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Abstract: Major (exo)planetary and satellite bodies seem to concentrate at intermediate areas of the
radial distributions of all the objects orbiting in each (sub)system. We show that angular-momentum
transport during secular evolution of (exo)planets and satellites necessarily results in the observed
intermediate accumulation of the massive objects. We quantify the ‘middle” as the mean of mean
motions (orbital angular velocities) when three or more massive objects are involved. Radial evolution
of the orbits is expected to be halted when the survivors settle near mean-motion resonances and
angular-momentum transfer between them ceases (gravitational Landau damping). This dynamical
behavior is opposite in direction to what has been theorized for viscous and magnetized accretion
disks, in which gas spreads out and away from either side of any conceivable intermediate area.
We present angular momentum transfer calculations in few-body systems, and we also calculate
the tidal dissipation timescales and the physical properties of the mean tidal field in planetary and
satellite (sub)systems.

Keywords: dynamical evolution of planets and satellites; extrasolar planets; gravitation; landau
damping; mean tidal field

1. Introduction

An inspection of planetary and satellite orbital data in the Solar System (https://
ssd.jpl.nasa.gov, https://solarsystem.nasa.gov, accessed on 16 April 2024) reveals that
major objects seem to cluster at intermediate areas of the radial distributions of orbiting bodies,
and only smaller objects are found in the inner and the outer regions of these subsystems.
The same arrangement of massive objects is usually seen in multiplanet extrasolar systems
as well. Keeping in mind that there may be more undetected planets farther out in these
systems, some examples presently are HD 10180 [1], Kepler-80 and 90 [2], TRAPPIST-1 [34],
HR 8832 [5-7], K2-138 [8,9], Kepler-11 [10], and even the four-planet systems of Kepler-223 [11]
and GJ 876 [12,13]. Despite being a clue pertaining to the processes of massive planet and large
satellite formation and evolution, this conspicuous property has not been discussed in the past,
and there have been no ideas about how we could possibly exploit it to learn from it.

Our approach to the problem has been single-minded from the outset. It was apparent
to us that such large bodies have moved toward one another during early evolution,
perhaps as soon as a few large solid cores emerged in these subsystems and the accretion
disks dissipated away. In such a case, there must exist a generic physical mechanism (a
global tidal field) that drives angular-momentum redistribution, but, eventually, further
migration is hindered when this mechanism ceases to operate. In this work, we formulate
such a secular mechanism (the gravitational Landau damping of the tidal field) that relies
on first principles and requires no additional conditions in order to operate. Some related
calculations, commonly involving continuous fluids or collisionless systems with at least
1010 particles, have been carried out by other researchers in the past [14-20]. The differences
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that we point out below concern the details of evolution of just a few (4-7) major bodies
and the physical interpretation of the results.

In Section 2, we describe the dynamical evolution of two interacting Keplerian fluid
elements through nonequilibrium states that leads to a runaway dynamical instability. This
analysis is applicable to magnetized accretion disks, but not to planets or satellites in which
the integral of circulation is not conserved (not even approximately—these systems are
topologically not simply connected). In Section 3, we describe the secular evolution of
large individual gravitating bodies in Keplerian orbits around a central mass and under
the influence of tidal dissipation which leads to body clustering. In Section 4, we discuss
our results in the context of planet and satellite evolution.

Quite a few technical details are deferred to in three self-contained appendices:

e In Appendix A, we describe few-body systems evolving by exchanging angular
momentum and lowering their total mechanical energies.

¢ In Appendix B, we formulate a self-consistent calculation of the characteristic tidal dissipa-
tion time 7g; and the corresponding radial velocity fluctuations v4; in such systems.

e In Appendix C, we analyze gravitational Landau damping of the tidal field in few-body
systems, a unique mechanism responsible for settling of the bodies near mean-motion
resonances over times comparable to T4;;—where they no longer exchange substantial
amounts of angular momentum, and so they send the global tidal field to oblivion.

