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Abstract: The mathematical formalism of quantum mechanics is derived or “reconstructed” from
more basic considerations of the probability theory and information geometry. The starting point is
the recognition that probabilities are central to QM; the formalism of QM is derived as a particular
kind of flow on a finite dimensional statistical manifold—a simplex. The cotangent bundle associated
to the simplex has a natural symplectic structure and it inherits its own natural metric structure from
the information geometry of the underlying simplex. We seek flows that preserve (in the sense of
vanishing Lie derivatives) both the symplectic structure (a Hamilton flow) and the metric structure
(a Killing flow). The result is a formalism in which the Fubini–Study metric, the linearity of the
Schrödinger equation, the emergence of complex numbers, Hilbert spaces and the Born rule are
derived rather than postulated.

Keywords: information geometry; symplectic geometry; Hamilton–Killing flows; entropic dynamics

1. Introduction

In the traditional approach to quantum mechanics (QM), the Hilbert space plays a
central, dominant role and probabilities are introduced, almost as an afterthought, in order
to provide the phenomenological link for handling measurements. The uneasy coexistence
of the Hilbert and the probabilistic structures is reflected in the two separate modes of
wave-function evolution; one is the linear and deterministic Schrödinger evolution and
the other is the discontinuous and stochastic wave function collapse. It has given rise to
longstanding problems in the interpretation of the quantum state itself [1–5].

These difficulties have motivated alternative approaches in which, rather than pos-
tulating Hilbert spaces as the starting point, one recognizes that probabilities play the
dominant role; probabilities are not just an accidental feature peculiar to quantum mea-
surements. The goal there is to derive or “reconstruct” the mathematical formalism of QM
from more basic considerations of probability theory and geometry. (See, e.g., [6–11] and
references therein.)

In the entropic dynamics (ED) approach the central object is the epistemic configu-
ration space, which is a statistical manifold—a space in which each point represents a
probability distribution [11]. In this paper, our goal is to discuss those special curves that
could potentially play the role of trajectories. What makes those curves special is that they
are adapted to the natural geometric structures on the statistical manifold.

Two such structures are of central importance. The first is familiar from statistics,
i.e., all statistical manifolds have an intrinsic metric structure given by the information
metric [12,13]. The second is familiar from classical mechanics [14–16]. Since we are
interested in trajectories, we are naturally led to consider the vectors that are tangent to such
curves, as well as the dual vectors, or covectors—it is these objects that are used to represent
the analogues of the velocities of probabilities and their momenta. Vectors and covectors
live in the so-called tangent and cotangent spaces, respectively. It turns out that the
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statistical manifold plus all its cotangent spaces is itself a manifold—the cotangent bundle—
that can be endowed with a second natural structure called symplectic. In mechanics, the
cotangent bundle is known as phase space and the symplectic transformations are known
as canonical transformations.

There is extensive literature on the symplectic and metric structures inherent to QM.
They have been discovered, independently rediscovered, and extensively studied by many
authors [17–26]. Their crucial insight is that those structures, being of purely geometrical
nature, are not just central to classical mechanics, they are also central to quantum me-
chanics. Furthermore, the potential connection and relevance of information geometry to
various aspects of QM, including its metric structure, has also been studied [9–11,27–30].

To characterize congruences of curves in the epistemic phase space—or, equivalently,
the flows on the cotangent bundle—we must address two problems. First, we must charac-
terize the particular cotangent space and the symplectic structure that is relevant to QM.
This amounts to establishing the correct conjugate momenta to be paired to the coordinates,
which, in our case, are probabilities. In classical mechanics, this pairing is accomplished
with the help of a Lagrangian L(q, q̇) and the prescription p = ∂L/∂q̇. In the present prob-
lem, we have no access to a Lagrangian and a different criterion is adopted [11]. The second
problem is to provide the cotangent bundle with a metric structure that is compatible with
the information metric of the underlying statistical manifold. The issue is that cotangent
bundles are not statistical manifolds and the challenge is to identify the natural set of
assumptions that leads to the right metric structure.

We show that the flows that are relevant to quantum mechanics are those that preserve
(in the sense of vanishing Lie derivatives) both the symplectic structure (a Hamilton flow)
and the metric structure (a Killing flow). The characterization of these Hamilton–Killing
(HK) flows results in a formalism that includes states described by rays, a geometry given
by the Fubini–Study metric, flows that obey a linear Schrödinger equation, the emergence
of a complex structure, the Born rule, and Hilbert spaces. All these elements are derived
rather than postulated.

