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Abstract: This review presents an investigation into the incremental advancements in the YOLO (You
Only Look Once) architecture and its derivatives, with a specific focus on their pivotal contributions
to improving quality inspection within the photovoltaic (PV) domain. YOLO’s single-stage approach
to object detection has made it a preferred option due to its efficiency. The review unearths key drivers
of success in each variant, from path aggregation networks to generalised efficient layer aggregation
architectures and programmable gradient information, presented in the latest variant, YOLOv10,
released in May 2024. Looking ahead, the review predicts a significant trend in future research,
indicating a shift toward refining YOLO variants to tackle a wider array of PV fault scenarios. While
current discussions mainly centre on micro-crack detection, there is an acknowledged opportunity
for expansion. Researchers are expected to delve deeper into attention mechanisms within the YOLO
architecture, recognising their potential to greatly enhance detection capabilities, particularly for
subtle and intricate faults.

Keywords: computer vision; convolutional neural networks; deep learning; object detection;
photovoltaic; quality inspection: manufacturing; YOLO

1. Introduction

The rapid advancements in Artificial Intelligence (AI) have revolutionised various
domains, including the manufacturing sector. Within the realm of AI, machine learning
(ML) has emerged as a powerful tool for automating complex tasks and improving efficiency.
Deep learning (DL) and computer vision (CV), two key subsets of ML, have particularly
garnered significant attention due to their ability to process and analyse visual data with
unprecedented accuracy [1–9]. Convolutional neural networks (CNNs) [10–12], a type of
DL architecture, have proven to be highly effective in tackling computer vision tasks. CNNs
have been widely adopted for image classification, object detection, and segmentation,
making them a valuable tool in manufacturing for quality inspection and defect detection.

In the context of manufacturing, object detection (OD) plays a crucial role in ensuring
product quality and minimising defects. Traditional quality inspection methods, often
relying on human operators, have limitations, such as subjectivity, human error, and high
labour costs. The application of DL and CV techniques, particularly OD algorithms, offers a
promising solution to overcome these challenges and improve the accuracy and efficiency of
quality inspection processes. Among the various OD algorithms, the You Only Look Once
(YOLO) architecture [13,14] has gained significant attention due to its unique single-stage
framework. Unlike two-stage models like region convolutional neural networks (R-CNNs),
YOLO streamlines the detection pipeline, resulting in enhanced performance and superior
results [15]. The effectiveness of YOLO has been demonstrated across a wide range of
applications [16–18], making it a popular choice for researchers and practitioners alike.

In the specific context of photovoltaic (PV) manufacturing [19–21], quality control is of
the utmost importance. The global surge in PV installations, driven by the need to address
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climate change [22], has highlighted the significance of PV systems as a sustainable energy
solution [23–25]. PV solar cells, often referred to as “green energy” sources [26,27], have
the remarkable ability to absorb and convert large amounts of incident light energy from
the sun [28,29]. However, the complex manufacturing process, from silicon extraction to
wafer slicing, exposes solar cell surfaces to various intricate and demanding stages [30].
As a result, implementing a stringent quality control regime is crucial for ensuring the
reliability and efficiency of PV systems. This review aims to provide a comprehensive
introduction to the fundamental concepts of CNNs within the context of PV production.
We specifically focus on the remarkable advancements in YOLO variants, which have
undergone rapid evolution in a relatively short timeframe. By exploring the application
of YOLO architectures in PV defect analysis, we highlight their potential to revolutionise
quality inspection processes in the PV manufacturing industry.

1.1. Survey Objective

The global shift toward sustainable energy has positioned PV technology as a key
player in meeting the increasing demand for green power. However, the efficiency and
reliability of PV systems heavily depend on the quality of solar cells produced during
manufacturing. Defective cells that pass quality control can significantly reduce plant
efficiency and increase costs. The PV industry faces a critical challenge in ensuring the
quality of solar cells during production, as traditional human-led inspection methods have
proven to be inadequate in detecting defects consistently and efficiently. These methods
face challenges such as subjectivity, high labour costs, inspector fatigue, and human error,
resulting in suboptimal PV system performance and increased costs. This research problem
highlights the need for innovative solutions that can improve the accuracy and speed of
defect detection in PV manufacturing.

Our study focuses on answering the following research questions:

1. How can CV and DL techniques, particularly OD models, be leveraged to enhance
defect detection in PV manufacturing?

2. What are the advantages of the You Only Look Once (YOLO) architecture and its
variants compared to other OD methods for PV fault detection?

3. How has the evolution of YOLO architectures, from version 1 to version 10, contributed
to improved performance in defect detection tasks?

4. What are the current applications and potential future directions of YOLO variants in
the PV domain, specifically for quality control during production?

To address these research questions, this review article presents the first comprehensive
analysis of YOLO variants and their applications in the PV domain, with a special focus on
defect detection during production. We provide an in-depth examination of each YOLO
architecture, from its inception in 2015 to the recent release of YOLOv10 in May 2024,
highlighting their unique features and improvements. Furthermore, we explore the use
cases of YOLO variants across the PV domain, discussing their potential to revolutionise
quality control processes.

The main contributions of this review are as follows:

1. We address the growing need for effective quality control in the PV industry, driven
by the increasing demand for green energy.

2. We identify the limitations of human-led inspection methods and the need for accu-
rate and efficient alternatives, quantifying their impact on PV production efficiency
and cost.

3. We explore the potential of CV and DL techniques, particularly YOLO variants, for
non-invasive defect detection in the PV industry.

4. We provide a comprehensive analysis of YOLO’s evolution, from its initial develop-
ment to the latest advancements in YOLOv10, highlighting its unique features and
performance improvements.
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5. We present a thorough review of existing research on the application of YOLO variants
in PV defect detection and discuss their potential to enhance quality control processes.

The findings of this review can inform future research and development efforts in
PV quality control, ultimately contributing to the optimisation of solar cell manufacturing
and the widespread adoption of PV technology. By leveraging the power of YOLO and its
variants, the PV industry can take significant strides toward meeting the growing demand
for clean energy while ensuring the highest standards of quality and efficiency.

1.2. Organisation of Paper

This paper is subsequently divided into the following sections: Section 2 presents an
overview of CNNs as a preliminary to facilitate readers’ understanding of the fundamental
principles that stimulate the YOLO framework. Section 3 provides a detailed explanation of
OD techniques to deliver a contextual background for the review. The subsequent section,
Section 4, focuses on reviewing the application of CNNs in PV fault detection, encom-
passing an evaluation of research progress, challenges encountered, and opportunities
within the field. Next, Section 5 explores the evolution of YOLO architectures compre-
hensively and coherently, investigating the modifications and advancements introduced
in each successive iteration, from YOLOv1 to YOLOv10. This is followed by Section 6,
which exclusively analyses the implementation of YOLO variants in PV fault detection
applications. Section 7 discusses the findings of the review, culminating in a comprehensive
assessment of the architecture’s suitability as a viable solution for autonomous PV fault
detection. Finally, Section 8 coherently summaries the key points throughout the paper,
offering a conclusive evaluation of YOLO’s potential and limitations in the context of PV
fault detection. The visual representation of the review is illustrated in Figure 1.

Figure 1. Visual structure of this review.

2. Convolutional Neural Networks (CNNs)

In the early 21st century, DL emerged as a significant advancement within the field
of machine learning (ML), alongside widely used techniques such as Support Vector Ma-
chines (SVMs), Multilayer Perceptrons (MLPs), and Artificial Neural Networks (ANNs).
DL, a subset of ML rooted in Artificial Intelligence (AI), has demonstrated remarkable
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success across a broad spectrum of disciplines. This is evident in its diverse applications,
including biological data analysis [31], gene expression analysis [32], micro-blogging [33],
speech recognition [34], character recognition [35], text classification [36], unstructured
text data mining with fault classification [37], automatic landslide detection [38], intrusion
detection [39], stock market prediction [40], and video processing tasks like caption genera-
tion [41]. These applications represent only a glimpse into the expansive potential held by
deep learning methodologies.

Within the domain of computer vision (CV), the focus lies on training machines to
achieve a sophisticated level of comprehension and interpretation of visual content. This
field encompasses diverse subareas, such as object detection [42], image restoration [43],
scene recognition [44], pose and motion estimation [45], object segmentation [46], and video
tracking [47]. Historically, conventional image processing techniques relied on the manual
extraction of features, requiring the definition of specific feature descriptors. However, DL
architectures present a compelling alternative by employing deep neural networks, which
inherently function as automatic feature extractors. This inherent ability of DL models
to learn features directly from data enables researchers to overcome the limitations of
conventional image processing methods. Consequently, they can dedicate more resources
to refining the application-specific performance of the network, rather than focusing solely
on developing feature extraction infrastructure.

DL encompasses a variety of models that have significantly advanced the field of AI.
Recurrent Neural Networks (RNNs) [48] are adept at handling sequential data, making
them suitable for natural language processing [49]. Their architectural variants, such as
Long Short-Term Memory networks (LSTMs) [50] and Gated Recurrent Units (GRUs) [51],
address the vanishing gradient problem [52], improving their ability to capture long-term
dependencies. Transformer models, like BERT (Bidirectional Encoder Representations
from Transformers) [53] and GPT (Generative Pre-trained Transformer) [54], have achieved
breakthroughs in natural language understanding. Generative models, including Varia-
tional Autoencoders (VAEs) [55] and Generative Adversarial Networks (GANs) [56], focus
on generating new data instances. These models collectively contribute to the diverse
applications of deep learning, ranging from computer vision and speech recognition to
language translation and generative art. Among all the models, CNNs are widely used for
image recognition tasks [57–59].

CNNs [60] are a specialised type of ANN that have proven exceptional performance
across a broad spectrum of CV tasks like object detection [61], image classification [62],
image captioning [63], image segmentation [64], image retrieval [65], speech processing [66],
facial recognition [67], pose estimation [68], traffic sign recognition [69], and neural style
transfer [70].

CNNs have witnessed a surge in research interest in recent years, although their
development has a longer history. A seminal work in this area was published by Hubel
and Wiesel in 1959 [71]. Through a series of experiments investigating the functionality of
neurons in the visual cortex, the authors revealed its hierarchical organisation, consisting of
both simple and complex neurons within the primary visual cortex. Notably, the processing
of visual information consistently commences with the detection of fundamental structures,
such as oriented edges, with complex cells receiving input from lower-level simple cells
via receptive fields. In 1980, Fukushima presented the Neocognitron model [72], the first
ANN explicitly inspired by the biological observations of Hubel and Wiesel on simple
and complex cells in the visual cortex. Building upon Fukushima’s existing work, in 1989,
LeCun et al. successfully applied backpropagation [73] to achieve a 1% error rate and
approximately 9% rejection rate on the challenging task of recognising handwritten zip-
code digits. Further refinements to the CNN architecture were introduced by LeCun et al.
in 1998 through the implementation of an error gradient-based learning algorithm [60]. A
pivotal moment arrived in 2012 with the introduction of AlexNet by Krizhevsky et al. [74].
This model, the first deep convolutional neural network (DCNN), boasted a more complex
architecture compared to previous attempts. AlexNet’s remarkable success, achieving
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significant performance improvements in CV tasks, triggered a revolution in the field, with
advancements like the efficient utilisation of GPUs, the adoption of the Rectified Linear
Unit (ReLU) activation function [75], the incorporation of a regularisation technique called
Dropout [76,77], and the implementation of data augmentation strategies [78].

