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Abstract: Motivated by applications of statistical mechanics in which the system of interest is
spatially unconfined, we present an exact solution to the maximum entropy problem for assigning
a stationary probability distribution on the phase space of an unconfined ideal gas in an anti-de
Sitter background. Notwithstanding the gas’ freedom to move in an infinite volume, we establish
necessary conditions for the stationary probability distribution solving a general maximum entropy
problem to be normalizable and obtain the resulting probability for a particular choice of constraints.
As a part of our analysis, we develop a novel method for identifying dynamical constraints based
on local measurements. With no appeal to a priori information about globally defined conserved
quantities, it is therefore applicable to a much wider range of problems.

Keywords: maximum entropy; unconfined gases; general relativity; anti-de Sitter spacetime

1. Introduction

Despite its overarching success, the statistical mechanics of Gibbs [1] falls short in its
description of spatially unconfined systems. In the canonical ensemble, a classical gas of N
particles is described by a Gibbs probability distribution f (y), y ∈ Y defined over the phase
space Y = {(qi, pi)}, for i ∈ {1, 2, . . . , N} where qi and pi are the position and momentum
for the i-th particle). The Gibbs distribution is of the form f (y) ∝ e−βH(y), where β is
the unit-corrected inverse temperature (throughout this paper, we choose units in which
kB = c = 1) and H is the system Hamiltonian. In cases where the gas is unconfined,
meaning the set of allowed positions is unlimited, the canonical ensemble may not lead to
a valid probability distribution. The normalization condition in this ensemble is∫

dy e−βH(y) < ∞. (1)

One usually can write the Hamiltonian in the block-diagonal form

H(y) = ∑
ij

F(qij) + ∑
i

p2
i

2m
,

where qij = qi − qj. Condition (1) is manifestly not satisfied whenever F falls off to infinity
slower or as slow as 1/|qij|. In particular, the normalization condition is not met for
Newton/Coulomb-type interactions or a constant in qij (i.e., the ideal gas).

In the kinetic theory, the situation is no better. As already pointed out in ref. [2],
solutions to the equilibrium Boltzmann equation are spatially homogeneous in the absence
of external forces.

There are, however, examples of unconfined systems of physical interest, for example,
an unconfined gas of particles interacting through gravity, such as a star or a galaxy cluster.
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The statistical mechanics of such a system has been studied before and, to the best of our
knowledge, every study thus far on the self-gravitating gas (or a gas of Coulomb-interacting
particles [3]) requires confinement demanding that the particles are only allowed to occupy
a limited set of position coordinates, i.e., confined in a box [4–7]. This approach allows one
to bypass the normalization problem by restraining the integral (1) over the coordinates qi
to a compact domain of volume V.

Despite its effectiveness for astrophysical applications, progress in this direction
leaves fundamental questions about the awkwardness of dealing with unconfined systems
unanswered. For example, whether or not it is possible to display a system that reaches
thermodynamical equilibrium while kinematically allowed to occupy an infinite volume.
This article answers this question affirmatively.

2. Background

The work of Jaynes [8] solidified the statistical mechanics of Gibbs through what is
currently known as the method of maximum entropy (MaxEnt). Further developments—
starting with Shore and Johnson [9]—present MaxEnt as a method to select and update
probability distributions f when information about the system is revealed by maximizing
the functional

S[ f ] = −
∫

dy f (y) log
(

f (y)
ϕ(y)

)
, (2)

where ϕ is a prior distribution, with constraints meant to represent the information at hand.
Usually these constraints are in the form of expected values for a series of functions aµ(y),
namely sufficient statistics. The f that maximizes (2) under normalization,

∫
dy f (y) = 1,

and a set of n expected value constraints, Aα =
∫

dy f (y)aα(y) for α ∈ {1, . . . , n}, is the
Gibbs distribution

f (y|β) = ϕ(y)
Z

exp

{
−∑

α

βαaα(y)

}
, (3)

where Z(β) is a normalization factor, Z =
∫

dy q(y) exp{−∑α βαaα(y)}, and βα are the
Lagrange multipliers associated with the expected value constraint Aα. Fundamental
factors in statistics imply that only entropies of the form (2) are appropriate for updating
information—see, e.g., [9–11]. It follows from (3) that the Lagrange multipliers and the
expected values are related through Aα = − ∂

∂βα
log Z.

