt, Nigeria, and Uganda were negative,
whereas Tajima (D) for Indonesia, Thailand, and India populations were positive. However,
Fu’s Fs in all populations were positive except for the populations of Egypt, Nigeria,
and Uganda.

Pairwise and mismatch comparisons are shown in Figure 4 for all sequences. The
raggedness index was 0.038, and there was no significant difference from zero for entire
populations (p > 0.05). The results revealed a multimodal mismatch distribution graph,
indicating an equilibrium in the population structure. Additionally, the results showed that
the population did not experience expansion.
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4. Discussion

The present study was based on comparing the genetic diversity of C. gariepinus in
different locations in the world using an mtDNA marker. This study analyzed 17 haplotypes
that existed in the population of C. gariepinus, six of which were detected similarly. The
presence of shared haplotypes (Hap_1, Hap_2, Hap_3, Hap_4, Hap_5, Hap_8) across
various countries suggests a common ancestral lineage. This observation highlights that
individuals from geographically distant countries and continents possess these haplotypes,
indicating a shared origin associated with introducing fish for aquaculture purposes. As
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a result, C. gariepinus has been widely introduced to other parts of the world for fish
farming. In 1975, C. gariepinus was introduced from the Central African Republic to Côte
d’Ivoire, Vietnam, Congo, and Laos [26]. In 1987, C. gariepinus was introduced from Laos
to Thailand [27], and then from Thailand, it was introduced to the Philippines (1985),
Malaysia (1986), and Bangladesh (1989) [28]. African catfish was introduced to India from
Bangladesh [29].

In this study, 11 haplotypes were singleton haplotypes, especially for African continent
populations. As a result, C. gariepinus has been widely distributed across different geograph-
ical locations because this fish has biological fecundity and ecological tolerance. Therefore,
the current genetic structure is due to the geographical isolation of populations. Similar
genetic differentiation patterns were observed in C. gariepinus populations in Kenya [12].
In contrast, Van Steenberge et al. [30] found that colonization, rather than extinction, has
shaped the distribution patterns of C. gariepinus, distinguishing it from other common
African freshwater fish and highlighting its connection to the evolution of African drainage
basins. Kundu et al. [13] also identified distinct separations between populations of C.
gariepinus and noted high genetic diversity across various African regions. Furthermore,
Weyl et al. [31] and Parvez et al. [28] discussed the widespread use of C. gariepinus in
aquaculture and its introduction into multiple African riverine systems. Human activities,
particularly in the case of Clarias, involve frequent movement of fish populations across
drainage basins [32]. Additionally, Barasa et al. [12] reported the extraction of pituitary
hormones and milt for artificial propagation in hatcheries, involving the removal of males
from natural populations of Clarias. Lastly, Barasa et al. [33] emphasized the potential for
increased genetic variation in farmed C. gariepinus through the combination of genetically
distinct stocks.

The African catfish populations showed high nucleotide diversity (π > 0.005) and
high haplotype diversity (Hd > 0.5) due to the high mutation rate of the COI region [34].
The study also found that the populations from Indonesia and Bangladesh displayed
high nucleotide diversity (π > 0.005) and high haplotype diversity (Hd > 0.5) attributed
to a high mutation rate of the COI region, likely due to inbreeding or hybridization for
aquaculture purposes [33]. Comparing populations with high haplotype diversity to those
with low nucleotide diversity (e.g., Uganda, Congo, Egypt) suggests a recent divergence
in C. gariepinus [35], leading to the establishment of independent lineages from ancestral
populations with a small effective population size [36]. In this study, according to the low
number of sequences (N = 2), some populations, such as China and Malaysia, showed low
haplotype diversity. However, the results for the Bangladesh population (N = 3) showed
high haplotype diversity. Fatsi et al. [37] found that the level of genetic diversity depends on
species-specific molecular markers. Therefore, it can be inferred that the genetic structure
of the populations is a result of disturbances in the genetic structure of C. gariepinus. The
present study’s haplotype network demonstrated a mutational topology, with several
mutations separating branches between haplotypes, resulting in high haplotype variation.
The high number of unique variations in the mitochondrial DNA of populations may be
due to its rapid evolution rate for genetic structures [34]. The mitochondrial region serves
as an effective indicator of genome changes due to its population size being four times
smaller than that of the nuclear genome [38]. Consequently, this discrepancy results in the
manifestation of private haplotypes within populations [8]. The results were in agreement
with several studies. Giddelo et al. [1] reported a high variation in haplotypes with a low
number of mutations in C. gariepinus in Eastern Africa. Barasa et al. [8] found thirty-one
haplotypes in C. gariepinus from mtDNA sequences in the Kenya population, in which a
few mutations separated haplotypes.

The phylogenetic analysis (Figure 3) showed that the population from cluster III in
Uganda, represented by Hap 11, 12, 13, 14, and 15, is distinct from other groups on the
phylogenetic tree. This group displayed significant demographic differences. Additionally,
the haplotype network analysis revealed that most haplotypes are specific to only one
population and unique [39]. The result of the phylogenetic analysis indicated that Clade I
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includes all the countries (Asian countries) where this fish was introduced for aquaculture
purposes. On the other hand, Southeast Asian countries (e.g., the Philippines and Thailand)
have the same climate [40]. Therefore, a low number of mutations happened in the COI
gene (Hap_2, 3, 7, 9,16).