The core structure of a CNN, at its conceptual level, consists of a sequence of convolu-
tion, pooling, and activation functions that progressively transform the input into relevant
outputs. Figure 2 presents a schematic representation of the core components comprising
a convolutional neural network (CNN) at an abstract level. As depicted, the architecture
consists of a sequential arrangement of convolutional blocks, culminating in a series of
fully connected layers that ultimately produce the network’s output [79]. A crucial aspect
of convolutional blocks within a CNN lies in the specification of the number of kernels
(or filters) and their spatial dimensions. These parameters hold significant importance, as
they directly govern the feature extraction process. Early layers extract low-level spatial
features, setting the stage for subsequent layers to develop higher-order semantic repre-
sentations [80]. The convolution operation involves the element-wise multiplication of
the kernel and the overlapping patch of the input image, followed by summation. The
mathematical formula for feature extraction is represented in Equation (1):

Output[i, j] =
kh−1

∑
u=0

kw−1

∑
v=0

Input[i + u, j + v] · Kernel[u, v] (1)

where output[i, j] represents the element at position (i, j) in the output feature map.
Input[i + u, j + v] represents the input element at position (i + u, j + v) in the input image.
Kernel[u, v] represents the weight at position (u, v) in the kernel. k_h is the height of the
kernel. k_w is the width of the kernel.

Figure 2. The general structure of a CNN, highlighting convolutional, pooling, and fully con-
nected layers.

Following the convolution operation, the output features undergo a pooling step.
This process aims to extract the most salient features through aggregation, effectively
downsampling along the spatial dimensions (width and height) of the feature maps. Several
pooling mechanisms are available for this purpose [81], including average pooling, sum
pooling, and the widely employed max pooling. As an example, the max-pooling function
applied to a one-dimensional input can be expressed as follows (Equation (2)):

al
x = max(a(l−1)

(x−y), a(l−1)
(x+y)) (2)

The ReLU activation function, defined in Equation (3), has emerged as the dominant
choice within CNN blocks [82]. This preference stems from its computational efficiency
due to its inherent simplicity. ReLU operates as a max(0, x) function, making it significantly
faster to evaluate compared to alternative activation functions such as the sigmoid and
tanh functions, presented in Equations (4) and (5), respectively:

f (x) = max(0, x) (3)
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x → 1
1 + e−x (4)

tanh(x) = 2σ(2x)− 1 (5)

3. Object Detection

Designing object detectors presents several challenges for researchers and practition-
ers. One of the primary challenges is managing variations in image resolutions and aspect
ratios. This issue becomes more pronounced when target objects vary significantly in the
spatial dimension. Moreover, the presence of class imbalance, especially in scenarios where
acquiring a sufficient number of images for specific classes, such as rarely occurring defects
on production lines, is challenging, can significantly hinder the performance of object de-
tection models. This phenomenon often leads to biased predictions, as the model priorities
the dominant classes with abundant data while under-performing on the underrepresented
ones [83].

Another significant challenge is the computational complexity of OD architectures,
which can be resource-intensive in terms of computational power, memory, and time [84,85].
Figure 3 demonstrates OD for single and multiple objects in an image. Object detectors
consisting of a deep internal network demand substantial computational resources for
processing complex image datasets and extracting key features.

Figure 3. Single and multiple objects in an image: classification, localisation, and segmentation.

OD can be broadly categorised into two-stage object detectors and single-stage detec-
tors. The former can be defined as a class of CNNs that first propose candidate regions
in the given image that may contain objects and then perform classification and locali-
sation within those proposed regions. Among the most prominent two-stage detectors
are the RCNN (region-based convolutional neural network) [86], Fast R-CNN [87], Faster
R-CNN [88] incorporating mechanisms such as ROI (Region of Interest) pooling, and FPN
(feature pyramid network) [89].

The RCNN [86] was introduced in 2014, and it utilised a selective search to propose
potential candidate regions. After candidate generation, a CNN network was utilised
for feature extraction, followed by an SVM classifier for the ultimate classification and
localisation. Although it provided satisfactory performance in terms of accuracy, it was
computationally inefficient due to the two-stage process.

Fast R-CNN [87] tackled the efficiency issues of its predecessor (RCNN) by proposing
ROI pooling. Rather than processing individual region proposals, Fast R-CNN employed
ROI pooling to extract fixed-size feature maps for each region from the original feature
maps. This resulted in substantial computational speed-up, as the feature extraction process
became shared across all region proposals.
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Faster R-CNN [88] further improved upon Fast R-CNN by proposing the Region
Proposal Network (RPN). The RPN was an integral part of the network, generating region
proposals directly from the convolutional feature maps, thus eliminating the need for
an additional region proposal stage. By integrating the RPN into Fast R-CNN, Faster
R-CNN achieved faster and more accurate detection results. ROI pooling was also a critical
component in both Fast R-CNN and Faster R-CNN, enabling efficient region-based feature
extraction and allowing the networks to handle candidate proposals of varying spatial
dimensions and shapes effectively.

The feature pyramid network (FPN) [89] can be regarded as an enhancement of
two-stage detectors, addressing the challenge of detecting targets at multiple scales. It
generates a feature pyramid by incorporating feature maps of varying spatial resolutions
from different stages of the network. By enabling the model to detect targets of different
scales, the overall performance and robustness of architecture are improved.

Two-stage detectors have demonstrated impressive accuracy and have become founda-
tional building blocks for various applications that require precise and reliable OD; however,
their high computational demand limits their application base. Single-stage detectors aim
to detect objects in a single pass, eliminating the need for a separate region-proposal step.
These detectors directly predict the bounding boxes and class probabilities for all target
objects in a single pass, making them more computationally friendly compared to two-stage
detectors. The general schematic of single-stage object detectors is exemplified in Figure 4.
Notable single-stage detectors include the Single-Shot Multibox Detector (SSD), You Only
Look Once (YOLO) variants, RefineDet++, the Deconvolution Single-Shot Detector (DSSD),
and RetinaNet.

Figure 4. A standard architecture of single-stage object detectors.

The SSD [90] employs multiple convolutional feature maps at different scales for
predicting bounding boxes and class probability scores. By employing default anchor boxes
at several aspect ratios and scales, the SSD can effectively detect objects of different sizes
and shapes in a single forward pass through the network.

RefineDet++ [91] is an expansion of the original RefineDet architecture, aimed at
refining target proposals in an iterative fashion through multiple stages. RefineDet++
further improves the accuracy by deploying enhanced feature fusion mechanisms and
refining target boundaries for better localisation.

DSSD incorporates deconvolution layers to reclaim spatial information lost during
feature pooling. This aids in maintaining the spatial resolution of feature maps and allows
the DSSD to capture fine-grained details for accurate object localisation.

RetinaNet [92] focuses on addressing the issue of class imbalance by presenting
the Focal Loss. The Focal Loss assigns higher weights to hard, misclassified samples,
thus improving the architecture’s ability to handle class imbalance and boost overall
detection performance.

Single-stage detectors offer several advantages, including faster inference speeds and
lightweight footprints compared to two-stage detectors. They are a popular choice for
resource-constrained environments due to their computational simplicity and real-time
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inference capacity. Among single-stage detectors, YOLO has emerged as a formidable com-
petitor to both two-stage and previous single-stage object detectors, boasting impressive
accuracy and inference speed. The single-stage design of YOLO, coupled with continuous
architectural refinements, has established recent YOLO variants as a compelling choice
for real-world industrial applications demanding real-time object detection. An extensive
exploration of YOLO’s architectural advancements is presented in Section 5.

4. Applications of CNNs in PV Fault Detection

Research on AI, notably CV, has been conducted to overcome the limitations of human
inspection. This section explores how various researchers have increased the output
efficiency of solar cell production by various means and methods.

As demonstrated in Figure 5, a CNN architecture aimed at identifying defective PV
cells was introduced by M. Waqar Akram et al. [93]. Notably, the authors achieved a
remarkable accuracy rate of 99.23%. This feature was accomplished through an “isolated-
model” approach (98.67%), which was subsequently adapted to EL-based images using
transfer learning. The authors asserted that employing a deep architecture may potentially
lead to overfitting due to the relatively modest dataset size of approximately 800 images.
Their research unfolded in two distinct stages.

Figure 5. A proposed abstract architecture.

The first stage encompassed the construction of a CNN tailored for EL images. Sub-
sequently, in the second phase, the CNN trained on EL images was repurposed as a
pre-trained model. This was further fine-tuned using infrared (IR) images of defective
cells. The pre-trained EL-based model exhibited an accuracy of 98.67%. It is worth noting,
however, that a closer examination of the methodology, particularly concerning data collec-
tion and pre-processing, revealed that the inclusion of false flaws, rather than authentic
defects, within the cell images might have occurred. To enhance the size and diversity of
the dataset, the authors leveraged data augmentation, culminating in a 6.5% increase in
model accuracy.

Upon careful scrutiny of the CNN’s design, the authors opted for a four-block CNN
architecture coupled with a fully connected layer that feeds into a SoftMax function. Al-
though alternative optimisers such as stochastic gradient descent (SGD) are prevalent, the
authors chose to adopt Adaptive Moment Estimation (ADAM) owing to its established
reputation and frequent utilisation within the field.

Sachin Mehta et al. [94] proposed a CNN for the purpose of detecting PV soiling and
associated faults. Their primary focus centred on identifying the location and presence
of defects within PV cells. Historically, the term “OD” has been employed to delineate
the classification and localisation aspects of images. A prevailing strategy to tackle OD
challenges entails the creation of bounding boxes encompassing specific regions of interest.
These bounding boxes subsequently serve as the basis for training supervised models.
However, the authors’ approach introduces an intriguing departure. Rather than conven-
tional bounding boxes, they advocate substituting these with power loss values for each
image. This departure could be considered an innovative contribution to the research
landscape. Nonetheless, certain concerns emerge regarding the feasibility of applying
this proposed methodology to smaller datasets. Notably, the dataset employed in this
study encompassed over 45,000 images for network training, a relatively substantial scale.
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Additionally, the model’s operational capacity is confined to 22 frames per second (FPS), a
limitation highlighted. It is pertinent to note that the authors’ assessment of computational
load was approximated using an atypical hardware component, the NVIDIA TitanX.

Ahmad et al. [95] undertook a comparative analysis of three distinct models in the
context of detecting solar cell defects based on EL images. The trio of models includes the
Random Forest (RF) and SVM models, both belonging to the realm of ML, and the CNN,
representing a DL approach. In their study, the CNN, featuring two convolutional blocks
and a fully connected layer, exhibits the potential to achieve accuracy rates surpassing
99%. The authors attribute a significant portion of this achievement to the employment of
dataset augmentation, which effectively augments the original dataset by a factor of four.
This augmentation strategy plays a pivotal role in enhancing the model’s performance and
contributing to impressive model accuracy.