The canonical ensemble of statistical mechanics assumes a system of interest connected
to a heat bath, namely a much larger system that exchange energy with the system of
interest (see, e.g., [10]). In this model, the only sufficient statistic is given by the Hamiltonian
of the system a1(y) = H(y).

In the description given by the canonical ensemble, one may say that when the
variational problem of extremizing (2) with the expected value of energy constraint cannot
be solved, it means the system does not reach thermal equilibrium. This is the case for
the self-gravitating gas, as explained in the introduction. It then follows that, in order to
properly describe a thermodynamical system held to itself by gravity, we should evolve
MaxEnt into the dynamical description, allowing the system to evolve in time.

Describing time evolution, in our context, means studying how the function f changes
when a particle moves along its worldline (i.e., its trajectory in spacetime). Since we are
dealing with massive particles, we can always use the proper time τ to parametrize their
worldlines. Please note that a change in the position xa is accompanied by a change in the
tangent vectors to the trajectory, which are proportional to the momentum pa. To keep our
notation as simple as possible, we implicitly interpret f below as a function of τ using the
composition f (xa(τ), pa(τ)).

In statistical mechanics, a very common choice for the prior ϕ(y) in Equation (2) is a
uniform distribution over Y . This choice implements a symmetrical ignorance about the
system: in the lack of information favouring a point over any other, it is fair to demand the
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prior to reflect the homogeneity. Under the understanding that time evolution preserves
information, we have, adopting a uniform prior,

d
dτ

S[ f (xa, pa)] =
δS
δ f
× d f (xa, pa)

dτ
. (4)

The first factor is, by Equation (2), nonzero. Hence, dS
dτ = 0, implying d f

dτ = 0 and
consequently [12], (

1
m

pµ ∂

∂xµ +
dpµ

dτ

∂

∂pµ

)
f = 0, (5)

where τ is the proper time along the integral curves of pa and m is the mass of a particle of
the gas.

Equation (5) provides us with a necessary condition the function f has to fulfil in
order to extremize the entropy.

Our case of study is the anti-de Sitter spacetime, a maximally symmetric space with
negative curvature. As for any space of constant curvature, its curvature tensor is fully
determined by its scalar curvature R. In our case, R = −12/Λ2, where Λ is the anti-de Sitter
length. Consequently, the limit Λ→ ∞ recovers the local geometry of Minkowski spacetime.
The anti-de Sitter space can be thought of as a solution for the vacuum Einstein’s equation
with a cosmological constant −3/Λ2. For a lengthy discussion about this spacetime, we
suggest the refs. [13,14]. For the purposes of the discussion presented here, note that
although it is not globally hyperbolic, the anti-de Sitter spacetime can be foliated by a
family of spacelike surfaces of infinite volume.

3. Solutions of the Boltzmann Equation in Anti-De Sitter Spacetime

We work with the universal covering space of an anti-de Sitter spacetime described by
the metric

ds2 = −
(

1 +
r2

Λ2

)
dt2 +

(
1 +

r2

Λ2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 , (6)

with t ∈ R, r ∈ [0, ∞), θ ∈ [0, π] and φ ∈ [0, 2π). In these coordinates, it is clear that

ξa =
(

∂
∂t

)a
is a timelike Killing vector field.

The collisionless Boltzmann equation for an ideal gas in a generic curved spacetime
follows from applying the geodesic equation to Equation (5) and reads [15](

pµ ∂

∂xµ − Γµ
νρ pν pρ ∂

∂pµ

)
f (xλ, pλ) = 0 , (7)

where Γµ
νρ are the Christoffel symbols. Equation (7) assumes the motion to be geodesic.

This means that the ideal gas is an inbuilt assumption for its validity.
We shall seek spherically symmetric solutions of Equation (7) on the metric (6). For

these solutions f (xλ, pλ) can be written as a four-variable function f̃ (t, r, p0, pr), which,
when substituted in (7), yields

p0 ∂ f̃
∂t

+ pr ∂ f̃
∂r
− 2r

r2 + Λ2 p0 pr ∂ f̃
∂p0 −

[
r(r2 + Λ2)

Λ4 (p0)2 − r
r2 + Λ2 (pr)2

]
∂ f̃
∂pr = 0 , (8)

restricted to the submanifold with pθ = pφ = 0.
Equation (8) admits a separation of variables as

f̃ (t, r, p0, pr) = T(t)S(r, p0, pr), (9)

where T and S are functions to be determined.
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The equation for t has a simple exponential solution T(t) ∝ e−t/tc , while the equation
for S cannot be solved using elementary methods unless the separation constant 1/tc = 0,
in which case the solutions are referred to as stationary. It is important to bear in mind that
the condition d f /dτ = 0, which follows directly from the maximization of the entropy,
does not necessarily entail d f /dt = 0.