The present discussion includes two new developments. First, our focus is on isolating
the essential geometrical aspects of the problem (a discussion of the physical aspects is
given in [11]) and the main ideas are presented in the simpler context of a finite-dimensional
manifold—a simplex. Thus, what we derive here is the geometrical framework that applies
to a toy model—an n-sided quantum die. Second, the metric structure of the cotangent
bundle is found by a new argument involving the minimal assumption that the metric
of phase space is determined by the only metric structure at our disposal, namely, the
information metric of the simplex.

Is this all there is to quantum mechanics? We conclude with a word of caution.
The framework developed here takes us a long way towards justifying the mathematical
formalism that underlies quantum mechanics, but it is only a kinematical prelude to the
true dynamics. The point is that not every HK curve is a trajectory and not every parameter
that labels points along a curve is time. All changes of probabilities, including the changes
we call dynamics, must be compatible with the entropic and Bayesian rules that have been
found to be of universal applicability in inference. It is this additional requirement that
further restricts the HK flows to an entropic dynamics that describes an evolution in a
suitably constructed entropic concept of time [7,11].

This paper focuses on deriving the mathematical formalism of quantum mechanics,
but the ED approach has been applied to a variety of other topics in quantum theory.
These include the quantum measurement problem [31,32]; momentum and uncertainty
relations [33,34]; the Bohmian limit [34,35] and the classical limit [36]; extensions to curved
spaces [37]; to relativistic fields [38–40]; and the ED of spin [41].

2. Some Background

We deal with several distinct spaces. One is the ontic configuration space of microstates
labeled by i = 1 . . . n, which are the unknown variables we are trying to predict. Another
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is the space of probability distributions ρ = (ρ1 . . . ρn), which is the epistemic configuration
space or, to use a shorter name, the e-configuration space. This (n− 1)-dimensional statistical
manifold is a simplex S ,

S =
{

ρ| ρi ≥ 0 ; ∑n
i=1 ρi = 1

}
. (1)

As coordinates for a generic point ρ on S , we shall use the probabilities ρi themselves.
Given the manifold S , we can construct two other special manifolds that will turn out

to be useful, the tangent bundle TS and the cotangent bundle T∗S . These are fiber bundles;
the base manifold is S and the fibers at each point ρ are respectively the tangent TSρ and
cotangent T∗Sρ spaces at ρ. The tangent space at ρ, TSρ, is the vector space composed of
all vectors that are tangent to curves through the point ρ. While this space is obviously
important (it is the space of “velocities” of probabilities), in what follows, we will not have
much to say about it. Much more central to our discussion is the cotangent space at ρ, T∗Sρ

which is the vector space of all covectors at ρ.
As already mentioned, the reason we care about vectors and covectors is that these

are the objects that are used to represent velocities and momenta. The cotangent bundle
T∗S , plays the central role of the epistemic phase space, or e-phase space.

A point X ∈ T∗S is represented as X = (ρ, π), where ρ = (ρ1 . . . ρn) are coordinates
on the base manifold S and π = (π1 . . . πn) are some generic coordinates on the cotangent
space T∗Sρ at ρ. Curves on T∗S allow us to define vectors on the tangent spaces T(T∗S)X .
Let X = X(λ) be a curve parameterized by λ; then, the vector V̄ tangent to the curve at
X = (ρ, π) has components dρi/dλ and dπi/dλ and is written as

V̄ =
d

dλ
=

dρi

dλ
ρ̄i +

dπi
dλ

π̄i =
dρi

dλ

∂

∂ρi +
dπi
dλ

∂

∂πi
, (2)

where ρ̄i and π̄i are the basis vectors, the index i = 1 . . . n is summed over and we adopt
the standard notation in differential geometry, ρ̄i = ∂/∂ρi and π̄i = ∂/∂πi. The directional
derivative of a function F(X) along the curve X(λ) is

dF
dλ

=
∂F
∂ρi

dρi

dλ
+

∂F
∂πi

dπi
dλ

def
= ∇̃F[V̄] , (3)

where ∇̃ is the gradient in T∗S , that is, the gradient of a generic function F(X) = F(ρ, π) is

∇̃F =
∂F
∂ρi ∇̃ρi +

∂F
∂πi
∇̃πi , (4)

where ∇̃ρi and ∇̃πi are the basis covectors and the tilde ‘˜’ serves to distinguish the gradient
∇̃ on the bundle T∗S from the gradient ∇ on the simplex S .

