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Abstract: Candida species are considered as common flora of the healthy human mycobiome and
occur on skin, mucosal surfaces of gastrointestinal and genitourinary tracks. Pathogenic Candida spp.,
reported to cause skin, vaginal and oral infections. Extensive use of antifungal agents has increased
the drug resistance among pathogenic strains of Candida. To this effect, recently naturally occurring
AMPs and synthetically modified peptides, are effectively being used as promising antifungal
agents. Short peptides display better permeability to cross the yeast membrane, thus short antifungal
peptide were designed using sequences from APD database. Natural peptides are potential source
of antifungal agents. Considering above facts, we studied anticandidal potential of synthetic and
natural peptides.
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1. Introduction

The increasing drug resistance seen in fungal pathogenic strains in recent years,
specifically in clinical strains, requires immediate attention so that alternative antifungal
agents can be developed. Among the fungal genera, members of the genus Candida are the
most common causal organisms of human infection. They usually reside as a commensal
in the genitourinary and gastrointestinal tracts as well as in the oral and conjunctival
flora [1], causing both superficial and invasive infections under immunocompromised
conditions. Superficial infection are known as candidiasis, which affects the mucous
membranes or skin and is usually treated with topical antifungal drugs, with a low success
rate. However, invasive fungal infections have recently been reported to be life-threatening
due to inefficient prognostic methods and unsuitable antifungal therapies. Only three
classes of conventional antifungal drugs, viz. fluconazole, caspofungin and amphotericin B,
are used extensively for candidiasis treatment [2]. However, there are Candida strains which
have been reported to be increasingly resistant to these antibiotics [3,4]. This increased
occurrence of drug-resistant candidiasis desperately requires alternative antifungal agents
so the resistance problem can be overcome.

Nowadays, various natural and synthetic antimicrobial peptides (AMPs) have been
reported to inhibit Candida spp. and are considered promising alternative candidates
for the treatment of drug-resistant Candida spp. Infections [5–8]. Naturally occurring
AMPs generally consist of 10–50 amino acids with different structural groups, including
sheet, helix, extended and looped structures [9]. Though some peptides, such as melittin
and protegrin, exhibit potent activity, they also possess toxic effects on mammalian cells.
Hence, researchers have also focused on synthetic antimicrobial peptides with enhancement
activity, reduced cytotoxicity and resistance to protease enzymes. The main objective of
the present study was to use available AMP sequences to construct short peptides with
anticandidal properties and resistance to environmental degradation. Effective peptide
modifications were included to enhance antimicrobial potency against Candida spp. and
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low toxicity towards mammalian cells. The minimum inhibitory concentration of peptides
towards pathogenic Candida species and their biofilms as well as their hemolysis ability
was studied.

2. Methodology
2.1. Peptide Design and Synthesis

Peptides were designed using peptide sequences from the APD database [10]. The
antifungal activity predictive tool Antifp [11] was used to predict their antifungal potential
in terms of protein binding potential, amphipathicity and charge. Peptide helical wheel
projections were analyzed using the bioinformatics program Netwheels [12] (Castro et al.,
2018). Peptides were synthesized by CSIR-IMTECH, Chandigarh, in solid phase using the
Fmoc methodology. All peptides were >90% pure (as determined by RP-HPLC) and had
the expected molecular weight.

2.2. Test Organisms

The reference Candida strains used in this study were procured from the Microbial
Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology
(IMTECH), Chandigarh, India, and clinical isolates were provided by the National Culture
Collection of Pathogenic Fungi (NCCPF), Postgraduate Institute of Medical Education
and Research, Chandigarh, India. The test strains used were Candida albicans (MTCC 184),
C. albicans (MTCC 227) and one clinical isolate of C. albicans (400054). All strains were
maintained on yeast malt agar (YMA), subcultured regularly (every 30 days or so) and
stored at 4 ◦C. Glycerol stocks were preserved at −80 ◦C. The anticandidal activity of
peptides was analyzed using agar well diffusion assay.