By direct substitution into Equation (9), we can see that

S = h

(
p0
(

1 +
r2

Λ2

)
,−
(

1 +
r2

Λ2

)
(p0)2 +

(
1 +

r2

Λ2

)−1

(pr)2

)
, (10)

for any function h ∈ C 2(R2) solves Equation (8).
The arguments of the function h have a simple physical interpretation. The second

is gµν pµ pν when pθ = pφ = 0. This quantity is merely a constant, namely −m2, where
m > 0 is the mass of the particles constituting the gas. The first argument is an integral of
the motion,

ε ≡ −paξa, (11)

the conserved energy of a particle [16].
This result is not surprising. Indeed, progress was made in the 1960s for simultane-

ously solving Einstein’s equations and the equations of motion for matter consisting of a
collection of particles. When a Hamiltonian can be defined for such systems, Liouville’s
equation is a consequence of Einstein’s field equations. Fackerell [17] and Ehlers et al. [18],
based on an analysis of the characteristic equations of (7), identified that the general solu-
tions of Equation (5) can be written as functions of the conserved quantities. As a matter
of fact, it follows that any function of first integrals of motion of the individual particles
automatically satisfies the stationary Liouville Equation (5). This shows that not only is
Equation (10) the general solution for the stationary spherically symmetric case, but also a
particular solution for the general stationary case, i.e., when f is allowed to depend on the
angular variables as well as having non-zero arguments pθ and pφ.

Please note that unlike in refs. [17,18], we are not interested in finding solutions to the
full gravitational problem. Rather, we wish to preserve the analogy with the flat spacetime
version of the problem, thereby neglecting any gravitational effects caused by the gas or
its parts.

The nature of the constant −m2 is different to the nature of ε. The latter is a first
integral of the motion, i.e., a function of phase space that is a constant along the geodesics.
The former is more conveniently thought of as a kinematic invariant. For simplicity, we
henceforth focus on solutions with vanishing angular part of the four-momentum but we
shall return to this point in due time. Hereafter, we use the−m2 invariant to restrict S to the
co-dimension one subspace P of the section of Y and write S = h̃(ε) for a single-variable
function h̃ of ε, defined in (11).

Naturally, not all solutions of the form S = h̃(ε) are normalizable. The ubiquitous
normalization constraint reads [19]∫ ∞

m
dp0

∫ ∞

0
dr

r2
√

1 + r2/Λ2
h̃(ε(p0, r)) < ∞ , (12)

leads to an asymptotic (large r) behaviour of h̃ falling off at least as quickly as

h̃(ε) ∼ εα with α < −1. (13)

Equation (13) shows that normalizable solutions to the Liouville equation are achiev-
able. Had we allowed for non-zero angular components of the four-momentum, this
conclusion would not be challenged. Owing to the parity-reversal symmetry of the metric,
we study the geodesics on the equatorial plane θ = π/2 without loss of generality. Instead of
Equation (10), we now have S = h(ε, r2 pφ, m2) since ` ≡ paψa = r2 pφ is another indepen-
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dent integral of the motion associated with the Killing field ψa = (∂/∂φ)a. The constant of
the motion ` can be thought of as the angular momentum of a particle per unit mass. Using
an entirely analogous reasoning, we construct the two-variable function h̃(ε, `), which
behave as h̃ ∼ εα`γ for large values of the radial coordinate. The normalization conditions
for p0, pφ, and r demand, respectively, that α < −1, γ < −1, and α + γ < −2, the last of
which, of course, is redundant. This shows that there are normalizable solutions to the
Liouville equation also when the angular part of the four-momentum is free to assume any
kinematically allowed value. In other words, normalized distributions in the momenta are
also automatically normalizable with respect to the configuration space variables.