It is crucial to note that, with the strides made in DL techniques, as well as the incor-
poration of regularisation and advanced data processing methodologies, models yielding
accuracies below 90% no longer command the status of groundbreaking research. However,
Sergiu Deitsch et al. [96] introduced a novel dimension by proposing the utilisation of both
an SVM and a CNN network for the detection of multiple defects within EL-based solar cell
images. Notably, the authors report commendable accuracy for both CNN (88.42%) and
SVM (82.44%). In their endeavour, the authors embrace the realm of transfer learning by
leveraging the VGG-19 architecture. The final fine-tuning is carried out through a two-step
process. Initially, the ADAM optimiser is employed for weight updates, with the weights
of the fully connected layer initialised randomly. Subsequently, the weights across all
layers undergo refinement in the second stage. An intriguing point of consideration is
the authors’ adjustment of the “momentum” value to 0.9 and the utilisation of stochastic
gradient descent (SGD) during the second phase. It is worth clarifying that “momentum”
serves as a hyperparameter in the context of SGD with momentum (SGD-M), which differs
from the standard SGD optimisation approach. The rationale behind the modification of
the ADAM optimiser during the second fine-tuning stage remains ambiguous and warrants
further elucidation.

In the pursuit of detecting faults within EL-based solar cell images, Yang Zhao et al. [97]
presented an innovative approach involving the utilisation of a Mask R-CNN architecture
with a RESNET-101 backbone. The authors’ primary objective centres around the classi-
fication of 19 distinct types of flaws. Rigorous testing of the model revealed an achieved
mean average precision (mAP) of 70.2%, marking a noteworthy milestone. Notably, this
metric, considering a 0.5 mAP localisation threshold, signifies a reliable prediction. The
predicted bounding box, in this context, maintains a minimum of 50% Intersection over
Union (IoU) with the ground-truth bounding box, substantiating its credibility. However,
the authors acknowledge the attainment of only moderate accuracy outcomes, prompting
the introduction of additional refinements to their methodology. Notably, they introduce
three tiers of defect severity into their dataset. Strikingly, the most challenging-to-detect
flaws were assigned lower severity ratings and consequently deemed non-flaws. This
strategic classification contributed to a substantial mAP increase of over 90%.

Before delving into architectural considerations, Ashfaq Ahmad et al. [98] underscore
the pivotal role of data augmentations in expanding datasets and introducing variability.
In their quest for fault detection, the authors address the realm of EL-based solar cell
images utilising a CNN architecture, achieving an accuracy of 91.58%. The chosen CNN
architecture initiates with image input and subsequently traverses through four convolu-
tional blocks, totalling 32 filters. The subsequent two convolutional blocks accommodate
64 filters each, and the final two blocks comprise 128 filters. Collectively, the structured
CNN architecture encompasses eight convolutional blocks, culminating in the output being
channelled through a single fully connected layer. While the escalation in the number of
kernels aligns with the pattern of more intricate models, the rationale for employing eight
convolutional blocks lacks explicit justification.



Solar 2024, 4 360

Wuquin Tang et al. [99] presented a CNN-based approach to detecting errors within
EL-based cell images. The authors’ primary contribution rests on the introduction of a GAN
for data augmentation. However, the application of this GAN-based data augmentation
bears scrutiny. After employing the GAN for data augmentation, the resultant overall
accuracy of 83% raises questions about the appropriateness of this method within this
particular context. The rationale behind opting for a GAN to scale the dataset and enhance
variance remains unclear.

A comparative analysis could have enriched the assessment of the GAN’s efficacy by
juxtaposing its accuracy against that of established data augmentation techniques inherent
to deep learning frameworks like Keras, TensorFlow, and PyTorch. Moreover, it is worth
noting that the GAN’s employment significantly escalates computational demands and
resource allocation compared to traditional data augmentation. The GAN’s computational
intensity stems from its role as a network in its own right, utilised to generate new images.

In devising DL models for defective solar cell detection, Christopher Dunderdale et al. [100]
embarked on training their models using the VGG-16 [101] and MobileNet [102] architec-
tures for comparison. A noteworthy observation is that, despite the availability of ADAM
as a readily available optimiser, the authors opted for an unconventional path by evaluating
SGD with Adam. Upon delving into the VGG-16-trained architecture, it became evident
that the SGD optimiser, in conjunction with data augmentation techniques involving hor-
izontal flipping, vertical flipping, and rotation, yielded superior performance with an
accuracy of 85.6%. Intriguingly, the ADAM optimiser under the same conditions resulted in
a subpar accuracy of 27.4%. However, transitioning to the MobileNet architecture brought
about the most impressive accuracy of 89.5%, facilitated by data augmentations, including
horizontal and vertical flips, and the adoption of the ADAM optimiser.

Pierdicca R et al. [103] introduced a CNN built upon the VGG-16 architecture for the
purpose of identifying defective PV cells. The authors justify their choice of the VGG-16
architecture based on its user-friendly nature. However, it is important to note that various
frameworks, such as PyTorch and TensorFlow developed by Google and Facebook, facilitate
the utilisation of state-of-the-art (SOTA) pre-trained models. Therefore, the selection of an
architecture should ideally align with the dataset’s characteristics rather than being solely
driven by ease of construction.

To address anomalies across diverse surface textures, including solar cells, Haiyong
Chen and colleagues [104] introduced a weakly supervised surface-defect-detection archi-
tecture. The authors put forth a fused design that amalgamates a CNN with a Random
Forest (RF) classifier, asserting its enhanced robustness in advanced background-filtering
scenarios. The dataset under scrutiny comprised 15,330 normal and 5915 faulty images.
The architecture integrated an attention network and a Random Forest classifier, both posi-
tioned after the five convolutional blocks composing the CNN architecture. A noteworthy
choice made by the authors was the implementation of K-fold cross-validation with K = 5.
Given the pronounced class imbalance within the dataset, this approach is commendable
and has led to cross-validation results showcasing an accuracy of 93.23%.

Bolun Du et al. [105] shared their exploration into detecting flaws in PV cells within
production lines. Their approach involves the application of the commonly utilised fine-
tuning strategy to train three SOTA models: GoogleNet, LeNet, and VGG-16. Remarkably,
GoogleNet emerged as the front-runner, achieving a remarkable 100% accuracy and a loss of
0.002 after 81 epochs. It is worth noting that, despite its exceptional accuracy, GoogleNet’s
model incorporates 13 million learnable parameters. These findings align with those of
Hussain et al. [106], who reinforced the efficacy of GoogleNet’s architecture by obtaining
impressive results. Here, the authors evaluated each model’s accuracy post-deployment
and assessed them against architectural criteria. Interestingly, their research underscores
GoogleNet’s outstanding precision. However, it is notable that GoogleNet’s architecture
employs 13 million learnable parameters, which deviates from the suggested architecture.

Mustafa Yusuf et al. [107] employ a two-stage approach for the detection of diverse
defects within EL-based solar cells. Their methodology begins with the application of
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various data augmentation techniques, with a specific emphasis on the defective classes,
to effectively expand the dataset. Subsequently, feature extraction from this augmented
dataset is pursued through the training of four widely recognised models: VGG-16, VGG-
19, ResNet-50, and DarkNet-19, employing the transfer learning paradigm. Having distilled
the most distinguishing features, the authors proceed to classification employing a range
of ML architectures, which encompass Random Forests and SVMs. The authors’ strategy
resonates with analogous research, further highlighting the substantial computational
demands associated with these pre-trained network models.

N. Kellil et al. [108] proposed an IRTI-based approach for identifying and classifying
faults in PV modules. Two datasets, binary classification (BC) and multiclass classification
(MC), were used to train and assess two models for differentiating between healthy and
faulty modules. A simple DCNN architecture achieved an average accuracy of 98.39%
for fault detection, which was further improved to 99.91% using transfer learning with a
VGG-16 model. For the fault classification of five types, the small-DCNN model achieved
an average accuracy of 91.63%, which was significantly boosted to 99.80% with VGG-16
fine-tuning. Both detection and classification models demonstrated high accuracy, making
them promising for real-time applications. The authors stated that future work would focus
on optimising and integrating these models into low-cost microprocessors/microcontrollers
for cost-effective and portable PV system diagnostics. This approach has the potential to
significantly improve fault detection and classification in PV systems.

The study by [109] proposed a novel DL architecture for fault detection and diagnosis
in PV systems. The architecture integrates CNN and Bidirectional Gated Recurrent Unit
(Bi-GRU) layers to leverage their complementary strengths. CNN layers enable feature
extraction from data, while Bi-GRU layers capture temporal dependencies. This combi-
nation facilitates superior fault classification, including open circuits, short circuits, and
partial shading. The approach is further bolstered by a precisely calibrated simulation
model and a comprehensive database encompassing normal and abnormal PV operations.
Evaluations demonstrate exceptional accuracy exceeding 99% in both fault detection and
diagnosis, highlighting the effectiveness of the proposed method. As stated by the authors,
future work will investigate the generalisability of the approach on diverse PV systems and
explore real-time implementation on hardware platforms.

Summary of CNN-Based PV Fault Detection Models

Table 1 presents a comprehensive overview of various CNN architectures and their
applications in detecting faults in PV systems from 2018 to 2024. The studies utilised a
range of CNN architectures, including custom CNNs and popular pre-trained models such
as VGG16, ResNet50, InceptionV3, and MobileNet, as well as more advanced techniques,
like Mask R-CNN and attention mechanisms. The dataset sizes used in these studies vary
from a few hundred to tens of thousands of images, demonstrating the scalability and
adaptability of CNN-based approaches. The images used include infrared thermal images,
EL images, and visual images of PV cells and modules. Several key contributions and inno-
vations are highlighted, such as the use of transfer learning, weakly supervised learning,
and the development of novel frameworks like DeepSolarEye and the Distance-Aware
Network (DAN). Some studies also compare the performance of CNNs with traditional
machine learning techniques like SVM and Random Forests. The reported accuracies for
fault detection and classification range from 70% to over 99%, with most studies achieving
accuracies above 90%, demonstrating the effectiveness of CNN-based approaches in accu-
rately identifying various types of PV faults, including micro-cracks, soiling, and defects in
different types of PV cells (e.g., monocrystalline and polycrystalline).
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Table 1. Summary of CNN applications for PV fault detection.

Reference Year Architecture Dataset Size Contribution Accuracy

[93] 2020 Custom CNN 893
Detects PV defects in infrared images using DL
and transfer learning with a pre-trained model,
achieving real-time prediction on CPUs.

98.67%

[94] 2018 CNN 45,000+

DeepSolarEye detects real-time solar panel
soiling and performs defect analysis, predicting
the power loss, soiling localisation, and category
using a weakly supervised approach with a
novel BiDIAF block and web-scraped data for
soiling type classification.

∼95%

[95] 2019 SVM, RF, and
CNN 12,070

A pipeline for PV fault classification using
supervised learning with SVM, RF, and CNN
algorithms, achieving the best performance with
a CNN model trained on an augmented dataset.

<99%

[96] 2019 SVM and CNN 2624

Two contrasting PV cell defect detection
methods: a hardware-efficient, SVM-based
approach with hand-crafted features and a
high-accuracy, GPU-powered CNN.

CNN—88.42%;
SVM—82.44%

[97] 2020 Mask R-CNN and
ResNet-101-FPN 5983 A DL approach for automatic multi-defect

detection in PV modules using EL images. <95%

[98] 2020 SVM and CNN 2624
Feature extraction with SVM (HOG, KAZE, SIFT,
SURF) and a CNN for classifying seven types of
solar cell defects.

CNN—91.58%;
SVM
(68.90–72.74%)

[99] 2020

CNN, VGG16,
ResNet50,
InceptionV3 and
MobileNet

1800
A GAN finds defects in EL-based cell images
instead of VGG16, ResNet50, Inception V3, and
MobileNet.

83%

[100] 2019 CNN, VGG16, and
MobileNet 383

A cost-effective DL and feature-based approach
for PV module defect detection and classification
using thermal infrared images.