Here, unfortunately, we encounter a technical difficulty due to the fact that the space
S is constrained to normalized probabilities so that the coordinates ρi cannot be varied
independently. This problem is handled, without loss of generality, by embedding the
(n− 1)-dimensional manifold S into a manifold of one dimension higher, the so-called
positive-cone, denoted S+, where the coordinates ρi are unconstrained.

To simplify the notation, a point X = (ρ, π) in the 2n-dimensional T∗S+ is labeled by
its coordinates Xαi = (X1i, X2i) = (ρi, πi), where αi is a composite index. The first index α
(chosen from the beginning of the Greek alphabet) takes two values, α = 1, 2. Since α keeps
track of whether i is an upper ρi index (α = 1) or a lower πi index (α = 2), from now on we
can set ρi = ρi. Then, Equations (2) and (4) are written as

V̄ =
d

dλ
= Vαi ∂

∂Xαi and ∇̃F =
∂F

∂Xαi ∇̃Xαi . (5)
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The repeated indices indicate a double summation over α and i. The action of the basis
covectors ∇̃Xαi on the basis vectors, ∂/∂Xβj = ∂βj, is given by

∇̃Xαi[∂βj] =
∂Xαi

∂Xβj = δαi
βj so that ∇̃F[V̄] =

∂F
∂Xαi Vαi =

dF
dλ

(6)

is the directional derivative of F along the vector V̄.

3. Hamiltonian Flows

Just as a manifold can be supplied with a symmetric bilinear form, the metric tensor,
which gives it the fairly rigid structure described as its metric geometry, cotangent bundles
can be supplied with an antisymmetric bilinear form, the symplectic form, which gives them
the somewhat floppier structure called symplectic geometry (Arnold 1997 [15,16]).

A vector field V̄(X) defines a space-filling congruence of curves Xi = Xi(λ) that are
tangent to the field V̄(X) at every point X. We seek those special congruences or flows that
reflect the symplectic geometry.

3.1. hE Symplectic Form

Once the local coordinates (ρi, πi) on T∗S+ are established there is a natural choice of
symplectic form

Ω = ∇̃ρi ⊗ ∇̃πi − ∇̃πi ⊗ ∇̃ρi . (7)

The question of how to choose those local coordinates, which are Darboux coordinates
for the cotangent bundle, remains open. The answer is not to be found in mathematics
but in physics. In classical mechanics, the criterion for choosing a canonical momentum
is provided by a Lagrangian; however, here, we do not have a Lagrangian. An alter-
native criterion more closely tailored to the framework presented here is provided by
entropic dynamics [11]. From now on, we assume that the correct πi coordinates have
been identified.

The action of Ω[·, ·] on two vectors V̄ = d/dλ and Ū = d/dµ is obtained using (6).

∇̃ρi(V̄) = V1i and ∇̃πi(V̄) = V2i . (8)

The result is

Ω[V̄, Ū] = V1iU2i −V2iU1i = Ωαi,βjVαiUβj where Ωαi,βj =

[
0 1
−1 0

]
δij . (9)

3.2. Hamilton’s Equations and Poisson Brackets

Next, we derive the 2n-dimensional T∗S+ analogues of the results that are standard
in classical mechanics [14–16]. We seek those vector fields V̄(X) that generate flows (the
congruence of integral curves) that preserve the symplectic structure in the sense that

£VΩ = 0 , (10)

where the Lie derivative [16] is

(£VΩ)αi,βj = Vγk∂γkΩαi,βj + Ωγk,βj∂αiVγk + Ωαi,γk∂βjVγk . (11)

Since, by Equation (9), the components Ωαi,βj are constant, ∂γkΩαi,βj = 0, we can rewrite
£VΩ as

(£VΩ)αi,βj = ∂αi(Ωγk,βjVγk)− ∂βj(Ωγk,αiVγk) , (12)
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which is the exterior derivative (roughly, the curl) of the covector Ωγk,αiVγk. By Poincare’s
lemma, requiring £VΩ = 0 (a vanishing curl) implies that Ωγk,αiVγk is the gradient of a
scalar function, which we denote by Ṽ(X),

Ωγk,αiVγk = ∂αiṼ or Ω(V̄, ·) = ∇̃Ṽ(·) . (13)

In the opposite direction, we can easily check that (13) implies £VΩ = 0. Using (9),
Equation (13) is more explicitly written as

dρi

dλ
∇̃πi −

dπi
dλ
∇̃ρi =

∂Ṽ
∂ρi ∇̃ρi +

∂Ṽ
∂πi
∇̃πi , (14)

or
dρi

dλ
=

∂Ṽ
∂πi

and
dπi
dλ

= − ∂Ṽ
∂ρi , (15)

which we recognize as Hamilton’s equations for a Hamiltonian function Ṽ. This justifies
calling V̄ the Hamiltonian vector field associated to the Hamiltonian function Ṽ. In other words,
the flows that preserve the symplectic structure, £VΩ = 0, are generated by Hamiltonian
vector fields V̄ associated to Hamiltonian functions Ṽ.