4. Constraints and MaxEnt

Because the format of f as h̃(ε, `) was derived from imposing dS/dτ = 0, we have
thus far deduced a necessary condition for f to extremize the entropy, but by no means
sufficient. We now show that among solutions obeying Equation (13), there are extremes of
the entropy subjected to physically relevant constraints.

We adapt the arguments from Caticha [10] to model a “measuring device” one can
use to extract information about the gas and subsequently use the acquired information
to set constraints upon the variational problem. The procedure we describe below uses
local measurements to impose constraints on the system of interest. This idea can be
used in other problems in general relativity where the use of global conditions are not
as straightforward or uniquely defined as they are in non-relativistic mechanics. An
idea similar to ours was discussed in flat spacetime by Kubli and Herrmann in ref. [20],
where the authors elegantly described the interaction between their measuring device
and the system of interest through an extra interaction term in the Hamiltonian. Our
approach instead appeals to kinetic theory, is more general, and agrees with their results
for relativistic particles in flat spacetime.

Our measuring device D consists of another ideal gas; this time confined into a box
whose walls are perfectly permeable to the unconfined gas’ particles, but impenetrable
to the particles of D. As with any measuring device, D has to interact with the system of
interest. We model this interaction by elastic collisions between particles of D and particles
of the unconfined gas. D itself being an ideal gas, its constituents follow geodesics between
successive collisions and hence cannot absorb energy from the gravitational field. In
addition, we make the box large enough so that the thermodynamic limit can be applied to
the gas D, but small in comparison to Λ3 so that D possesses a well-defined total energy E.
If this energy changes by an amount ∆E, a small subset I of the particles of the unconfined
gas must have suffered a change of ∆ ∑i∈I εi = −∆E. Therefore,

E ≡∑
i

εi + E (14)

is an unknown constant, and the sum runs over all the particles of the unconfined gas. It is
important to emphasize that E does not have the same status as the “total energy” in the
non-relativistic theory. Its physical interpretation is neither as straightforward nor easily
relatable to the Arnowitt-Deser-Misner conserved mass of the spacetime, which would
include contributions of pure gravity, as well as the backreaction of the gas onto the metric.

With the knowledge of the value of E given by the measurement in D [21], we impose
the normalization constraint and∫

P
{E − ε(y)} f (y)dy = E, (15)

which leads to the Gibbs distribution

f (y) =
1
Z

e−βε(y) ∝ e−β p0 (1+r2/Λ2). (16)
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Here, for sake conformity with the notation from Section 2, we changed the notation
from discrete sums ∑i to integrals

∫
P .

Clearly Equation (16) respects condition (13) and consequently the normalization
constant Z is finite. A substitution of (16) into (15) reveals

E =
∂

∂β
log Z + E . (17)

The partition function, as for any ideal gas, factors out [22] as Z = ζN and can be
calculated explicitly:

ζ = 4π
∫ ∞

m
dp0

∫ ∞

0
dr

r2 exp
[
−βp0

(
1 + r2

Λ2

)]
√

1 + r2

Λ2

=
2πΛ3

β
e−βm/2

[
(1 + βm)K0

(
βm
2

)
− βmK1

(
βm
2

)]
, (18)

where Kν(z) is the modified Bessel function of the second kind. The flat spacetime is
recovered from Equation (18) in the limit Λ → ∞, in which case the partition function
diverges as it should.

Remarkably, substituting Equation (18) into (17), we see that E does not depend on the
anti-de Sitter length Λ, suggesting that the equations of state so obtained could accurately
describe the gas in flat space as well. A calculation of the entropy from Equations (16)
and (18) yields a term independent of Λ and another depending on Λ logarithmically. The
latter, in the case of N indistinguishable particles, can be made small in comparison with
the former for sufficiently large N.

5. Discussion and Prospects

With the example of an ideal gas in anti-de Sitter spacetime, we hope to have eluci-
dated that it is not the kinematical possibility to occupy an infinite volume that prevents
a system from having a well-posed equilibrium probability distribution. We emphasize
that the results of Section 3 are independent of the choice of constraints made in Section 4.
Specifically, all normalizable stationary solutions of the MaxEnt problem supplied with
whatever set of constraints must obey condition (13).