91.2%

[103] 2018 VGG16 3336 Demonstrates degradation issues and assesses
the suggested approach. <70%

[104] 2020 CNN and Random
Forest 21,245

A CNN–Random Forest architecture with
attention for robust weakly supervised defect
detection on diverse surface textures, including
solar cells.

93.23%

[105] 2020 LeNet-5, VGG-16,
and GoogleNet 720

An automatic Si-PV cell defect detection system
using IRT imaging, PCA/ICA/NMF feature
extraction, and GoogleNet classification.

97.64%

[107] 2020
DarkNet19,
ResNet50, VGG16,
and VGG19

2624 A novel DFB framework combining DL feature
extraction with SVM. 90.57–94.52%

[108] 2023 DCNN and VGG16 BC—5294;
MC—4956

A fine-tuned VGG-16 model achieving high
accuracy in fault detection and identification for
5 types of defects in photovoltaic modules using
thermographic images.

99.91%

[109] 2024 Custom CNN ∼23,000

A three-step process involving robust PV
modelling, comprehensive data creation, and a
CNN-Bi-GRU-based feature extractor for
effective fault classification.

99%

[110] 2020 ResNet-50 2000

A transfer learning approach using a DAN with
MK-MMD for low-cost, high-efficiency defect
detection in polycrystalline solar cells,
leveraging labelled data from monocrystalline
cells.

77%

[111] 2022 Custom CNN 777
A lightweight framework for the automated
detection of micro-cracks in PV cell surfaces
using EL imaging.

99%
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Notable contributions include the development of real-time fault detection systems,
the ability to predict power loss due to faults, and the localisation of soiling and de-
fects. Some studies also focus on cost-effective and hardware-efficient solutions, such as
lightweight CNNs and the use of feature extraction techniques like HOG, KAZE, SIFT, and
SURF in combination with SVMs. More recent studies (2022–2024) demonstrate further
advancements in PV fault detection using CNNs, including the development of lightweight
frameworks for micro-crack detection and the integration of robust PV modelling and com-
prehensive data creation with CNN-based feature extractors for effective fault classification.
Seeing the current progress, more sophisticated and efficient CNN architectures will be
developed to further improve the accuracy, reliability, and cost-effectiveness of PV fault
detection systems as research in this field continues to evolve.

5. YOLO Architecture Background

This section of the review will delve into the foundational principles and architecture
that underlie YOLO. Subsequently, the distinct advancements associated with each iteration
of YOLO will be elucidated. Then, a detailed examination of the distinctive advancements
introduced in each successive iteration of YOLO will be presented.

The YOLO algorithm, introduced in 2016 by Joesph Redmon et al. [15], is an acronym
for “You Only Look Once”. This name stems from its unique approach, where a com-
prehensive image is examined only once to discern objects and their respective positions.
In contrast to conventional methods that adapt classifiers for a two-stage detection pro-
cess, leading to intricate pipelines requiring separate training for each component, YOLO
approaches OD as a regression problem [15].

In the YOLO paradigm, the anticipation of bounding boxes and class probabilities
within an image is accomplished using a solitary CNN. This streamlined approach stands
in contrast to the more convoluted pipelines associated with traditional methods.

5.1. YOLOv1

The fundamental principle introduced by YOLOv1 involves the introduction of a grid
cell with dimensions of “S x S” overlaid onto the image. When the centre of an object of
interest falls within one of these grid cells, that specific cell is designated to be responsible
for detecting the object. This strategic approach enables other cells to disregard the object’s
presence in case of multiple occurrences.

For the implementation of OD, each grid cell is tasked with predicting bounding
boxes, accompanied by their respective dimensions and confidence scores. This confi-
dence score denotes the likelihood of an object’s presence within the given bounding box.
Mathematically, the confidence score can be represented as Equation (6):

confidence score = c(object)× IoUtruth pred (6)

where c(object) signifies the probability of the object being present, with a range of
0–1, with 0 indicating that the object is not present, and IoUtruthpred represents the IoU
with the predicted bounding box with respect to the ground-truth bounding box. Each
bounding box consists of five components (x, y, w, h, and the confidence score), with the
first four components corresponding to the centre coordinates (x, y, width, and height) of
the respective bounding box.

The core objective of YOLO, and OD as a whole, revolves around the precise identifi-
cation and localisation of objects through bounding boxes. This necessitates the utilisation
of two sets of bounding box vectors: the ground-truth vector, denoted by vector y, and
the predicted vector, denoted by vector ŷ. To mitigate challenges arising from multiple
bounding boxes either containing no objects or representing the same object, YOLO incor-
porates non-maximum suppression (NMS). This process involves eliminating overlapping
predicted bounding boxes that exhibit an IoU value below a defined NMS threshold.
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To address the issue of multiple bounding boxes for the same object or bounding
boxes with a confidence score of zero (indicating the absence of an object), the authors
introduced distinct penalties. Bounding boxes containing objects are significantly pe-
nalised (γcoord = 5), while those indicating the absence of an object receive a milder penalty
(γnoobj = 0.5). The cumulative loss function computes the sum of all bounding box parame-
ters, including the coordinates (x, y), width, height, confidence score, and class probability.

The first component of the loss function computes the loss of bounding box predictions
concerning ground-truth bounding boxes, specifically focusing on coordinates xcenter and
ycenter. In this context, obj is set to 1 if an object resides within the j-th bounding box
prediction of the i-th cell; otherwise, it is set to 0. The selected predicted bounding box is
tasked with predicting the object with the highest IoU, as depicted in Equation (7):

γ ∑
S2

∑
B

obj(x− x̂)2 + (y− ŷ)2 (7)

The subsequent part of the loss function quantifies the prediction error in the width
and height of bounding boxes. The normalisation of width and height to a range between 0
and 1 ensures that their square roots amplify differences for smaller values compared to
larger values, as shown in Equation (8):

∑
S2

obj
√
(ŵ− w)2 + (ĥ− h)2 (8)

The loss of the confidence score is then computed based on the presence or absence of
an object with respect to the bounding box. The penalty for the object confidence error is
applied if the predictor is responsible for the ground-truth bounding box. Here, obj is set
to 1 when the object is present in the cell; otherwise, it is set to 0. On the contrary, noobj
functions inversely, as demonstrated in Equation (9).

∑
S2

∑
B

obj(c− ĉ)2 + γ ∑
S2

∑
B

noobj(x− x̂)2 + (c− ĉ)2 (9)

The final element of the loss function, analogous to normal classification loss, calculates
the loss of class (c) probabilities, excluding the obj portion, as detailed in Equation (10):

∑
S2

obj
classes

∑
i=0

(p(ci)− p̂(ci))
2 (10)

The initial YOLO architecture, based on the Darknet framework, comprised two sub-
variants. The first variant featured 24 convolutional layers, culminating in a connection
to the first of two fully connected layers. Conversely, the “Fast YOLO” variant comprised
only nine convolutional layers, each hosting fewer filters. Drawing inspiration from the
inception module in GoogleNet, a sequence of 1× 1 convolutional layers was implemented
to condense the feature space derived from prior layers.

In terms of performance, the simpler version of YOLO (with 24 convolutional layers)
trained on the PASCAL VOC datasets (2007 and 2012) achieved an mAP of 63.4% while
operating at a speed of 45 FPS. On the other hand, the Fast YOLO variant attained an mAP
of 52.7% at an impressive frame rate of 155 FPS. While these results surpassed real-time
detectors like DPM-v5, they fell short of the SOTA at that time, exemplified by Faster
R-CNN’s mAP of 71%.

However, several notable shortcomings were evident and demanded attention. For
instance, the YOLO architecture exhibited relatively lower recall and higher localisation
errors when compared to Faster R-CNN. Moreover, the architecture encountered challenges
in detecting objects in close proximity due to the limitation of each grid cell being restricted
to two bounding box proposals. These observed limitations served as crucial insights that
influenced the subsequent development of various YOLO variants.
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5.2. YOLOv2

Building upon the achievements of YOLOv1, YOLOv2 introduces further advance-
ments in its architecture. This iteration draws inspiration from the Network-in-Network
and VGG concepts. The Darknet-19 framework was chosen for YOLOv2, encompassing
19 convolutional layers along with 5 layers dedicated to maximum pooling, as depicted
in Table 2. To facilitate downsampling within the network structure, YOLOv2 employs a
blend of pooling layers and 1 × 1 convolutions.

Table 2. Darknet-19 framework [112].

Type Filters Size/Stride Output

Convolutional 32 3 × 3 224 × 224
Maxpool 2 × 2/2 112 × 112
Convolutional 64 3 × 3 112 × 112
Maxpool 2 × 2/2 56 × 56
Convolutional 128 3 × 3 56 × 56
Convolutional 64 1 × 1 56 × 56
Convolutional 128 3 × 3 56 × 56
Maxpool 2 × 2/2 28 × 28
Convolutional 256 3 × 3 28 × 28
Convolutional 128 1 × 1 28 × 28
Convolutional 256 3 × 3 28 × 28
Maxpool 2 × 2/2 14 × 14
Convolutional 512 3 × 3 14 × 14
Convolutional 256 1 × 1 14 × 14
Convolutional 512 3 × 3 14 × 14
Convolutional 256 1 × 1 14 × 14
Convolutional 512 3 × 3 14 × 14
Maxpool 2 × 2/2 7 × 7
Convolutional 1024 3 × 3 7 × 7
Convolutional 512 1 × 1 7 × 7
Convolutional 1024 3 × 3 7 × 7
Convolutional 512 1 × 1 7 × 7
Convolutional 1024 3 × 3 7 × 7

Convolutional 1000 1 × 1 7 × 7
Avgpool Global 1000
Softmax

One critical challenge in OD lies in the scarcity of labelled data, which often limits
techniques to classifying a predefined set of categories. YOLOv2 addresses this limitation
by leveraging scalability through the merger of ImageNet and the COCO dataset [113],
enabling detection across a vast range of over 9418 object instances. To enhance scalability,
YOLOv2 employs Word-Tree, a hierarchical classification and detection approach that
efficiently manages the increased number of categories.

YOLOv2 introduces significant improvements over V1, incorporating a range of data
augmentation methods and novel optimisation techniques. Noteworthy advancements include
the following:

• YOLOv2 introduces the ability to predict object dimensions across a spectrum of sizes,
from 320 × 320 to 608 × 608. This flexibility is achieved by discarding fully connected
layers, which were present in YOLOv1.

• YOLOv2 achieves a 4% mAP increase compared to V1 through the implementation
of a higher-resolution classifier. Unlike V1, which enlarged images from 224 × 224
to 448 × 448, the YOLOv2 classifier trains on 448 × 448 images for classification be-
fore detection. Subsequent fine-tuning enhances bounding box accuracy for higher-
resolution inputs.
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• By addressing input distribution inconsistency during training, batch normalisation
enhances learning efficiency and acts as a regularisation technique. This innovation
results in an approximate 2% mAP improvement.

• YOLOv2 improves upon YOLOv1’s direct bounding box coordinate prediction by
introducing a method that predicts location coordinates in relation to grid cell locations.
This adjustment leads to a 5% mAP increase, along with more uniform bounding box
aspect ratios and sizes.

• YOLOv2 employs convolutional layers to extract features and predicts bounding boxes
using anchor boxes, replacing fully connected layers. While enhancing recall by 7%,
this modification slightly reduces mAP by 0.3%.