From (9) and (15) the action of the symplectic form Ω on two Hamiltonian vector
fields V̄ = d/dλ and Ū = d/dµ generated, respectively, by Ṽ and Ũ, is

Ω[V̄, Ū] =
dρi

dλ

dπi
dµ
− dπi

dλ

dρi

dµ
=

∂Ṽ
∂ρi

δŨ
δπi
− ∂Ṽ

∂πi

∂Ũ
∂ρi

def
= {Ṽ, Ũ} , (16)

where, on the right hand side, we have introduced the Poisson bracket notation. In other
words, the action of Ω on two Hamiltonian vector fields is the Poisson bracket of the
associated Hamiltonian functions. We can also check that the derivative of an arbitrary
function F(X) along the vector field V̄ = d/dλ is

dF
dλ

= {F, Ṽ} . (17)

Thus, the Hamiltonian formalism that is so familiar in physics emerges from purely geometrical
considerations. It might be desirable to adopt a more suggestive notation; instead of (Ṽ, λ) let
us write (H̃, τ). Then, the flow generated by a Hamiltonian function H̃ and parameterized
by “time” τ is given by Hamilton’s equations in the standard form,

dρi

dτ
=

∂H̃
∂πi

and
dπi
dτ

= −∂H̃
∂ρi , (18)

and the τ evolution of any well-behaved function f (X) is given by

d f
dτ

= H̄( f ) = { f , H̃} with H̄ =
∂H̃
∂πi

∂

∂ρi −
∂H̃
∂ρi

∂

∂πi
. (19)

The difference with classical mechanics is that, here, the degrees of freedom are probabilities
and not ontic variables such as, for example, the positions of particles.

3.3. The Normalization Constraint

Since our actual interest is not in flows on T∗S+ but on the bundle T∗S of normal-
ized probabilities, we shall restrict ourselves to flows that preserve the normalization of
probabilities. Let

|ρ| def
=

n

∑
i=1

ρi and Ñ def
= 1− |ρ| . (20)
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We seek those special Hamiltonians H̃ such that the initial condition Ñ = 0 is preserved by
the flow, that is,

∂τ Ñ = {Ñ, H̃} = 0 or ∑i
∂H̃
∂πi

= ∑i
dρi

dτ
= 0 . (21)

Indeed, the actual quantum Hamiltonians will preserve Ñ = const. even when the constant
does not vanish [11]. Since the probabilities ρi must remain positive, we further require
that dρi/dτ ≥ 0 when ρi = 0.

We can also consider the Hamiltonian flow generated by Ñ and parameterized by ν.
From Equation (15) the corresponding Hamiltonian vector field N̄ is given by

N̄ = Nαi ∂

∂Xαi with Nαi =
dXαi

dν
= {Xαi, Ñ} , (22)

or, more explicitly,

N1i =
dρi

dν
= 0 and N2i =

dπi
dν

= 1 . (23)

The integral curves generated by Ñ are found by integrating (23). The result is

ρi(ν) = ρi(0) and πi(ν) = πi(0) + ν , (24)

which amounts to shifting all momenta by the i-independent parameter ν. We can also see
that, if Ñ is conserved along H̄, then H̃ is conserved along N̄.

dH̃
dν

= {H̃, Ñ} = 0 , (25)

which implies that the conserved quantity Ñ is the generator of a symmetry transformation.
To summarize: the phase space of interest is T∗S , but the description is simplified

by using the unnormalized coordinates ρ of the larger embedding space T∗S+. The in-
troduction of one superfluous ρ coordinate forces us to also introduce one superfluous π
momentum. We eliminate the extra coordinate by imposing the constraint Ñ = 0. We elimi-
nate the extra momentum by declaring it unphysical; the shifted point (ρ′, π′) = (ρ, π + ν)
is declared to be equivalent to (ρ, π). This equivalence is described as a global “gauge”
symmetry which, as we shall see later in the paper, is the reason why quantum mechanical
states are represented by rays rather than vectors in a Hilbert space.