We interpret the divergence of the partition function of the ideal gas in flat spacetime
as follows. When the phase space Y describes a collection of a fixed number of particles
and the partition function factors out as Z = ζN as above (see also footnote [22]), if particles
of arbitrarily low energies can visit any point of the qi section of Y , the spatial integral of
the partition function is forced to sample the infinite volume in all its glory.

The convergence in anti-de Sitter space is explained after describing its radial timelike
geodesics. They can be calculated directly from (6) requiring gab pa pb = −m2 together with
the condition that ε is a constant along them. The results are sinusoidal functions r of
the proper time τ [23]. A more geometrical interpretation is that timelike geodesics are
oscillatory: they continue indefinitely departing from a point and reconverging to another,
never reaching infinity. Higher amplitudes are accompanied by higher values of ε so that
the ζ-integral only samples the infinite spatial volume “weighed down” by an appropriate
decreasing function. This view is endorsed by the realization that Equation (18) is divergent
on the limit m→ 0: null geodesics do not share the oscillatory behaviour of their timelike
counterparts. Rather, they reach the null infinity I regardless of their energy ε.

In this respect, one can think of the anti-de Sitter geometry acting on massive particles
as an “external field” binding the system together. Let us digress and illustrate this
analogy with an example: an unconfined, non-relativistic ideal gas in Minkowski spacetime
interacting with a spherically symmetric harmonic well is described by the Hamiltonian
H = ∑i p2

i/2m + 1/2 mω2r2
i , where ri is the radial distance from the i-particle and the centre

of the well. For this system, the sum of the energies of each individual particle is the total
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energy and the canonical ensemble exists. In this ensemble, the probability distribution
has the same Gaussian dependence on the radial variable as in Equation (16). A direct
integration gives

ζ =
8π3

β3ω3 . (19)

In this simple system, the frequency ω acts like the reciprocal of the anti-de Sitter
length Λ. The expected value of the total energy per particle, − ∂

∂β log ζ = 3/β, does not
depend on ω, in direct analogy with our earlier observation that for the gas in anti-de Sitter,
E is independent of Λ.

The static patch of the de Sitter spacetime permits another straightforward test case.
This patch is described by the metric (6) under the replacement Λ2 → −Λ2. The separation
of variables for the dynamical case discussed in the paragraph below Equation (8) applies
equally well for the de Sitter case. However, the static patch, being part of the steady-
state universe, drives a family of geodesic-following particles apart from one another.
Therefore, based on the interpretation above, we do not anticipate the existence of stationary
normalizable solutions whatsoever. This is indeed the case. The convergence of the spatial
integral of h̃(ε) as r approaches Λ requires h̃ ∼ εα with α ≥ 1/2, while the convergence
condition on the integral over p0 requires α < −1. The impossibility of satisfying both these
conditions at once proves that no function h̃ can be normalized. Again, this conclusion
would not be altered if we allow the angular momentum ` to be free. This can be seen
immediately from the realization that an extra factor of `γ is regular on r = Λ for all γ,
therefore playing no role when studying the possible divergences near the de Sitter horizon
at r = Λ.

In summary, this paper undertook two missions. First, it established general necessary
conditions for the existence of normalizable stationary solutions for the maximum entropy
problem for a relativistic ideal gas in anti-de Sitter spacetime. Such conditions show that
normalizable solutions may exist even when there is no “wall” or external forces confining
a gas in place. Second, it proposed a type of constraints based on local measurements that
can have applications transcending the study of unconfined systems. Making use of these
constraints, we found an explicit solution to the MaxEnt problem that is normalizable, as
shown for the finiteness of ζ in (18).

The success of our programme for ideal gases invites its application for long-range
interacting gases. It would be instructive to compare the dependence of thermodynamic
properties of, say the self-gravitating star, on the “regularization procedure”. That is to
say, if the equations of state of a self-gravitating star in anti-de Sitter spacetime with very
large Λ agree with, e.g., the large-V results from refs. [6,7]. We anticipate, of course, that
the results thereby obtained will not agree with the ones from refs. [4,5] because these
references introduce an interaction cut-off, which ultimately leads to extensivity, a property
not expected to hold when the interaction is Newtonian until infinity [24]. Even more
importantly in future applications, special attention must be given to any thermodynamic
potential that turns out to be independent of Λ.
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Abbreviations

The following abbreviations are used in this manuscript:
MaxEnt MAXimum ENTropy principle
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