Savonius Wind Turbine Numerical Parametric Analysis Using Space-Filling Design and Gaussian Stochastic Process
Abstract
:1. Introduction
2. Performance of the Savonius Wind Turbine
3. Methodology
3.1. Computational Fluid Dynamics
3.1.1. Simulation Set-Up
3.1.2. Evaluation of the Simulation Mesh
3.2. Design of Experiments
3.3. Gaussian Stochastic Process (GaSP) Model
4. Results and Discussion
4.1. Gaussian Stochastic Process Results
4.2. Static Condition Analysis
4.3. Dynamic Condition Analysis
4.4. Discussion on the Comparison of the Results with Other Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. World Energy Outlook 2021; International Energy Agency: Paris, France, 2021; pp. 1–379. [Google Scholar]
- Calautit, K.; Aquino, A.; Calautit, J.K.; Nejat, P.; Jomehzadeh, F.; Hughes, B.R. A Review of Numerical Modelling of Multi-Scale Wind Turbines and Their Environment. Computation 2018, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- WWEA. New Study Proves: Community Power Is Increasingly Being Marginalised; The World Wind Energy Association: Bonn, Germany, 2019. [Google Scholar]
- Micallef, D.; Van Bussel, G. A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges. Energies 2018, 11, 2204. [Google Scholar] [CrossRef] [Green Version]
- Škvorc, P.; Kozmar, H. Wind energy harnessing on tall buildings in urban environments. Renew. Sustain. Energy Rev. 2021, 152, 111662. [Google Scholar] [CrossRef]
- Ramsebner, J.; Haas, R.; Auer, H.; Ajanovic, A.; Gawlik, W.; Maier, C.; Nemec-Begluk, S.; Nacht, T.; Puchegger, M. From single to multi-energy and hybrid grids: Historic growth and future vision. Renew. Sustain. Energy Rev. 2021, 151, 111520. [Google Scholar] [CrossRef]
- Naderipour, A.; Abdul-Malek, Z.; Mustafa, M.W.B.; Guerrero, J.M. A multi-objective artificial electric field optimization algorithm for allocation of wind turbines in distribution systems. Appl. Soft Comput. 2021, 105, 107278. [Google Scholar] [CrossRef]
- Hand, B.; Kelly, G.; Cashman, A. Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 139, 110699. [Google Scholar] [CrossRef]
- Tasneem, Z.; Al Noman, A.; Das, S.K.; Saha, D.K.; Islam, M.R.; Ali, M.F.; Badal, R.M.F.; Ahamed, M.H.; Moyeen, S.I.; Alam, F. An analytical review on the evaluation of wind resource and wind turbine for urban application: Prospect and challenges. Dev. Built Environ. 2020, 4, 100033. [Google Scholar] [CrossRef]
- Chrysochoidis-Antsos, N.; Amoros, A.V.; van Bussel, G.J.W.; Mertens, S.M.; van Wijk, A.J.M. Wind resource characteristics and energy yield for micro wind turbines integrated on noise barriers—An experimental study. J. Wind. Eng. Ind. Aerodyn. 2020, 203, 104206. [Google Scholar] [CrossRef]
- Kim, S.; Cheong, C. Development of low-noise drag-type vertical wind turbines. Renew. Energy 2015, 79, 199–208. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Alqurashi, F.; Thévenin, D. Performance enhancement of a Savonius turbine under effect of frontal guiding plates. Energy Rep. 2021, 7, 6069–6076. [Google Scholar] [CrossRef]
- Marinić-Kragić, I.; Vučina, D.; Milas, Z. Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model. Energy 2022, 241, 122841. [Google Scholar] [CrossRef]
- Aboujaoude, H.; Beaumont, F.; Murer, S.; Polidori, G.; Bogard, F. Aerodynamic performance enhancement of a Savonius wind turbine using an axisymmetric deflector. J. Wind. Eng. Ind. Aerodyn. 2022, 220, 104882. [Google Scholar] [CrossRef]
- Dewan, A.; Gautam, A.; Goyal, R. Savonius wind turbines: A review of recent advances in design and performance enhancements. Mater. Today Proc. 2021, 47, 2976–2983. [Google Scholar] [CrossRef]
- Yahya, W.; Ziming, K.; Juan, W.; Qurashi, M.S.; Al-Nehari, M.; Salim, E. Influence of tilt angle and the number of guide vane blades towards the Savonius rotor performance. Energy Rep. 2021, 7, 3317–3327. [Google Scholar] [CrossRef]