4. The Information Geometry of E-Phase Space

Our next goal is to extend the metric of the simplex S—given by information geometry—
to the full e-phase space, T∗S . The extension can be carried out in many ways [9–11,42].
The virtue of the derivation below is that the number of input assumptions is kept to a
minimum.

4.1. The Metric on the Embedding E-Phase Space T∗S+

First, we assign a metric to the embedding bundle T∗S+; then, we consider the metric
it induces on T∗S . The metric of the space S+ of unnormalized probabilities [13,43] is

δ`2 = gijδρiδρj with gij = A(|ρ|)ninj +
B(|ρ|)

2ρi δij , (26)

where n is a covector with components ni = 1 for all i = 1 . . . n and A(|ρ|) and B(|ρ|) are
smooth scalar functions of |ρ| = ∑ ρi. Since the only tensor at our disposal is gij the length
element of T∗S+ must be of the form

δ ˜̀2 = αgijδρiδρj + βgj
i δρiδπj + γgijδπiδπj , (27)
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where α, β and γ are constants. Since δρi and δπi are vectors and covectors, the requirement
that δ ˜̀2 induce the same magnitudes gijδρiδρj on TS+ρ and gijδπiδπj on T∗S+ρ , as given by
information geometry, implies that α = γ = 1. To fix β, let us consider a curve ρ = ρ(τ)
and π = π(τ) on T∗S+ and its flow-reversed or τ-reversed curve given by ρ′(τ) = ρ(−τ)
and π′(τ) = −π(−τ). We require that the speed (d ˜̀/dτ)2 remains invariant under flow-
reversal. Since, under flow-reversal, the mixed ρπ terms in (27) change sign, it follows
that invariance implies that β = 0. We emphasize that imposing that the e-phase space
be symmetric under flow-reversal does not amount to imposing time-reversal invariance;
time-reversal violations might still be caused by interaction terms in the Hamiltonian.
The resulting line element, which has been designed to be fully determined by information
geometry, takes the form

δ ˜̀2 = Gαi,βjδXαiδXβj = gijδρiδρj + gijδπiδπj . (28)

4.2. A Complex Structure for T∗S+

The metric tensor G and its inverse G−1 can be used to lower and raise indices. In par-
ticular, with G−1, we can raise the first index of the symplectic form Ωαi,βj in Equation (9).

Gαi,γkΩγk,βj
def
= −Jαi

βj . (29)

The tensor J has several important properties. These are most easily derived by writing G
and Ω in block matrix form, i.e.,

G−1 =

[
g−1 0

0 g

]
, Ω =

[
0 1
−1 0

]
, J =

[
0 −g−1

g 0

]
. (30)

We can immediately check that J J = −1, which shows that J is a square root of the
negative identity matrix. Thus, J endows T∗S+ with a complex structure. To summarize, in
addition to the symplectic Ω and metric G structures, the cotangent bundle T∗S+ is also endowed
with a complex structure J. Such highly structured spaces are generically known as Kähler
manifolds. Here, we deal with a special Kähler manifold where the space of ρs is a statistical
manifold and the spaces of πs are flat cotangent spaces. However, ultimately, the geometry
of T∗S+ is only of marginal interest; what matters is the geometry it induces on the e-phase
space T∗S of normalized probabilities, to which we turn next.

4.3. The Metric Induced on the E-Phase Space T∗S

As we saw above the e-phase space T∗S can be obtained from the space T∗S+ by the
restriction |ρ| = 1 and by identifying the gauge equivalent points (ρi, πi) and (ρi, πi + niν).
Consider two neighboring points (ρi, πi) and (ρ′i, π′i) with |ρ| = |ρ′| = 1, the metric
induced on T∗S is defined as the shortest T∗S+ distance between (ρi, πi) and the points
on the ray defined by (ρ′i, π′i). Since the T∗S+ distance between (ρi, πi) and (ρi + δρi, πi +
δπi + niν) is

δ ˜̀2(ν) = gijδρiδρj + gij(δπi + niν)(δπj + njν) , (31)

the metric on T∗S is defined by δs̃2 = minν δ ˜̀2. Imposing |δρ| = 0, the value of ν that
minimizes (31) is ν = −〈δπ〉 = −∑i ρiδπi. Therefore, the metric on T∗S , which measures
the distance between neighboring rays, is

δs̃2 =
n

∑
i=1

[
B(1)
2ρi (δρi)2 +

2ρi

B(1)
(δπi − 〈δπ〉)2

]
. (32)

From now on, we set B(1) = 1, which only amounts to a choice of units and has no effect
on our results. (In [11], we chose B(1) = h̄.)