The contents of the appendices are also discussed in context in Section 4.1.

2. Dynamical Evolution of Interacting Keplerian Fluid Elements

Balbus and Hawley [14] introduced a mechanical analog of the magnetorotational
instability (MRI) in gaseous accretion disks, two mass elements m; and m; in circular
Keplerian orbits around a central mass M >> my, my with radii r; and r, > rq, respectively.
The mass elements are connected by a weak spring with constant k (representing a magnetic-
field line) whose role is to allow for angular momentum transfer between the elements.
When perturbed under the constraint of constant total angular momentum (constant
circulation would be more precise, although the two integrals of motion are equivalent in
axisymmetric fluid systems), this model behaves just like gaseous accretion disks under the
influence of viscosity [16], except that the instability is now dynamical: the masses move
apart and their displacements reduce the total free energy of the system [21], leading to a
runaway in the separation of the two masses [14,22-24].

We use a free-energy variational formalism [21] to describe the evolution of this system
as perturbations take it out of equilibrium: if a perturbation lowers the free energy (AE < 0)
while preserving the total angular momentum (AL = 0), the system will transition to a new
nonequilibrium state of lower energy; whereas if AE > 0, the system will just oscillate about
the initial equilibrium state characterized by total energy E = E; + E; and total angular
momentum L = Lj + Ly. We assume that the initial equilibrium orbits are perturbed by
small displacements Ar; < rq and Arp < rp. Then, the conservation of total angular
momentum relates the displacements to first order by the equation

m101Ar1 + mpyvAry =0, @)

where v; and v, are the equilibium azimuthal velocities, and the change in free energy to

first order is found to be A
"
AE=1L —np)=—, 2

1(m —n2)5 P )
where Ly = myriv1, and n7 and ny < n7 are the mean motions (orbital angular velocities)
of the masses in their equilibrium state. The change in potential energy of the spring,
k(Ary — Ar)?/2, is of second order and is omitted from Equation (2). It is now apparent
that for Ary < 0, then AE < 0 and Ar, > 0. The masses move apart and the resulting
nonequilibrium configuration is unstable to continuing disengagement that will reduce
further the free energy of the system.
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The above dynamical instability (a mechanical analog of the MRI) does not operate in
planetary and satellite systems. It is strictly applicable to perfect fluids in which circulation
and angular momentum are both conserved [21]. Conservation of circulation is implicit in
the above model; it can be readily seen in Equation (1) assuming that the mass elements are
axisymmetric rings with equal masses, in which case the equation takes the equivalent form

v1Ar1 + vAr, =0, (3)

to first order in the displacements.

In viscous unmagnetized disks, dissipative stresses destroy circulation slowly and the
instability is then secular [16]. In stellar and particle systems, there is no conservation law of
circulation and Equation (3) is invalid, even in approximate form, because all the elements
of the stress tensor introduce gradients of comparable magnitude into the Jeans equations
of motion [21,25,26]. Therefore, the evolution of multiple planetary and satellite bodies
requires a different mathematical approach, though still constrained by the applicable
conservation laws of energy and angular momentum.

3. Secular Evolution of Interacting Planets and Satellites
3.1. Quasistatic Equilibria

Ostriker and Gunn [17] studied the secular evolution of a dynamically stable, uniformly-
rotating body subject to angular momentum and energy losses due to emission of multipolar
radiation. Evolution takes place slowly over timescales much longer than the dynamical
time (the rotation period) of the object. In this model, the body is thought of as transitioning
between quasistatic equilibrium states (the Dedekind ellipsoids [27]) in which it maintains
its uniform rotation albeit with a slowly changing angular velocity (). Here, ‘slowly’ is
quantified by the condition that

ple)
’dt < O?. (4)

Under a series of assumptions, the strongest of which is inequality (4), Ostriker and
Gunn [17] proved that the losses in angular momentum L and rotational kinetic energy E

are related by the equation

dE dL

E:QE' (5)

where the time derivatives are both implicitly negative. The use of E for rotational kinetic
energy (their Equation (7)) has caused some indiscretions in the literature. For exam-
ple, Page and Thorne [18] call E the ‘energy-at-infinity” (which is kinetic after all) and
Equation (5) ‘universal’ despite having derived it under their assumption iv(a), which is
essentially equivalent to condition (4); whereas Papaloizou [19] calls E the ‘orbital energy’
of a planet in the context of the same quasistatic approximation.