- Saad, A.S.; Elwardany, A.; El-Sharkawy, I.I.; Ookawara, S.; Ahmed, M. Performance evaluation of a novel vertical axis wind turbine using twisted blades in multi-stage Savonius rotors. Energy Convers. Manag. 2021, 235, 114013. [Google Scholar] [CrossRef]
- Irabu, K.; Roy, J.N. Characteristics of wind power on Savonius rotor using a guide-box tunnel. Exp. Therm. Fluid Sci. 2007, 32, 580–586. [Google Scholar] [CrossRef]
- Tjahjana, D.D.D.P.; Arifin, Z.; Suyitno, S.; Juwana, W.E.; Prabowo, A.R.; Harsito, C. Experimental study of the effect of slotted blades on the Savonius wind turbine performance. Theor. Appl. Mech. Lett. 2021, 11, 100249. [Google Scholar] [CrossRef]
- Xu, W.; Li, C.-C.; Huang, S.-X.; Wang, Y. Aerodynamic performance improvement analysis of Savonius Vertical Axis Wind Turbine utilizing plasma excitation flow control. Energy 2022, 239, 122133. [Google Scholar] [CrossRef]
- Al-Ghriybah, M.; Fadhli Zulkafli, M.; Hissein Didane, D.; Mohd, S. The effect of spacing between inner blades on the performance of the Savonius wind turbine. Sustain. Energy Technol. Assess. 2021, 43, 100988. [Google Scholar] [CrossRef]
- Berhanu, H.; Gudeta, D.; Haiter Lenin, A.; Karthikeyan, B. Numerical and experimental investigation of an exhaust air energy recovery Savonius wind turbine for power production. Mater. Today: Proc. 2021, 46, 4142–4152. [Google Scholar] [CrossRef]
- Pranta, M.H.; Rabbi, M.S.; Roshid, M.M. A computational study on the aerodynamic performance of modified savonius wind turbine. Results Eng. 2021, 10, 100237. [Google Scholar] [CrossRef]
- Marzec, Ł.; Buliński, Z.; Krysiński, T. Fluid structure interaction analysis of the operating Savonius wind turbine. Renew. Energy 2021, 164, 272–284. [Google Scholar] [CrossRef]
- Marinić-Kragić, I.; Vučina, D.; Milas, Z. Computational analysis of Savonius wind turbine modifications including novel scooplet-based design attained via smart numerical optimization. J. Clean. Prod. 2020, 262, 121310. [Google Scholar] [CrossRef]
- Elsisi, M.; Tran, M.Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Robust Design of ANFIS-Based Blade Pitch Controller for Wind Energy Conversion Systems Against Wind Speed Fluctuations. IEEE Access 2021, 9, 37894–37904. [Google Scholar] [CrossRef]
- Zalhaf, A.S.; Mansour, D.E.A.; Han, Y.; Yang, P.; Yang, P.; Darwish, M.M.F. Numerical and Experimental Analysis of the Transient Behavior of Wind Turbines when Two Blades are Simultaneously Struck by Lightning. IEEE Trans. Instrum. Meas. 2021, 1. [Google Scholar] [CrossRef]
- Sayed, A.M.; Abouelatta, M.A.; Badawi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Novel accurate modeling of dust loaded wire-duct precipitators using FDM-FMG method on one fine computational domains. Electr. Power Syst. Res. 2022, 203, 107634. [Google Scholar] [CrossRef]
- Abouelatta, M.A.; Ward, S.A.; Sayed, A.M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Fast Corona Discharge Assessment Using FDM integrated With Full Multigrid Method in HVDC Transmission Lines Considering Wind Impact. IEEE Access 2020, 8, 225872–225883. [Google Scholar] [CrossRef]
- Sonawane, C.R.; Sasar, Y.; Shaikh, M.; Kokande, Y.; Mustafa, M.; Pandey, A. Numerical simulation of Savonius rotors used for low wind speed application. Mater. Today Proc. 2022, 49, 1610–1616. [Google Scholar] [CrossRef]
- Xiong, Z.; Liu, L.; Ning, J.; Qin, H. Sphere packing design for experiments with mixtures. Stat. Probab. Lett. 2020, 164, 108807. [Google Scholar] [CrossRef]
- Azadani, L.N.; Gharouni, N. Multi objective optimization of cylindrical shape roughness parameters in a solar air heater. Renew. Energy 2021, 179, 1156–1168. [Google Scholar] [CrossRef]