Although the metric (32) is expressed in a notation that may be unfamiliar, it turns
out to be equivalent to the well-known Fubini–Study metric. Thus, the recognition that the
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e-phase space is the cotangent bundle of a statistical manifold led us to a novel derivation
based on information geometry.

An important feature of the T∗S metric (32) is that, except for the irrelevant constant
B(1), it has turned out to be independent of the particular choices of the functions A(|ρ|)
and B(|ρ|) (see Equation (26)) that define the geometries of the embedding spaces S+ and
T∗S+. Therefore, without any loss of generality, we can simplify the analysis considerably
by choosing A(|ρ|) = 0 and B(|ρ|) = 1, which gives the embedding spaces the simplest
possible geometries, namely, they are flat. With this choice the T∗S+ metric, Equation (28)
becomes

δ ˜̀2 =
n

∑
i=1

[
1

2ρi δρ2
i + 2ρiδπ2

i

]
= Gαi,βjδXαiδXβj with Gαi,βj =

[
δij/2ρi 0

0 2ρiδij

]
(33)

and the tensor J, Equation (30), which defines the complex structure, becomes

Jαi
βj = −Gαi,γkΩγk,βj =

[
0 −2ρiδij

δij/2ρi 0

]
. (34)

4.4. Refining the Choice of Cotangent Space: Complex Coordinates

Having endowed the e-phase spaces T∗S+ and T∗S with both metric and complex
structures, we can now revisit and refine our choice of cotangent spaces. So far, we assumed
the cotangent space T∗S+ρ at ρ to be the flat Euclidean n-dimensional space Rn. It turns out
that the cotangent space that is relevant to quantum mechanics requires a further restriction.
To see what this is, we use the fact that T∗S+ is endowed with a complex structure, which
suggests a coordinate transformation from (ρ, π) to complex coordinates (ψ, iψ∗),

ψi = ρ1/2
i eiπi and iψ∗i = iρ1/2

i e−iπi , (35)

Thus, a point ψ ∈ T∗S+ has coordinates

ψµi =

(
ψ1i

ψ2i

)
=

(
ψi

iψ∗i

)
, (36)

where the index µ = 1, 2 takes two values (with µ, ν, . . . chosen from the middle of the
Greek alphabet).

Since changing the phase πi → πi + 2π yields the same point ψ, we see that the new
T∗S+ρ is a flat n-dimensional “hypercube” (its edges have a coordinate length of 2π) with
the opposite faces identified (periodic boundary conditions). Thus, the new T∗S+ρ is locally
isomorphic to the old Rn, which makes it a legitimate choice of cotangent space. (Strictly,
T∗S+ρ is a parallelepiped; from (28), we see that the lengths of its edges are `i = 2π(2ρi)

1/2

which vanish at the boundaries of the simplex.)
We can check that the transformation from real (ρ, π) to complex coordinates (ψ, iψ∗)

is canonical, so that

Ωµi,νj =

[
0 1
−1 0

]
δij , (37)

retains the same form as (9).
Expressed in ψ coordinates, the Hamiltonian flow generated by the normalization

constraint (24) is the familiar phase shift ψi(ν) = ψi(0)eiν. Thus, the gauge symmetry
induced by the constraint Ñ = 0 is the familiar multiplication by a constant phase factor.

In ψ coordinates, the metric G on T∗S+ Equation (33) becomes

δ ˜̀2 = −2i
n

∑
i=1

δψiδiψ∗i = Gµi,νj δψµiδψνj where Gµi,νj = −iδij

[
0 1
1 0

]
. (38)
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Finally, using the inverse Gµi,λk to raise the first index of Ωλk,νj gives the ψ components of
the tensor J,

Jµi
νj = −Gµi,λkΩλk,νj =

[
i 0
0 −i

]
δij . (39)

5. Hamilton–Killing Flows

In the previous sections we studied those Hamiltonian flows K̄ that, in addition to
preserving the symplectic form, are generated by a gauge invariant K̃ so they also preserve
the normalization constraint Ñ. Our next goal is to find those flows that also happen to
preserve the metric G of T∗S+, that is, we want K̄ to be a Killing vector. The vector field K̄
is determined by the Killing equation [16], £KG = 0, or

(£KG)µi,νj = Kλk∂λkGµi,νj + Gλk,νj∂µiKλk + Gµi,λk∂νjKλk = 0 . (40)