• YOLOv2 employs a clustering algorithm based on K-means to group similar bound-
ing boxes. This approach eliminates the need for manually selecting anchor boxes,
resulting in improved accuracy.

To address the challenge of detecting smaller objects, YOLOv2 integrates skip con-
nections, inspired by ResNet. This technique combines high-resolution features with
lower-resolution ones, allowing the accurate detection of objects of varying sizes and
shapes. This refinement leads to a 1% increase in mAP. For instance, a 26× 26× 512 feature
map transforms into a 13 × 13 × 2048 feature map, which is then concatenated with the
model’s output, enabling better object recognition across different dimensions.

5.3. YOLOv3

YOLOv3 [114] was introduced in 2018 by Joesph Redmon et al. This iteration brought
significant enhancements that aligned with the latest technological advancements while
retaining its real-time processing capability. An expanded architecture is presented in
Table 3. Much like YOLOv2, YOLOv3 also predicts four coordinates for each bounding
box. However, YOLOv3 introduces an objectness score for each box, determined through
logistic regression. This score assumes values of 1 or 0, indicating whether the anchor box
has the highest overlap with the ground truth (1) or other anchor boxes (0). Unlike Faster
R-CNN [115], YOLOv3 associates a lone anchor box with each ground-truth object. In
cases where no anchor box is associated, only the classification loss is incurred, excluding
localisation and confidence losses.

Rather than utilising SoftMax for classification, they opted for binary cross-entropy,
enabling the assignment of multiple labels to a single box. They also introduced a more
extensive feature extractor consisting of 53 convolutional layers integrated with residual
connections. This architecture was referred to as Darknet-53, which involved substituting
all max-pooling layers with stride convolutions and integrating residual connections.
Comprising 53 convolutional layers, this backbone architecture emerged at a point when the
primary benchmark for OD transitioned from PASCAL VOC [116] to Microsoft COCO [113].
Consequently, all subsequent YOLO models were evaluated using the MS COCO dataset.

K-means [113] was utilised to determine eight prior boxes distributed across the three
scale feature maps. Notably, larger-scale feature maps incorporated progressively smaller
prior boxes. Further enhancements included a modified spatial pyramid pooling (SPP)
block within the backbone to accommodate a broader receptive field. In YOLOv3, feature
maps are structured with three scales, (416 × 416), (13 × 13), (26 × 26), and (52 × 52), for
input, with three prior boxes for each position, as shown in Figure 6. These improvements
collectively led to a 2.7% enhancement in the AP-50 metric. YOLOv3 achieved notable
results: an AP of 36.2% and an AP-50 of 60.6% at a processing speed of 20 FPS, surpassing
the pace of previous SOTA models.
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Table 3. YOLOv3 architecture [117].

Layer Filters Size Repeats Output Size

Image — — — 416 × 416
Conv 32 3 × 3 / 1 1 416 × 416
Conv 64 3 × 3 / 2 1 208 × 208
Conv 32 1 × 1 / 1 Conv × 1 208 × 208
Conv 64 3 × 3 / 1 Conv × 1 208 × 208

Residual — — Residual × 1 208 × 208
Conv 128 3 × 3 / 2 1 104 × 104
Conv 64 1 × 1 / 1 Conv × 2 104 × 104
Conv 128 3 × 3 / 1 Conv × 2 104 × 104

Residual — — Residual × 2 104 × 104
Conv 256 3 × 3 / 2 1 52 × 52
Conv 128 1 × 1 / 1 Conv × 8 52 × 52
Conv 256 3 × 3 / 1 Conv × 8 52 × 52

Residual — — Residual × 8 52 × 52
Conv 512 3 × 3 / 2 1 26 × 26
Conv 256 1 × 1 / 1 Conv × 8 26 × 26
Conv 512 3 × 3 / 1 Conv × 8 26 × 26

Residual — — Residual × 8 26 × 26
Conv 1024 3 × 3 / 2 1 13 × 13
Conv 512 1 × 1 / 1 Conv × 4 13 × 13
Conv 1024 3 × 3 / 1 Conv × 4 13 × 13

Residual — — Residual × 4 13 × 13

Figure 6. YOLOv3 architecture.

5.4. YOLOV4

In April 2020, the work by Alexey Bochkovskiy and colleagues [118] unveiled YOLOv4.
Despite a change in authorship, the new researchers adhered to the foundational principles
set by its predecessor, aiming for both high accuracy and real-time performance.

YOLOv4 marks a substantial departure from its previous iterations, introducing radi-
cal architectural transformations that yield remarkable performance enhancements. This
version amalgamates several key components, including the CSP Darknet53 SPP struc-
ture [119], PANet architecture [120], CBN integration [121], and SAM incorporation [122].
The result is an efficient and robust OD model that excels in both speed and accuracy.

The Complete Intersection over Union (CIoU) loss is utilised in YOLOv4 and subse-
quent variants to optimise the localisation accuracy by considering factors such as IoU,
maximum IoU, and regularisation, collectively facilitating the refinement of bounding box
predictions. This loss function enhances the ability of YOLOv4 to precisely locate and



Solar 2024, 4 368

delineate objects in the images, contributing to improved object detection performance.
The formula is demonstrated in Equation (11):

LCIoU = 1− IoU(b, b̂) +
(ρ2 − IoU(b, b̂)2)

ρ2

+ α · v
(1− IoU(b, b̂) + v)

(11)

where LCIoU is the CIoU loss, b represents the predicted bounding box, b̂ is the ground-truth
bounding box, IoU(b, b̂) calculates the Intersection over Union (IoU) between the predicted
and ground-truth boxes, ρ2 is a parameter for the maximum possible IoU, α is a balancing
factor, and V is used to account for small bounding boxes.

The YOLOv4 model prioritises ease of use and accessibility during the training process,
catering to individuals with diverse technical backgrounds. The study also validated the
effectiveness of contemporary SOTA methodologies, encompassing the bag-of-freebies
(BoF) and bag-of-specials (BoS) techniques, to enhance the efficiency of the training pipeline.
BoF techniques enhance model performance without incurring additional computational
burden during inference, at the cost of longer training times. Conversely, BoS methods
introduce modest inference time overheads but yield significant gains in detection accuracy.
These methods are summarised in Table 4 [123].

Distinguishing itself from other target detection frameworks, the YOLOv4 architecture
segments the model into distinct input, backbone, neck, and head components. Unlike
YOLOv3, where a single anchor point was responsible for detecting the ground truth,
YOLOv4 implements multiple anchor points for a single ground-truth detection. This
approach elevates the selection ratio of positive samples and mitigates the imbalance
between positive and negative samples. Furthermore, it eradicates grid sensitivity issues,
thereby elevating boundary detection accuracy.

Table 4. YOLOv4 bag-of-freebies and bag-of-specials comparison.

Backbone Detector

Bag-of-specials

• Multi-input weighted
residual connections

• Cross-stage partial con-
nections

• Mish activation

• Distance-IoU non-maximum
suppression

• Spatial attention module (SAM)
• Mish activation
• Spatial pyramid pooling block
• Path aggregation network

(PAN)

Bag-of-freebies

• Class label smoothing
• Data augmentation (mo-

saic, CutMix)
• Regularisation (Drop-

Block)

• Cross mini-batch normalisation
(CmBN)

• Data augmentation (mosaic,
Self-Adversarial Training)

• Multiple anchors for single
ground truth

• Elimination of grid sensitivity
• Cosine annealing scheduler
• Random training shapes
• Optimal hyperparameters
• CIoU loss

5.5. YOLOv5

In the year 2020, Glenn Jocher introduced YOLOv5, shortly following the release of
YOLOv4 [121]. YOLOv5, managed by Ultralytics, diverged from its predecessor, YOLOv4,
in several ways. Notably, YOLOv5 embraced PyTorch instead of Darknet for its develop-
ment, a strategic move that broadened its appeal to a wider user base due to PyTorch’s
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user-friendly characteristics. This framework shift leveraged PyTorch’s intuitive nature to
facilitate greater adoption.

Several advancements contribute to the heightened efficacy of YOLOv5 in OD tasks.
At its core, YOLOv5 features a Cross-Stage Partial (CSP) Net, a derivative of the ResNet
architecture. This incorporates a CSP connection, elevating network efficiency and compu-
tational reduction. The CSPNet is augmented by multiple spatial pyramid pooling (SPP)
blocks, which facilitate feature extraction at varying scales.

The architecture’s neck incorporates a path aggregation network (PAN) module, as
well as subsequent upsampling layers to enhance feature map resolution [124]. The head
of YOLOv5 employs a series of convolutional layers to predict bounding boxes and class
labels. YOLOv5 operates through anchor-based predictions, associating each bounding
box with a set of predetermined anchor boxes of specific shapes and sizes.

To compute the loss function, a combination of two distinct loss components is utilised.
Binary cross-entropy is employed for the calculation of class and objectness losses, while
Complete Intersection over Union (CIoU) is incorporated to assess loss related to localisa-
tion accuracy. The formula for determining the loss function is expressed in Equation (12):

loss = λ1 · Lcls + λ2 · Lobj + λ3 · Lloc (12)

where Lcls represents the binary cross-entropy loss for class predictions, Lobj is the binary
cross-entropy loss for objectness predictions, and Lloc is the CIoU loss for localisation. The
λ values represent weighting factors for each loss component.

The overarching aim of the YOLOv5 architecture is heightened efficiency and accuracy,
surpassing previous iterations of YOLO. It introduces enhancements in feature extrac-
tion, feature aggregation, and anchor-based predictions. Moreover, it offers a smoother
transition from PyTorch to ONNX and CoreML frameworks, compatible with IoS devices.
This seamless integration empowers developers to incorporate YOLOv5 into their mobile
applications without extensive modifications or additional frameworks.

When subjected to evaluation on the MS COCO dataset’s test-dev 2017 split, YOLOv5x
attained an AP score of 50.7% using a 640-pixel image size. Impressively, the model
demonstrated a rapid processing speed, achieving 200 FPS with a batch size of 32 on an
NVIDIA V100. When assessed with a larger input size of 1536 pixels, YOLOv5 achieved
an even higher AP score of 55.8%. This attests to the model’s ability to accurately detect
objects, even at higher resolutions. The variant comparison of YOLOv5 is presented in
Table 5.

Table 5. YOLOv5 variant comparison [124].

Model AP@50 Parameters FLOPs

YOLO-v5s 55.8% 7.5 M 13.2 B
YOLO-v5m 62.4% 21.8 M 39.4 B
YOLO-v5l 65.4% 47.8 M 88.1 B
YOLO-v5x 66.9% 89.0 M 166.4 B

5.6. YOLOv6

In September 2022, the Meituan Vision AI Department unveiled YOLOv6, releasing a
variety of adaptations of the core architecture that were notably tailored to suit industrial
deployment scenarios. This version showcased substantial advancements and refinements
within its architecture. A significant development was the introduction of CSPDarknet as
the new backbone architecture, surpassing the efficiency and speed benchmarks set by its
predecessors YOLOv4 and YOLOv5.

A particularly noteworthy enhancement in YOLOv6 lay in its incorporation of a feature
pyramid network (FPN) [125]. This addition led to the integration of a broader spectrum
of feature scales, resulting in a tangible enhancement in detection accuracy, underscoring
the commitment to augmenting performance. Furthermore, YOLOv6 was designed for
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optimal performance in real-time OD scenarios, exhibiting impressive frame rates on both
central processing units (CPUs) and graphics processing units (GPUs).