2.3. Biofilm Formation

A test strain biofilm was formed on pre-sterilized 96-well flat-bottom polystyrene
microtiter plates in triplicate. The overnight grown culture OD600 was adjusted to 0.4 and
10 µL of cell suspension was inoculated in 190 µL YM broth in each well. The microtiter
plate was incubated for 24–48 h at 37 ◦C. After incubation, the medium was removed by
inverting the plate and any other planktonic cells present were removed by gentle flush
with sterile distilled water. Then, 200 µL of crystal violet solution (0.2%) was added to all
wells. After 15 min, the excess crystal violet was removed and plates were washed twice
and air-dried. Finally, the cell-bound crystal violet was dissolved in 70% ethanol. Biofilm
growth was monitored in terms of OD595 nm using an ELISA microplate reader (Thermo,
Waltham, MA, USA). Antifungal agents, including fluconazole and amphotericin B, were
used as controls in this study.

2.4. Purification and Characterization

For the characterization of the antimicrobial peptide produced by the Bacillus sp. strain,
the SVDS-15 culture was grown in 1000 mL of NB for 24 h on a rotary shaker at 30 ◦C.
Subsequently, cells were separated by centrifuge and the peptide was subsequently eluted
in methanol. The peptide was redissolved in Milli-Q water and subjected to gel filtration
(G50 Sephadex). Further purification was achieved using HPLC (1260 Infinity, Agilent
Technologies, Santa Clara, CA, USA) with a semi-preparative C18 column (Pursuit 10C18
250 × 21.2 mm) with acetonitrile and aqueous trifluoroacetic acid as a solvent system. The
molecular mass of the HPLC-purified peptide was analyzed using matrix-assisted laser
desorption ionization (MALDI) [13]. A de novo sequence was generated manually using a
fragmentation pattern.

2.5. Determination of Antimicrobial Activity and MIC Values of Peptides

The MICs of purified peptides were evaluated by using a microtiter plate dilution
assay. Test strains were grown to mid-log phase (5 × 105 CFU/mL) in a 96-well plate
with different concentrations of peptides for 24–48 h at 37 ◦C (final volume of 200 µL).
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OD600 was measured after 24–48 h using an ELISA microplate reader (Thermo Fisher
Scientific, Waltham, MA, USA). The lowest concentration that inhibited the growth of the
test strain and did not show any increase in absorption after 48 h was considered as the
MIC. Antifungal agents such as fluconazole and amphotericin B were included in this study
as controls.

2.6. Hemolysis and Time-Kill Assay

Hemolysis assay was performed using rabbit blood (New Zealand white). For the
experiment, the blood was centrifuged and the cells were washed and resuspended in
phosphate-buffered saline (PBS). Different concentrations of peptide (50, 100 and 200 µg/mL)
were mixed with blood cells and adjusted to a concentration of 2 × 108 cells/mL in PBS.
Triton X-100 was used as a positive control. Centrifuge tubes were incubated in a CO2
incubator at 37 ◦C and readings were recorded at different time intervals (1 h, 12 h and
24 h).

A time-kill assay of the purified peptide was performed [14]. C. albicans (MTCC 183)
culture of 0.2 OD600 was centrifuged, washed and resuspended in PBS. The culture was
treated with 5X concentration of AMP. After treatment, pellet cells were dried, coated with
gold and observed under a scanning electron microscope (ZEISS, Jena, Germany) [15].

2.7. Emulgel Formulation and Skin Irritation Studies

For emulgel formulation, a gel base was prepared using carbopol 934 (Hi-media,
Thane, India). The oil-phase emulsion contained cetomacrogol 1000, white soft paraffin, ce-
tostearyl alcohol, light liquid paraffin and propylene glycol. The oil phase and an aqueous
phase containing 0.5% w/v of purified peptide were mixed together for emulgel prepara-
tion [14]. The viscosity of the gel, its extrudability, appearance and pH were determined.
The antimicrobial activity of the peptide was performed in vitro before performing skin
irritation studies on mice.