Since Equation (38) gives ∂λkGµi,νj = 0, the Killing equation simplifies to

(£KG)µi,νj = −i

 ∂K2j

∂ψi
+ ∂K2i

∂ψj
; ∂K1j

∂ψi
+ ∂K2i

∂iψ∗j
∂K2j

∂iψ∗i
+ ∂K1i

∂ψj
; ∂K1j

∂iψ∗i
+ ∂K1i

∂iψ∗j

 = 0 , (41)

where ∂/∂iψ∗i
def
= −i∂/∂ψ∗i . If we further require that K̄ is a Hamiltonian flow, £KΩ = 0,

then Kµi satisfies Hamilton’s equations,

K1i =
∂K̃

∂iψ∗i
and K2i = − ∂K̃

∂ψi
. (42)

Substituting into (41), we find

∂2K̃
∂ψi∂ψj

= 0 and
∂2K̃

∂ψ∗i ∂ψ∗j
= 0 . (43)

Therefore, in order to generate a flow that preserves both G and Ω, the function K̃(ψ, ψ∗)
must be linear in both ψ and ψ∗.

K̃(ψ, ψ∗) =
n

∑
i,j=1

ψ∗i K̂ijψj +
n

∑
i=1

(
ψ∗i L̂i + M̂iψi

)
+ const . (44)

The kernels K̂ij, L̂i and M̂i are independent of ψ and ψ∗. Imposing that the flow preserves
the normalization constraint Ñ = const, Equation (21), implies that K̃ must be invariant
under the phase shift ψ→ ψeiν. Therefore, L̂i = M̂i = 0 and we conclude that

K̃(ψ, ψ∗) =
n

∑
i,j=1

ψ∗i K̂ijψj + const . (45)

The corresponding HK flow is given by Hamilton’s equations

dψi
dλ

= K1i =
∂K̃

∂iψ∗i
=

1
i

n

∑
j=1

K̂ijψj , (46)

diψ∗i
dλ

= K2i = − ∂K̃
∂ψi

= −
n

∑
j=1

ψ∗j K̂ji . (47)
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The constant in (45) can be dropped, because it has no effect on the flow. Taking the complex
conjugate of (46) and comparing with (47) show that the kernel K̂ij is Hermitian and that
the corresponding Hamiltonian functionals K̃ are real.

K̂∗ij = K̂ji and K̃(ψ, ψ∗)∗ = K̃(ψ, ψ∗) . (48)

To summarize, the preservation of the symplectic structure, the metric structure and the nor-
malization constraint leads to Hamiltonian functions K̃ that are bilinear in ψ and ψ∗, Equation (45).
This is the main result of this paper. To appreciate its significance, once again, we adopt a
more suggestive notation, i.e., the flow generated by the Hamiltonian function

H̃(ψ, ψ∗) =
n

∑
i,j=1

ψ∗i Ĥijψj is
dψi
dτ

= {ψi, H̃} or i
dψi
dτ

=
n

∑
j=1

Ĥijψj , (49)

which is recognized as the Schrödinger equation. Beyond being Hermitian, the actual form
of the kernel Ĥij remains undetermined.

The central feature of Hamilton’s Equations (46) or of the Schrödinger Equation (49)
is that they are linear. Given two solutions ψ(1) and ψ(2) and arbitrary constants c1 and
c2, the linear combination ψ(3) = c1ψ(1) + c2ψ(2) is also a solution and this is extremely
useful in calculations. Unfortunately, this is an HK flow on the embedding space T∗S+ and,
when the flow is projected onto the e-phase space T∗S , the linearity is severely restricted
by normalization. If ψ(1) and ψ(2) are normalized points on T∗S , the superposition ψ(3)

is not in general a normalized point on T∗S , unless the constants c1 and c2 are chosen
appropriately. Furthermore, the states ψ′(1) = ψ(1)eiν1 and ψ′(2) = ψ(2)eiν2 are supposed to
be “physically” equivalent to the original ψ(1) and ψ(2), but, in general, the superposition
ψ′(3) = c1ψ′(1) + c2ψ′(2) is not equivalent to ψ(3). In other words, the mathematical linearity
of (46) or (49) does not extend to a full-blown superposition principle for physically equivalent
states. On the other hand, any point ψ deserves to be called a “state” in the limited sense
that it may serve as the initial condition for a curve in T∗S+. Since, given two states ψ(1)

and ψ(2), their superposition ψ(3) is also a state, we see that the set of states {ψ} forms a
linear vector space. This is a structure that turns out to be very useful.