A pivotal evolution in the YOLOv6 architecture involved the decoupling of the classi-
fication and box regression heads. This strategic architectural revision introduced supple-
mentary layers within the network, effectively segregating these pivotal functions from the
final head [126]. Empirical evidence substantiated this refinement’s impact on elevating
the overall model’s performance, fortifying its capabilities [127].

Collectively, YOLOv6 represents a significant leap forward in the evolution of YOLO
architectures, encompassing a comprehensive spectrum of improvements spanning speed,
accuracy, and operational efficiency. Rigorous evaluation on the MS COCO dataset’s test-
dev 2017 subset showcased the prowess of the YOLOv6L model, yielding an AP of 52.5%
and an AP-50 of 70%. Impressively, this commendable performance was achieved while
maintaining a processing speed of approximately 50 FPS on an NVIDIA Tesla T4 GPU.

YOLOv6 is presented in three distinct variants, which are outlined in Table 6. Among
them, YOLOv6nano stands out as the smallest and fastest alternative, boasting a minimal
parameter count. This characteristic renders it particularly suitable for real-time OD tasks on
devices with limited computational capabilities. Moving upstream, instances necessitating
greater accuracy and the identification of smaller objects could lead to a preference for
YOLOv6tiny or YOLOv6small. The choice of which variant to employ hinges on the unique
use case, desired accuracy threshold, and available computational resources.

Table 6. YOLOv6 variant comparison [125].

Model Size (Pixels) mAP@50 Parameters FLOPs

YOLO-v6-nano 416–640 30.8–35.0% 4.3 M 4.7–11.1 G
YOLO-v6-tiny 640 41.3% 15 M 36.7 G
YOLO-v6-small 640 43.1% 17.2 M 44.2 G

5.7. YOLOv7

Published in July 2022, YOLOv7 [128] emerged as a significant advancement over its
predecessors, exhibiting heightened accuracy and speed improvements ranging from 5 FPS
to 160 FPS. The focus of these enhancements revolved around bolstering efficiency and
scalability, driven by the integration of the Extended Efficient Layer Aggregation Network
(E-ELAN) [129] and a scalable approach for concatenation-based architectures. E-ELAN
plays a crucial role in controlling the gradient path, thereby enhancing model learning and
convergence. This technique is versatile, applicable to models with stacked computational
blocks, and adeptly shuffles and merges features from distinct groups while maintaining
the integrity of the gradient path.

Model scaling constitutes another pivotal component in YOLOv7, facilitating the
creation of models of varying sizes. The devised scaling strategy adjusts the depth and
width of the blocks by a uniform factor. This approach preserves the optimal model
structure while mitigating hardware resource consumption.

The integration of various techniques collectively referred to as “bag-of-freebies”
further amplifies the YOLOv7 model’s performance. One such technique mirrors the
re-parameterised convolution concept employed in YOLOv6. However, the RepConvN
approach was introduced in YOLOv7 due to issues identified with the identity connection in
RepConv [130] and concatenation in DenseNet [131]. Additionally, coarse label assignment
is employed for the auxiliary head, while fine label assignment is reserved for the lead
head. The auxiliary head contributes to the training process, while the lead head yields
the final output. Furthermore, batch normalisation is harnessed, amalgamating the mean
and variance of batch normalisation into the convolutional layer’s bias and weight during
inference, ultimately enhancing model performance [132].

In a rigorous evaluation on the MS COCO dataset’s test-dev 2017, YOLOv7E6 garnered
remarkable results, achieving an AP of 55.9% and an AP for an IoU threshold of 0.5 (AP-50)
of 73.5%, as eloquently demonstrated in Table 7.
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Table 7. YOLOv7 variant comparison [133].

Model Size (Pixels) mAP@50 Parameters FLOPs

YOLO-v7 tiny 640 52.8% 6.2 M 5.8 G
YOLO-v7 640 69.7% 36.9 M 104.7 G

YOLO-v7X 640 71.1% 71.3 M 189.9 G
YOLO-v7E6 1280 73.5% 97.2 M 515.2 G
YOLO-v7D6 1280 73.8% 154.7 M 806.8 G

5.8. YOLOv8

In January 2023, Ultralytics unveiled YOLOv8, marked by its introduction in the field
of CV [134]. Demonstrating an impressive degree of precision, the YOLOv8 model’s perfor-
mance was gauged through evaluations on both COCO and Roboflow 100 datasets [134].
What sets YOLOv8 apart is its user-oriented features, such as a user-friendly command-line
interface and a well-structured Python package. The expanding and supportive YOLO
community offers substantial resources for those engaging with the model.

The innovation within YOLOv8, as outlined in its approach [135], is its deviation
from conventional anchor-based methods. Instead of relying on predetermined anchor
boxes, YOLOv8 employs an anchor-free approach by predicting the object’s centre. This
adjustment addresses the challenge posed by anchor boxes that might not accurately
represent custom dataset distributions. The benefits of this approach include a reduction in
the number of box predictions and an acceleration of the post-processing step involving non-
maximum suppression. Notably, the training routine of YOLOv8, encompassing techniques
like online image augmentation, including mosaic augmentation, enhances the model’s
aptitude for detecting objects across diverse conditions and novel spatial arrangements.

In its architectural evolution from its predecessor, YOLOv5 (likewise authored by the
same individuals), YOLOv8 introduces changes across its components. For instance, in the
neck segment, YOLOv8 directly concatenates features without enforcing uniform channel
dimensions. This strategy contributes to a reduction in the parameter count and overall
tensor size.

When tested on the MS COCO dataset’s test-dev 2017 subset, YOLOv8x delivered an
AP of 53.9% at an image size of 640 pixels, compared to YOLOv5’s AP of 50.7% with the
same input size. Furthermore, YOLOv8x exhibited remarkable processing speed, achieving
280 FPS using an NVIDIA A100 with TensorRT. Notably, YOLOv8 is available in a range of
five distinct variants, each tailored to specific accuracy and computational requisites, as
showcased in Table 8.

Table 8. YOLOv8 variant comparison [134].

Model Size (Pixels) mAP@50 Parameters FLOPs

YOLO-v8n 640 37.3% 3.2 M 8.7 G
YOLO-v8s 640 44.9% 11.2 M 28.6 G
YOLO-v8m 640 50.2% 25.9 M 78.9 G
YOLO-v8l 640 52.9% 43.7 M 165.2 G
YOLO-v8x 640 53.9% 68.2 M 257.8 G

5.9. YOLOv9

Wang et al. [136] introduced YOLOv9 in February 2024, which is the newest iteration
of the YOLO object detection model family. YOLOv9 boasts two key innovations: the
programmable gradient information (PGI) framework and the generalised efficient layer
aggregation network (GELAN).

The PGI framework addresses the inherent information bottleneck problem in deep
neural networks while also facilitating the compatibility of deep supervision mechanisms
with lightweight architectures. By incorporating PGI, both lightweight and deep archi-
tectures can achieve significant performance improvements in terms of accuracy. This is
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attributed to PGI’s ability to ensure reliable gradient information propagation during train-
ing, thereby enhancing the learning capacity and prediction accuracy of these architectures.

The proposed GELAN builds upon the gradient path optimisation principles of both
the CSPNet [137] and ELAN [138] neural network architectures. This novel architecture
prioritises a balance between model lightweightness, inference speed, and accuracy. The
detailed architecture of the GELAN is depicted in Figure 7. This intentional design choice
enables the GELAN to consistently deliver high performance across diverse computational
blocks and depth configurations. Consequently, the GELAN demonstrates its versatility
and applicability for deployment on a wide range of inference devices, including resource-
constrained edge devices.

Figure 7. GELAN architecture [136].

Building upon the strengths of the PGI and GELAN frameworks, YOLOv9 represents
a noteworthy stride forward in the domain of lightweight object detection. Despite its
nascent stage of development, YOLOv9 exhibits remarkable competitiveness, surpassing
YOLOv8 in terms of parameter reduction and computational efficiency, while achieving
a noteworthy improvement of 0.6% in AP on the MS COCO dataset. The performance
metrics of different YOLOv9 models are depicted in Table 9 [139].

Table 9. Performance metrics of YOLOv9 models [136].

Model Size (Pixels) APval APval
50 APval

75 Param. FLOPs

YOLOv9-S 640 46.8% 63.4% 50.7% 7.2 M 26.7 G
YOLOv9-M 640 51.4% 68.1% 56.1% 20.1 M 76.8 G
YOLOv9-C 640 53.0% 70.2% 57.8% 25.5 M 102.8 G
YOLOv9-E 640 55.6% 72.8% 60.6% 58.1 M 192.5 G

5.10. YOLOv10

YOLOv10, developed by researchers at Tsinghua University and released in May
2024 [140], represents a significant advancement in the field of real-time OD. This novel
architecture addresses a critical challenge in OD: balancing accuracy with computational
efficiency. YOLOv10 achieves this through a combination of innovative training strategies,
architectural modifications, and a range of model variants.

YOLOv10 tackles both accuracy and efficiency through a combination of training strate-
gies and architectural innovations. The core concept lies in “Consistent Dual Assignments”
during training, allowing the model to learn from rich supervision while eliminating the
need for computationally expensive non-maximum suppression (NMS) during inference.
As depicted in Figure 8, it significantly reduces processing time. YOLOv10 further enhances
efficiency with the Parallel Split-Attention (PSA) module and the Compact Inverted Bottle-
neck (CIB) block, enabling efficient multi-scale feature processing and effective attention
mechanisms. Finally, to boost accuracy, the Scaled Residual Connection and Scaled Weight



Solar 2024, 4 373

Shortcut techniques improve information flow within the network, leading to superior
object detection performance.

Extensive evaluations demonstrate that YOLOv10 surpasses previous YOLO ver-
sions and other SOTA models in terms of the accuracy–efficiency trade-off. For instance,
YOLOv10-S achieves faster processing speeds compared to RT-DETR-R18 while maintain-
ing similar accuracy. Similarly, YOLOv10-B offers significant reductions in latency and
parameter count compared to YOLOv9-C at equivalent performance levels. Moreover,
YOLOv10-L and YOLOv10-X variants outperform their YOLOv8 counterparts in terms of
accuracy while requiring fewer parameters. Table 10 summarizes the performance metrics
of YOLOv10 models.

Figure 8. Consistent dual assignments.

Table 10. Performance metrics of YOLOv10 models [141].

Model Size (Pixels) APval (%) FLOPs (G) Latency (ms)

YOLOv10-N 640 38.5 6.7 1.84
YOLOv10-S 640 46.3 21.6 2.49
YOLOv10-M 640 51.1 59.1 4.74
YOLOv10-B 640 52.5 92.0 5.74
YOLOv10-L 640 53.2 120.3 7.28
YOLOv10-X 640 54.4 160.4 10.70

5.11. Model Comparison

It is evident that the YOLO series of object detectors has undergone several iterations,
each contributing to the SOTA in CV. YOLOv1 (2015) laid the foundation for single-stage
OD with the Darknet framework. Subsequent versions, including YOLOv2 and v3, in-
troduced innovations such as anchor boxes, batch normalisation, and feature pyramid
networks within the Darknet framework. YOLOv4 (2020) brought improvements in the
form of the Mish activation function and CSPDarknet-53 backbone. YOLOv5 (2020) transi-
tioned to the PyTorch framework and introduced anchor-free detection, SWISH activation,
and PANet. YOLOv6, v7, and v8 (2022–2023) expanded on these innovations, incorporat-
ing self-attention, transformers, E-ELAN reparameterisation, and Generative Adversarial
Networks (GANs), maintaining a PyTorch-based approach. YOLOv9 distinguishes itself
through the integration of the PGI framework and the GELAN, contributing to improved
OD performance. YOLOv10 continues to improve real-time OD by bringing in break-
through innovations like consistent dual assignments for NMS-free training, along with
efficiency-driven modules (PSA, CIB) and accuracy-enhancing techniques like Scaled Resid-
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ual Connections and the Scaled Weight Shortcut. The key milestones of these diverse YOLO
versions are summarised in Table 11.