For skin irritation studies of the SVDS-15 formulation, BALB/c female mice (eight
weeks old) were used [16]. A plain gel and a 20% SLS solution were used as negative and
positive controls, respectively. The SVDS-15 formulation was topically applied to a hairless
skin area of the mice (approximately 1 cm2). The experiment results were recorded at 24,
48 and 72 h.

3. Results and Discussion
3.1. Design and Synthesis of Peptides

In this study, the amino acid sequences of peptides were used as a framework to
design short antimicrobial peptides. The effect of positively charged residue distribution on
the biological viability of the antimicrobial peptide was studied by replacing several amino
acid residues with Lys (K) to increase a net positive charge of the peptide. Short peptides
containing 10–17 amino acids in their composition are known to display better permeability
to cross the yeast membrane [17]. The designed peptides varied in total net positive charge,
which ranged from +2 to +5. The peptide sequences and their characteristics, such as
hydrophobicity, amphipathicity, hydrophilicity and charge were analyzed; details are listed
in Table 1.

Table 1. Physicochemical properties of designed peptides (predicted using Antifp software [11]
(http://webs.iiitd.edu.in/raghava/antifp)).

Peptide Peptide Sequence Hydrophobicity Amphipathicity Hydrophilicity Charge Mol. Wt. Structure

SK01 MACVNQCPKAIDRFIVK −0.12 0.65 −0.06 2 1937 Defensin-like beta

SK02 KQVYKACMNGKHLYC −0.21 0.91 −0.19 3.5 1786 Defensin-like beta

SK03 GIRWLVYRLRKV −0.25 0.92 −0.17 4 1559 Helical

SK04 HGLENKMYRHV −0.31 0.94 0.12 2 1384 Helical

SK05 ATCHCSIHVSK −0.09 0.6 −0.33 2 1186 Helical

http://webs.iiitd.edu.in/raghava/antifp
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Table 1. Cont.

Peptide Peptide Sequence Hydrophobicity Amphipathicity Hydrophilicity Charge Mol. Wt. Structure

SK06 CMNGTQVYCR −0.22 0.37 −0.41 1 1175 Helical

SK07 KILKVARAWLAK −0.13 1.12 0.02 4 1396.7 Helical

SK08 Fmoc-KILKVARAWLAK −0.13 1.12 0.02 4 1655.4 Helical

Pep1 VKILAVALKWRAKR −0.2 1.14 0.31 5 1652.3 Helical

Pep2 VIHKRHDGVKRI −0.38 1.26 0.62 4 1457.9 Helical

Further, the amphipathic orientation of the amino acids present in these synthetic pep-
tides was determined using helical wheel projection, which allowed for the understanding
of possible in silico interactions with the membrane.

3.2. Growth and Biofilm Optimization

All Candida strains were grown in YM broth containing varying concentrations of
glucose (0.2–1%) and incubated for 24–48 h at 37 ◦C for biofilm studies. After incubation, the
plates were stained with crystal violet. All strains grew well in YM broth containing glucose
and formed excellent biofilms, with ODs ranging from 0.8 to 1.5. Glucose presence affected
the biofilm formation of different MTCC strains as well as of clinical strains. Maximum
biofilm formation was achieved by using 0.5% glucose in YM broth. C. albicans strains
consistently formed more biofilm than other species.

3.3. Effect of Synthetic Peptides on Growth and Biofilm

In order to determine the effect of the synthetic peptides on and biofilm growth and
inhibition, Candida strains with the ability to form biofilms were treated with increasing
concentrations of peptides (50–500 µg/mL). SK01, SK03 and SK07 showed an inhibition of
biofilms formed by MTCC and clinical strains. Increasing concentrations of the peptide re-
sulted in an increased disruption of biofilms and complete biofilm inhibition was observed
with concentrations ranging from 200 to 800 µg/mL. Synthetic peptide SK08 and pep2
showed good anticandidal activity against various test strains. The MIC values against
Candida albicans (MTCC 184), C. albicans (MTCC 227) and C. albicans (400054) were 200, 400
and 1000 µg/mL, respectively. Recently, three synthetic peptides (PNR20, PNR20–1 and
35,409) have been reported to exhibit antifungal activity against various Candida spp. [18]
(Torres et al., 2023). Synthetic peptides KU2 and KU3 showed MIC values ranging from 8
to 16 mg/L [6].