- Glyn-Davies, A.; Girolami, M. Anomaly detection in streaming data with gaussian process based stochastic differential equations. Pattern Recognit. Lett. 2022, 153, 254–260. [Google Scholar] [CrossRef]
- Mathew, S. Wind Energy: Fundamentals, Resource Analysis and Economics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Barlow, J.B.; Rae, W.H.; Pope, A. Low-Speed Wind Tunnel Testing; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Fang, K.-T.; Lin, Y.; Peng, H. A new type of robust designs for chemometrics and computer experiments. Chemom. Intell. Lab. Syst. 2022, 221, 104474. [Google Scholar] [CrossRef]
- Jones, B.; Johnson, R.T. Design and analysis for the Gaussian process model. Qual. Reliab. Eng. Int. 2009, 25, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Lee, Y.-T.; Lim, H.-C. Effect of twist angle on the performance of Savonius wind turbine. Renew. Energy 2016, 89, 231–244. [Google Scholar] [CrossRef]
- Saad, A.S.; El-Sharkawy, I.I.; Ookawara, S.; Ahmed, M. Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Convers. Manag. 2020, 209, 112673. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Zhan, M.-S. 3-Dimensional CFD simulation and analysis on performance of a micro-wind turbine resembling lotus in shape. Energy Build. 2013, 65, 66–74. [Google Scholar] [CrossRef]
- Wekesa, D.; Wang, C.; Wei, Y.-J.; Zhu, W. Experimental and numerical study of turbulence effect on aerodynamic performance of a small-scale vertical axis wind turbine. J. Wind. Eng. Ind. Aerodyn. 2016, 157, 1–14. [Google Scholar] [CrossRef]
- Larin, P.; Paraschivoiu, M.; Aygun, C. CFD based synergistic analysis of wind turbines for roof mounted integration. J. Wind. Eng. Ind. Aerodyn. 2016, 156, 1–13. [Google Scholar] [CrossRef]
Mesh Sizing (Relevance Center, Relevance) | Number of Nodes | Aspect Ratio | Skewness Value | Orthogonal Quality |
---|---|---|---|---|
Coarse (−100) | 29,636 | 1.942 | 0.254 | 0.844 |
Coarse (0) | 68,709 | 1.898 | 0.245 | 0.85 |
Medium (0) | 77,040 | 1.895 | 0.243 | 0.851 |
Fine (0) | 107,690 | 1.88 | 0.24 | 0.853 |
Fine (100) | 313,822 | 1.836 | 0.221 | 0.862 |
Factors | Role | Values |
---|---|---|
Rotor Diameter (m) | Continuous | 0.29 to 0.40 |
Rotor Height (m) | Continuous | 0.16 to 0.35 |
Twist Angle (degree) | Continuous | 15 to 65 |
Parameters | θ-Values |
---|---|
Rotor Diameter | 0.93 |
Rotor Height | 7.80 × 10−7 |
Twist Angle Moment | 0 0 |
Moment Coefficient (Cm) | 0.63 |
Nugget | ||
---|---|---|
0.296 | 0.564 | 8.11 × 10−8 |
No. | R′ |
---|---|
1 | 1866.17 |
2 | −2635.16 |
3 | −2803.35 |
4 | 1206.91 |
5 | 4019.12 |
6 | −2056.81 |
7 | 3222.55 |
8 | 86.46 |
9 | 2043.26 |
10 | 1946.31 |
11 | 2394.82 |
12 | −4339.64 |
13 | −1982.76 |
14 | 2257.21 |
15 | 2195.78 |
16 | 183.21 |
17 | 945.57 |
18 | 1150.75 |
19 | −1056.43 |
20 | −1425.85 |
21 | 3564.55 |
22 | −1442.13 |
23 | −420.78 |
24 | −2082.96 |
25 | −64.14 |
26 | −5626.42 |
27 | −826.45 |
28 | 1014.12 |
29 | −540.61 |
30 | −793.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ubando, A.T.; San, R.; Cruz, J.D.P. Savonius Wind Turbine Numerical Parametric Analysis Using Space-Filling Design and Gaussian Stochastic Process. Wind 2022, 2, 113-128. https://doi.org/10.3390/wind2010007
Ubando AT, San R, Cruz JDP. Savonius Wind Turbine Numerical Parametric Analysis Using Space-Filling Design and Gaussian Stochastic Process. Wind. 2022; 2(1):113-128. https://doi.org/10.3390/wind2010007
Chicago/Turabian StyleUbando, Aristotle T., Rathana San, and John Deric P. Cruz. 2022. "Savonius Wind Turbine Numerical Parametric Analysis Using Space-Filling Design and Gaussian Stochastic Process" Wind 2, no. 1: 113-128. https://doi.org/10.3390/wind2010007
APA StyleUbando, A. T., San, R., & Cruz, J. D. P. (2022). Savonius Wind Turbine Numerical Parametric Analysis Using Space-Filling Design and Gaussian Stochastic Process. Wind, 2(1), 113-128. https://doi.org/10.3390/wind2010007