Table 11. Summary of YOLO versions.

Version Year Contributions Framework

v1 2015 Single-stage object detector Darknet
v2 2016 Multi-scale training, dimension clustering Darknet
v3 2018 SPP block, Darknet-53 backbone Darknet
v4 2020 Mish activation, CSPDarknet-53 backbone Darknet
v5 2020 Anchor-free detection, SWISH activation, PANet PyTorch
v6 2022 Self-attention, anchor-free OD PyTorch
v7 2022 Transformers, E-ELAN reparameterisation PyTorch
v8 2023 GANs, anchor-free detection PyTorch
v9 2024 PGI and GELAN PyTorch
v10 2024 Consistent dual assignments for NMS-free training PyTorch

6. PV Fault Detection via YOLO

This section presents a critical review of the existing literature focusing on the applica-
tion of various YOLO variants for the detection of photovoltaic (PV) system faults.

The study conducted by N. Prajapati et al. [142] revolves around the utilisation of
thermal images using a CNN learning algorithm, YOLO, for the detection and classification
of faults in PV modules. The primary objective of the research was to discern shading [143]
and bypass diode faults [144] in PV cells. The algorithm was implemented with the
identification of four different types of faults: temporary hotspot fault, permanent hotspot
fault, bypass diode fault, and cracks/wear and tear. The study achieved a maximum mAP
of 83.86% and an average training loss of 0.0453%. Notably, the authors emphasised the
absence of underfitting in their dataset. However, it is worth noting that the precision for
bypass diode faults was comparatively lower. The authors attributed this discrepancy to
the infrequent occurrence of bypass faults within the dataset, posing a notable limitation.
They suggested that a larger dataset featuring an increased number of faults would likely
enhance overall precision and performance.

A study conducted by Tahmid Tajwar et al. [145] delved into the realm of hotspot
detection within PV modules using YOLOv3 and infrared thermography (IRT). While
multiple methods encompassing electrical characterisation, EL imaging, and IR imaging
are available for hotspot detection [146], this study specifically opted for IR imaging due
to its widespread recognition within the domain [147]. Three training iterations were
conducted using datasets of 5, 10, and 14 images, respectively. The results demonstrate
that the detector trained on the largest dataset (14 images) exhibited superior accuracy and
identified the greatest number of hotspots. These findings suggest a positive correlation
between the diversity of the training dataset and the detector’s precision in identifying
hotspots. They emphasised that the inclusion of a more diversified dataset would likely
lead to enhancements in both the accuracy and the quality of hotspot detection results. This
research contributes to the field of photovoltaic condition monitoring, offering insights for
improving hotspot detection within PV modules.

Antonio Greco et al. [148] underscored the often-neglected aspect of PV panel detection
and the absence of a comprehensive performance evaluation framework. To bridge this
gap, the authors established a set of criteria that define an ideal detection algorithm. These
criteria encompass quantitative accuracy, real-time operability, the ability to analyse thermal
images without relying on calibrated RGB cameras, and a plug-and-play functionality that
eliminates the need for plant-specific configurations. The authors opted for YOLOv3, as it
fulfils these established criteria. The dataset employed in their study comprises thermal
camera footage captured by unmanned aerial vehicles (UAVs), encompassing diverse PV
plants. Building upon the dataset referenced in a prior work [149], this dataset comprises 18
videos containing 50,449 panels and 4939 instances of hotspots. Employing their YOLOv3-
based approach, the authors significantly elevated the precision level to 92%, surpassing
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the 83% achieved in a previous study [150]. Furthermore, an impressive F-score of 91%
was achieved for plant types not previously encountered in the dataset, thereby further
validating the approach’s efficacy. Remarkably, when presented with plant-specific imagery,
the model attained an accuracy of 95%. This study represents a pioneering application of
DL in the domain of PV panel detection, effectively demonstrating its superiority.

The work conducted by H. Wang et al. [151] proposed a cloud-edge technique that
leverages the YOLOv3-tiny algorithm and employed transfer learning to detect defects
within PV components. In their pursuit of enhancing the algorithm’s proficiency in detect-
ing small targets, the authors ingeniously integrated the stitching layer from the second
detection scale, shallow feature information, and a residual module into a third prediction
layer. This strategic inclusion of the residual module bolsters the depth and learning
capacity of the network model, enabling more effective extraction of target features. The
method’s efficacy was substantiated through evaluation, which revealed remarkable recall
and accuracy rates of 93.7% and 95.5%, respectively, for the identification of flaws in PV
components. Impressively, the detection of a single panoramic image was accomplished
within a mere 6.3 milliseconds, utilising only 64 MB of the model’s memory. The implemen-
tation of cloud-edge learning led to a 66% increase in the training time of a local sample
model, resulting in a commendable accuracy level of 99.78%. While the authors acknowl-
edge the time-saving advantages of fine-tuning at the edge, they posit that the introduction
of additional training data could substantially augment the efficacy of their approach.

A study conducted by A. D Tommaso et al. [152] focused on the automatic detection of
faults in PV panels through the utilisation of drones in two PV plants situated in southern
Italy. The inspection process was carried out employing a Sigma Ingegneria Efesto MKII
drone equipped with a DJI A2 flight controller (DJI, Shenzhen, China) and gimbal system.
Two cameras were affixed to the drone: one captured thermal infrared images (LWIR) and
low-resolution visible spectrum (VIS-LR) images, while the other was responsible for high-
resolution visible spectrum (VIS-HR) images. This study significantly stands out as one of
the pioneering works that harness UAV inspections through the utilisation of a YOLOv3
model. The detection endeavours encompassed a diverse array of faults, including soiling,
delamination, bird droppings, and the identification of risks posed by puddles post-rainfall.
Encouragingly, the authors reported positive outcomes, achieving a remarkable accuracy of
98% (AP@0.5) in PV panel detection for both PV plants. Regarding hotspot detection using
infrared thermal imagery, the study achieved noteworthy performance, boasting an AP@0.4
of 88.3% and an AP@0.5 of 66.9%. However, amidst this success, the authors did identify a
positive bias in the prediction of soiling areas. Additionally, they recognised a necessity
for future work to rectify defect localisation errors by substituting GPS in drones with
GNSS-RTK receivers. Notwithstanding these observations, the study exhibits promising
results in terms of reducing operation and maintenance costs for PV modules, thereby
underscoring the potential impact of this innovative approach.

In a study conducted by A. Gerd Imenes et al. [153], the aim was to enhance the
detection and classification of faults in PV modules through image processing using multi-
wavelength composite images. The selection of YOLOv3 as the detection algorithm was
underpinned by its favourable trade-off between computational cost and performance.
The researchers devised a strategy involving the creation of three-layered composite im-
ages, which merged both visible and infrared images. This approach using composite
images had previously demonstrated its efficacy in various applications, including shadow
detection [154].

In their research, J.-T. Zou et al. [155] advocated for the deployment of a 5G-enabled
drone equipped with a thermal camera for the inspection of PV panels. The study involved
the utilisation of a quadcopter drone equipped with a FLIR DUO PRO R thermal camera,
integrated into a three-axis gimbal. To facilitate their approach, the authors harnessed
a combination of Python, OpenCV, and Darknet YOLOv4 while incorporating real-time
GPS location tracking. The dataset employed encompasses 1000 thermal images, of which
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641 instances showcase cell failures. The authors report that achieving an mAP of 100% cor-
responds to an 89% confidence level, underscoring the precision of their proposed method.

Z. Meng et al. [156] introduced YOLO-PV, a solution rooted in the YOLOv4 framework,
aimed at addressing the precision and speed constraints inherent to Electroluminescence
(EL) image detection in PV modules. With the objective of countering the inconsistent
detection standards observed in production lines and power stations, the authors cate-
gorised the defects into four distinct groups: material defects, cracks, scratches, and other
anomalies. The YOLO-PV framework encompasses the quintessential components of object
detection models, featuring a backbone, neck, and head architecture. Notably, the authors
employ SPAN, a simplified rendition of PAN, depicted in Figure 9, that retains a single-size
feature map to mitigate computational overhead. In their validation experiment, YOLO-PV
attained an AP of 91.34%, marking a 0.64% enhancement over CSP-PV. This improvement
holds significance, as YOLO-PV manages to simultaneously trim down output feature
maps while bolstering AP. Furthermore, YOLO-PV succeeds in reducing processing speed
by 36.36% compared to its YOLOv4 counterpart. In order to forestall overfitting, the authors
judiciously incorporated techniques such as random rotation, the mosaic method, and
random exposure adjustment. Ultimately, YOLO-PV’s test performance culminated in an
impressive accuracy of 94.55%.

Figure 9. PANet configuration.

L.Li et al. [157] utilised YOLOv5 for the detection of defects on PV panels. The
researchers endeavoured to enhance the YOLOv5 architecture by incorporating a Bottle-
neckCSP module to amplify detection accuracy. They further adopted Ghost Convolution
in lieu of traditional convolution. Addressing the challenge of detecting tiny targets, an
additional prediction head was introduced to handle scale variations and mitigate misiden-
tifications of small targets. For classification after feature extraction, the FPN and PAN were
harnessed. This innovative approach, christened GBH-YOLOv5, is supported by a new
dataset named PV-Multi-Defect, accessible for specialised applications in this domain. The
dataset encompasses 1108 images featuring five defect types, with 886 images earmarked
for training and 222 images for validation. Notably, GBH-YOLOv5 achieved an impressive
mAP of 97.8 ± 0.02, outperforming five other major models. Significantly, it demonstrated
a noteworthy 27.8% enhancement in mAP when compared to Fast R-CNN [87].

F. Hong et al. [158] presented a distinctive framework for PV fault detection, leveraging
YOLOv5 and ResNet. Their approach involves the fusion of visible and infrared images
captured from the same angle and altitude. The study underscores the significance of
maintaining a low flight altitude for effective PV-array image capture. The proposed
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framework is structured into four stages: image acquisition, image segmentation, defect
detection, and defect warning display. The dataset employed is sourced from a single
PV power station in China’s Hainan Province, comprising 3000 original images taken at
various times of the day, distributed in a ratio of 22:7:1 for training, testing, and validation,
respectively. The defect detection model attains an accuracy score of 95%, surpassing VGG’s
performance of 93%. Evidently, the proposed framework exhibits promising potential in
PV fault detection, exhibiting superior accuracy compared to existing models.

M. Zhang et al. [159] undertook a study to enhance the fault detection approach for
PV modules using YOLOv5. The authors introduced deformable convolutions, replacing
certain traditional convolutions in the CSP module. This alteration facilitated the extraction
of features of diverse sizes and shapes, augmenting the model’s aptitude to detect various
defect types. Additionally, the authors integrated the neck with ECA-Net and expanded the
prediction heads to four, empowering shallow features to effectively identify small defects.
To enhance network training efficiency, the authors utilised k-means++ for anchor box
clustering, expediting convergence. The loss function was replaced with CIOU to elevate
prediction box accuracy. The improved approach achieved an mAP of 89.64%, marking a
substantial 7.85% improvement over the original model.