3.4. Characterization of SVDS-15 Peptide

The antimicrobial peptide-producing Bacillus sp. strain SVDS-15 was selected for this
study as it showed strong antimicrobial activity against all Candida strains. Considering the
anticandidal potential of the peptide, further purification was carried out from CFB using
a combination of chromatographic techniques. The SVDS-15 peptide showed very low
MIC values against the test strains. Its MIC values against Candida albicans (MTCC 184), C.
albicans (MTCC 227) and Candida (400054) were 12, 20 and 30 µg/mL, respectively. MALDI
mass spectrometry of HPLC-purified SVDS-15 peptide revealed that it has a molecular
mass as 1296 Da and belongs to the loloatin antimicrobial class (Figure 1). Loloatins
have been reported to exhibit in vitro antimicrobial activity against methicillin-resistant
Staphyloccoccus aureus, vancomycin-resistant enterococci and drug-resistant Streptococcus
pneumoniae [19]. Moreover, the purified SVDS-15 peptide was found to be non-hemolytic
in nature. Consequently, it could be used as a potent therapeutic agent. The peptide was
found to be non-hemolytic in nature as it did not cause the lysis of blood cells (Figure 2).
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Figure 1. (a) MALDI mass spectrometry of SVDS-15; (b) RP-HPLC profile of SVDS-15 peptide inset
showing tricine–SDS-PAGE of peptide, TLC stained with phosphomolybdic acid and bioautography
demonstrating a clear inhibition zone.
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3.5. Scanning Electron Microscopy of SVDS-15 Peptide

SEM images of C. albicans (MTCC 183) cells treated with SVDS-15 revealed that the
peptide disintegrated the cell membranes of cells and caused the dispersion of intracellular
contents. However, the control cell membrane was intact and the cytoplasm was homoge-
nous after peptide treatment (Figure 3). Similar observations of cell membrane lysis and
release of cell content by peptide treatment has been reported earlier [14,20].
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3.6. Emulgel Formulation of Peptides

The optimized peptide emulgel contained cetomacrogol 1000 (2.5%), propylene glycol
(15.0%), white soft paraffin (10.0%), cetostearyl alcohol (7.0%), liquid paraffin (2.5%), car-
bopol 934 (0.5%), isopropyl alcohol (1.5%) vitamin E TPGS (5.0%) and water (55.5%). The
emulgel formulations showed in vitro antimicrobial activity against C. albicans MTCC 183
(Figure 4). The emulgel formulation was creamy and opaque in appearance, with a pH of
6.8 ± 0.2 and good extrudability. Individual component testing was also performed and
they did not exhibit any activity against C. albicans (MTCC 183) cells. Emulgel formulations
of antimicrobial peptides have been successfully prepared and reported [14,21,22]. The vis-
cosity of the emulgels was found to be 1451 and 1522cP for A52 and SVDS-15, respectively.
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Figure 4. Preparation of emulgel and in vitro assessment of its antimicrobial activity against C.
albicans (MTCC 183).

3.7. Skin Irritation Study of Emulgels

The skin irritancy results of the emulgel formulation were determined using the Draize
test and the results showed that the emulgel formulation did not exhibit any skin irritation,
even at 72 h after application. However, the positive (SLS treated) control caused hardening,
redness and dryness in mouse skin (Figure 5). Many natural peptides which show no
toxicity towards animals have been reported in previous studies [20,23]. The results of
the skin irritation study showed that our emulgel formulations can be safely applied on
the skin.
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4. Conclusions

The increasing drug resistance of pathogenic fungal strains, specifically of Candida
strains, requires immediate attention for the development of alternative antifungal agents.
The main objective of this study was to develop potent antifungal agents using synthetic as
well as natural peptides. The SVDS-15 peptide was successfully purified and its emulgel
was developed for topical application. Synthetic (SK08 and pep2) and natural (SVDS-
15) peptides could be used as potent therapeutic agents against various resistant Can-
dida strains.
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