6. Hilbert Space

Above we saw that the possible initial conditions for an HK flow, the points ψ of
T∗S+, form a linear vector space. To take full advantage of linearity we would like to
endow this vector space with the additional structure of an inner product and turn it into a
Hilbert space—a term which we loosely use to describe any complex vector space with a
Hermitian inner product. The metric tensor G (Equation (38)) and the symplectic form Ω
(Equation (37)) are supposed to act on vectors d/dλ; their action on the points ψ or (ρ, π) is
not defined. However, the choice of inner product for the points ψ is natural, in the sense
that the necessary ingredients, G and Ω, are already available.

We adopt the familiar Dirac notation to represent the states ψ as vectors |ψ〉. In order
that the inner product 〈ψ|φ〉 be preserved it is defined in terms of the preserved tensors G
and Ω,

〈ψ|φ〉 def
=

1
2
(
Gµi,νj + αΩµi,νj

)
ψµiφνj , (50)

where α is a constant and, to follow convention, the overall constant is set to 1/2. Using
Equation (37) and (38), we obtain

〈ψ|φ〉 = 1
2
(ψi, iψ∗i )(G + αΩ)

(
φj

iφ∗j

)
=

1
2

n

∑
i=1

((1− iα)ψ∗i φi + (1 + iα)φ∗i ψi) . (51)

To fix α, we impose that 〈ψ|φ〉∗ = 〈φ|ψ〉, which implies that α = ±i. In order to comply
with the standard convention that the inner product 〈ψ|φ〉 is anti-linear in the first factor
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and linear in the second factor, we select α = +i. The result is the familiar expression for
the positive definite inner product,

〈ψ|φ〉 def
=

1
2
(
Gµi,νj + iΩµi,νj

)
ψµiφνj =

n

∑
i=1

ψ∗i φi . (52)

Here we see that the choice of 1/2 as the overall constant leads to the standard relation
〈ψ|ψ〉 = |ρ|. The map between points and vectors, ψ↔ |ψ〉, is defined by |ψ〉 = ∑i |i〉ψi ,
where ψi = 〈i|ψ〉 and the vectors {|i〉} form a basis that is orthogonal and complete.

The bilinear Hamilton function K̃(ψ, ψ∗) with kernel K̂ij can now be written as the
expected value, K̃(ψ, ψ∗) = 〈ψ|K̂|ψ〉, of the Hamiltonian operator K̂ with matrix elements
K̂ij = 〈i|K̂|j〉. The corresponding HK flows are given by

i
d

dλ
〈i|ψ〉 = 〈i|K̂|ψ〉 or i

d
dλ
|ψ〉 = K̂|ψ〉 , (53)

which are described by unitary transformations |ψ(λ)〉 = ÛK(λ)|ψ(0)〉 where ÛK(λ) =
exp(−iK̂λ). Finally, the Poisson bracket of two Hamiltonian functions Ũ[ψ, ψ∗] and
Ṽ[ψ, ψ∗] can be written in terms of the commutator of the associated operators, {Ũ, Ṽ} =
−i〈ψ|[Û, V̂]|ψ〉. Thus, the Poisson bracket is the expectation of the commutator. This
identity is much sharper than Dirac’s pioneering discovery that the quantum commuta-
tor of two quantum variables is analogous to the Poisson bracket of the corresponding
classical variables.

7. Conclusions

There have been numerous attempts to derive or construct the mathematical formalism
of quantum mechanics by adapting the symplectic geometry of classical mechanics. Such
phase space methods invariably start from a classical phase space of positions and momenta
(qi, pi) and, through some series of “quantization rules,” posit a correspondence to self-
adjoint operators (Q̂i, P̂i) which no longer constitute a phase space. The connection to
classical mechanics is lost. The interpretation of Q̂i and P̂i and even the answer to the
question of what is ontic and what is epistemic become highly controversial. Probabilities
play a secondary role in such formulations.

In this paper, we take a different starting point that places probabilities at the forefront.
We discuss special families of curves—the Hamilton–Killing flows—that promise to be
useful for the study of quantum mechanics. We show that the HK flows that preserve the
symplectic and the metric structures of the e-phase space reproduce much of the mathemat-
ical formalism of quantum theory. It clarifies how the linearity of the Schrödinger equation,
complex numbers and the Born rule ρi = |ψi|2 (the Born rule for generic observables is dis-
cussed in [31,32]) follow from the symplectic and metric structures, while the normalization
constraint leads to the equivalence of states along rays in a Hilbert vector space.
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