Q. Zheng [160] introduced S-YOLOv5, an enhancement of YOLOv5, tailored for the
detection of PV panels and hotspots. This lightweight model incorporates adaptive scaling
and normalisation for efficient feature extraction in the backbone, as well as the fusion
of features in the neck and prediction stages. The loss function and gradient descent
were harnessed to optimise the model’s weights and biases, minimising loss values. A
UAV equipped with a thermal camera captures images at varied resolutions, forming
an aerial image dataset. ShuffleNetv2 and focus techniques constitute the backbone of
S-YOLOv5. The input image is transformed into 12 channels through the focus operation.
The proposed approach achieved an mAP of 98.1%, outperforming comparative object
detection models like YOLOv5l (97.1%), YOLOc5x (96.5%), and YOLOv3 (96.4%) while
maintaining a detection speed of 49 FPS. Importantly, the model boasts significantly fewer
parameters than YOLOv5x, making it a lightweight yet potent choice.

In their study, X. Zhang et al. [161] introduced an innovative approach to detecting
defects in PV panels by utilising thermal images captured by a DJI M300RTK UAV equipped
with a DJI H20T thermal camera. The authors established a customised knowledge base
encompassing a variety of PV panel defects. Employing the YOLOv5 algorithm, the
researchers trained the model on a dataset of 10,772 IR images from eight PV plants. The
model achieved an mAP of 80.88% at a confidence threshold of 0.5 during evaluation.

Q. B. Phan et al. [162] focused on PV fault detection using YOLOv8. To enhance
the model’s performance, Particle Swarm Optimisation (PSO) [163,164] was integrated
to optimise essential parameters such as batch size, anchor box size, and learning rate.
The dataset consisted of 2624 normalised and labelled solar panel cell images collected
from various PV modules. The PSO algorithm improved YOLOv8’s performance over
YOLOv7’s, achieving an mAP of 94% compared to 88% for YOLOv7.

The wide application of YOLO variants for PV fault detection is evident from Table 12,
showcasing the diverse range of models and methodologies adopted for this critical task.
What stands out is the consistently high level of accuracy achieved across different domains,
including mAP, AP, and F1 score. Several YOLO variants, such as YOLOv4 and YOLOv5,
consistently attain impressive results, with detection accuracies nearing 99% in certain
cases. These remarkable outcomes underscore the robustness and adaptability of YOLO-
based models in detecting faults within PV systems. Whether through the utilisation of
drones, thermal imaging, or data augmentation techniques, YOLO variants demonstrate
their effectiveness in addressing the challenges of PV fault detection. The ability to attain
such high accuracy levels in diverse scenarios not only bolsters the reliability of PV systems
but also offers promising implications for the broader application of YOLO variants in the
field of CV and OD.
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Table 12. PV fault detection models and results.

Ref. Model Characteristics Results

[165] PV-YOLO PV-YOLO is combined with a transformer-based PVTv2
network to obtain edge details of faults.

92.56% mAP.

[142] YOLO Thermal images of PV modules on a learning algorithm
using CNN based YOLO

83.86% mAP.

[145] YOLOv3 IRT images of PV modules are utilized to identify hotspots
of PV modules and used to validate the outcome of the
detector.

More diversified data generates better precision
and hotspot detection

[148] YOLOv2 and YOLOv3 Detects PV panels in aerial imagery gathered from thermal
cameras on board of UAVs using CNN based framework-
YOLO

YOLOv2 = 89% F1 score. YOLOv3 = 91% F1 score.

[151] YOLOv3-tiny A cloud-based technique is used based on transfer learning
to detect the fault.

95.5% accuracy.

[152] YOLOv3 Model detects defects in PV using aerial images, validated
on large PV plants in Italy, achieving high accuracy and
efficiency in both thermographic and visible spectra.

98% AP @ 0.5.

[153] YOLOv3 This paper evaluates the use of CNNs and multi-
wavelength composite images for automating fault de-
tection and classification in large-scale PV module installa-
tions, demonstrating successful fault detection but limited
improvement in classification accuracy

75% mAP.

[166] YOLOv3 YOLOv3 is used to detect the faulty region or hotspot of
the PV while not considered as the best model. Faster
R-CNN was chosen as the best OB model.

34% mAP.

[167] YOLOv3-tiny The proposal consists of using UAV equipped with a ther-
mal camera and GPS with YOLOv3 to detect faults.

96.5% accuracy.

[155] YOLOv4 A drone is used to inspect solar panels with the help of 5G
and CV techniques.

100% mAP is achieved but with a confidence of
89%.

[156] YOLOv4 The PAN network is used for feature fusion, which in-
creases the model’s performance.

94.55% AP.

[168] YOLOv4, YOLOv4-tiny In this paper, YOLOv4 and YOLOv4-tiny with spatial pyra-
mid pooling is used with to solve PV fault detection.

YOLOv4 = 98.8% mAP. YOLOv4-tiny = 91.0%
mAP.

[169] YOLOv5 An EL image dataset of monocrystalline panels is used
with the YOLOv5 DNN.

Appx.77% mAP.

[170] YOLOv5 Developed YOLOv5s model enhanced with C3_cbam and
SPP_eca units for accurate detection of cracks and frag-
ments in PV modules from EL images

92.3% mAP.

[158] YOLOv5 YOLOv5 is combined with ResNet to perform image seg-
mentation and fault detection. The author claims that the
model works perfectly in all bright conditions.

95% accuracy.

[159] YOLOv5 This proposal uses mosaic and mix-up fusion data en-
hancement, K-means clustering, and the CIOU loss func-
tion to obtain optimised results.

89.64% mAP.

[160] YOLOv5 Real-time hot-spot fault detection integrating a lightweight
focus structure and ShuffleNetv2, suitable for deployment
on UAV platforms.

98.1% mAP

[161] YOLOv5 An AI-based UAV inspection and classification system
using thermal imaging, YOLOV5 improves efficiency and
safety in detecting defects in PV power plants

80.88% mAP @ 0.5.

[162] YOLOv8 Particle Swarm Optimisation and YOLOv8 are combined
to detect faults.

94% mAP.

7. Discussion

This review highlights the synergy between PV fault detection and the YOLO architec-
ture. PV fault detection, particularly during manufacturing, presents a complex challenge
due to stringent compliance requirements and the need for specific external conditions
to ensure robust quality inspection. Several key insights emerge from this analysis, as
described below.

7.1. Advantages of YOLO Methods in PV Inspection
7.1.1. Non-Invasive Inspection Demands

The PV manufacturing process comprises multiple stages, necessitating quality inspec-
tion as a sequential and gatekeeping process. Inspections must occur after the completion of
a process but before the initiation of subsequent stages. Traditional sensor-based solutions,
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which entail integrating multiple sensors along production lines for data extraction, can be
cost-prohibitive in terms of setup and maintenance. YOLO offers an appealing alternative
by providing a non-invasive approach, eliminating the need for numerous sensor streams.
This makes YOLO attractive for smaller or medium-sized enterprises seeking automated
quality inspection without incurring high deployment and upkeep costs.

7.1.2. Single-Stage Detection Efficiency

While the advantage of non-invasive inference applies to various CNNs, YOLO pos-
sesses an additional advantage due to its architectural design centred on detection and
classification through a single forward pass, unlike dual-stage detectors. This design feature
grants YOLO a significant inference speed advantage over two-stage detectors, which is
appealing to PV manufacturing facilities, as it reduces latency.

7.1.3. Real-Time Inference

YOLO’s evolution is grounded in achieving rapid inference while maintaining high
accuracy, an objective that aligns well with PV fault detection’s requirements. This focus
addresses the shortcomings of human-led inspection, namely, higher error rates and latency.
As demonstrated in Table 12, researchers have achieved remarkable results in both accuracy
and speed.

7.1.4. PyTorch Implementation

A significant driver of the widespread adoption of YOLO implementation is the
transition from DarkNet to PyTorch, introduced in YOLOv5. The user-friendly nature
of the PyTorch framework has enabled more researchers to explore, design, and develop
YOLO architectures tailored to the PV defect detection domain. Despite YOLOv5 be-
ing introduced almost five years after the original YOLO, it has gained popularity as
researchers’ preferred choice due to its lightweight profile and, notably, its user-friendly
development environment.

7.2. Limitations of YOLO Methods in PV Inspection
7.2.1. Need for Large Annotated Datasets

One of the main challenges in applying YOLO methods to PV fault detection is the
need for large, annotated datasets to train the models effectively. Collecting and annotating
PV fault data can be a time-consuming and resource-intensive process, requiring expertise
in both PV manufacturing and computer vision. This can be a significant hurdle for smaller
PV manufacturers or research groups with limited resources.

7.2.2. Detecting Subtle or Rare Defects

YOLO models may struggle with detecting subtle or rare defects in PV cells, especially
if these defects are not well represented in the training data. Imbalanced datasets, where
certain types of faults are more prevalent than others, can lead to biased models that fail to
generalise well to real-world scenarios. Addressing this issue may require techniques such
as data augmentation, class-weighting, or few-shot learning approaches.

7.2.3. Computational Requirements

While YOLO models are known for their real-time inference capabilities, they still
require significant computational resources, especially when dealing with high-resolution
PV imagery. The trade-off between model complexity, inference speed, and hardware
requirements must be carefully considered when deploying YOLO models in PV manufac-
turing settings. Balancing these factors may necessitate the use of specialised hardware,
such as GPUs or edge computing devices, which can increase implementation costs.
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8. Conclusions and Future Scope

In conclusion, this review has delved into the extensive landscape of employing
the YOLO architecture for PV fault detection. The synthesis of findings underscores
the resounding suitability of YOLO as the optimal choice for addressing the distinctive
demands of PV fault detection applications. This assertion gains strength through an
in-depth examination of a multitude of research endeavours that have harnessed various
YOLO variants to advance PV fault detection methodologies.

Notably, the architectural underpinnings of YOLO variants, with YOLOv5 exempli-
fying this trend, offer a compelling blend of architectural sophistication and inference
efficiency. This synergy adeptly addresses the intrinsic challenges of human-centric inspec-
tion processes, characterised by inherent error rates and latency concerns. The seminal
work by [160] stands as a testament to this symbiosis, showcasing an impressive 49 FPS
inference speed coupled with a commendable 98.1% mAP.

Anticipating the trajectory of future research, a discernible trend emerges in which the
focus will likely pivot toward refining the architectural landscape of YOLO variants for an
even broader array of PV fault scenarios. While the current discourse has predominantly
centred around micro-crack detection, the domain is ripe for expansion. In this vein,
researchers are poised to delve deeper into the realm of attention mechanisms within the
YOLO architecture. These attention mechanisms hold the potential to significantly enhance
the detection process, particularly for subtle and intricate faults that require careful scrutiny.

By weaving attention mechanisms into YOLO’s architecture, researchers aim to am-
plify the model’s sensitivity to nuanced anomalies, thus enabling the identification of
diverse fault manifestations with heightened precision. As the field progresses, the conver-
gence of attention-driven architectures and YOLO variants is poised to chart new frontiers
in the domain of PV fault detection.
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