Population genetic structures undergo dynamic changes through historical and ongo-
ing evolutionary processes [41]. Identifying these structures is important for understanding
biological processes that have shaped contemporary species’ evolution from past to present
species [42]. The AMOVA analysis of C. gariepinus populations revealed that the great-
est proportion of variation exists among populations, indicating substantial distinctions
between them, as shown in Table 2. This outcome implies that C. gariepinus exhibits a
varied distribution pattern across all populations. The 17 haplotypes displayed strong
genetic structuring, which could be due to asymmetric introgression. It seems that younger
populations resulting from uneven breeding exhibit more hybrid vigor in certain areas and
have not yet reached a genetic equilibrium, suggesting that these populations are relatively
new and active. The haplotype network, which aligns with the AMOVA, separates genetic
clusters among populations by 76.03% genetic variance and differentiated genetic clusters
among populations. The genetic ancestry for all populations and locations in our dataset is
clearly displayed in Table 3.

Genetic distance is a measure of the genetic divergence between species or between
populations within a species, whether the distance measures the time from a common an-
cestor or the degree of differentiation [43]. Hence, genetic distance also showed significant
genetic differentiation within and among groups of catfish populations and determined
the population structure. Genetic distance between catfish populations (Table 3) indicated
no significant genetic distance exists in all the countries (e.g., Bangladesh, Thailand, India,
and Philippines) where this fish was introduced for aquaculture purposes. However, the
African populations had a significant genetic distance (e.g., Uganda, Cameron, Algeria,
Zimbabwe, and Congo). We can observe this significant difference in distribution patterns
of C. gariepinus for African populations. The previous study indicated that colonization,
rather than extinction, shaped the distribution patterns of C. gariepinus [30]. These patterns
indicate that catfish populations with many similar alleles have small genetic distances.
Meanwhile, catfish populations with different alleles may have high genetic distances.

Negative Tajima’s D values and positive or negative Fu’s Fs values for Zimbabwe,
Cameroon, Philippines, Congo, Egypt, Nigeria, and Uganda suggest that the observed
frequency of polymorphism is lower than expected. The lower frequency is because the
average heterozygosity was lower than the number of polymorphic sites, indicating that
these populations were significantly influenced by either a purifying selection or population
expansion. On the other hand, the combination of positive Tajima’s D and Fu’s Fs values for
Indonesia, Thailand, and India populations indicates a population contraction following the
deficiency of rare alleles. This contraction results in an increase in the number of haplotypes
due to the average heterozygosity being greater than the number of segregating sites. Our
study found that the values for Tajima’s D and Fu’s Fs were not statistically significant.

Furthermore, the potential hybrids of this fish with C. jaensis (Cameroon), C. macro-
cephalus (Thailand), C. batrachus (Bangladesh), and C. microstomus (Malaysia) [44–47] suggest
that a purifying selection is likely to be the driving force influencing the demography of
the C. gariepinus population rather than a demographic expansion. Purifying selection
increases mutations at silent sites without significantly expanding the heterozygosity. Sim-
ilar results were reported by Barasa et al. [8] and Modeel et al. [48] for C. gariepinus and
Labeo rohita, respectively.

The mismatch was used to show the mutation through the pairwise distances of
the sequence [49]. The analysis revealed that the C. gariepinus population exhibited a
distribution with multiple peaks, indicating a stable population size. Additionally, the
nonsignificant raggedness index value further supported this finding. Several studies
reported a multimodal distribution in fish taxa, including C. gariepinus [8,12], Schilbe
intermedius [49], and L. rohita [48].
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Effective conservation and resource management rely on monitoring natural popu-
lation genetics. It is essential to evaluate genetic diversity and population structure in
samples and populations [50]. Genetic diversity is critical for individual fitness, ecosystem
function, and ecological and evolutionary processes [51]. Loss of genetic diversity in cul-
tured populations may result from strict breeding practices that isolate the stock from other
populations (e.g., Turkey, Algeria), while in wild populations, it may be due to overfishing,
poaching, population division, genetic drift, and natural selection (e.g., Nigeria) [52].

Understanding genetic diversity greatly informs the development of conservation
and management plans for wild fish populations. This knowledge also influences fish
species selection and long-term genetic improvement. In this study, the haplotype diversity
of C. gariepinus populations from Uganda and Bangladesh was found to be the highest,
indicating the presence of genetically diverse populations of C. gariepinus. This underscores
the need for spatially explicit management measures, including reducing pollution, mini-
mizing habitat degradation and fragmentation, and decreasing fishing pressure to ensure
sustainable stock utilization.

5. Conclusions

In conclusion, the current study provides information on the global haplotype diversity
of C. gariepinus. The results show that haplotype diversity was high in the population of
the African continent. Additionally, the genetically distinct populations of C. gariepinus are
important for conserving biodiversity and genetic diversity. Examining genetic diversity
and population structure can aid in devising strategies for preserving the genetically unique
and endangered African catfish populations. This study found that mtDNA (COI) is a
useful marker for assessing genetic diversity in these populations. However, all these
sequences from COI were obtained in different periods, quality, extraction, purification,
and amplification, which can be limitations of this kind of study.
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