Below, we also use Equation (5) to follow the secular evolution of planets and satellites
losing kinetic energy slowly due to the action of dissipative processes induced by a global
tidal field. First, we revisit the approach of Papaloizou [19], whose calculation is correct but
his conclusion is wrong. Then, we formulate the same problem as a variation of the free
energy of the system [21] undergoing quasistatic out-of-equilibrium evolution away from its
initial equilibrium state.

3.2. Papaloizou Approach

We consider two gravitating bodies with masses 71 and m; orbiting around a central
mass M >> mq, my in nearly circular Keplerian orbits with radii r; and rp > rq, respectively.
We assume that tides due to M during orbit circularization are dissipated in the interiors of
the bodies, causing small amounts of kinetic energy to be converted to heat H. The slow
rate of dissipation is given by

L=dH/dt>0. (6)
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Here, ‘slow’ is defined by inequality (4) and by the condition that
H<T, )

where T is the total orbital kinetic energy of the bodies. Then, the evolution of the system
is described by a sequence of quasistatic equilibrium states that are accessible to the bodies
because Equation (6) together with energy conservation guarantee that the total mechanical
energy E of the bodies will decrease in time (dE/dt < 0).

The mechanical energy and angular momentum contents of each body are related by

1
_7niLi/ (8)

E =
=72

where i = 1,2 and #; is the mean motion of body m;. Since r, > r1, then np < n for the
Keplerian orbits. Under the quasistatic assumption (4), a relation analogous to Equation (5)
is also applicable here, in the form

dE; 1 dL;
- _Enlﬁ . )

The factor of —1/2 appears because E; represents the mechanical energy of each body,
which is implicitly negative (E; = —GMm; /(2r;), where G is the Newtonian gravitational
constant). The negative sign cannot be absorbed in Equations (8) and (9) because, unlike
dL/dt < 0 in Equation (5) above, here, the individual terms dL,/dt and dL,/dt have
opposite signs.

Conservation of total angular momentum L = L; 4 L; is expressed by the equation

d
a(Ll + 1) =0, (10)

and total energy conservation for the system gives

d dH
F(E1+E) = —— =L <0. (11)

Using Equation (9), we rewrite Equation (10) in the form

1dE;  1dE
wdt Tmdt 0. (12)

Thus, after considerable deliberations of the details, we have arrived at the equations
adopted by Papaloizou [19].

It is obvious from Equations (11) and (12) that, as the system evolves quasistatically,
the mechanical energy of one body will increase and that of the other body will decrease;
but the overall change in (E; + E;) will be a decrease by an amount of dH, allowing for the
system to proceed to a neighboring quasi-equilibrium state. In the absence of a model for
dH/dt, it is not prudent to solve these equations for the energy rates in order to deduce the
details of the evolution. It is more sensible to examine the changes in angular momentum
of the bodies: Combining Equations (9)—(11), we find that

L _dn o
dt — dt  n—mn

>0, (13)

where £ > 0 and n; > np. We see now that the inner body 1 will gain angular momentum
and will move outward, while the outer body 2 will lose angular momentum and will
move inward. Overall, the two bodies will converge toward an intermediate orbit in which
they would both share the total angular momentum equally.

Surprisingly, convergence toward the intermediate orbit with the average angular
momentum L does not occur in three or more orbiting bodies (Appendix A), where a new
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‘critical orbit’ emerges, characterized by a mean motion 7, the average of the initial mean
motions of the bodies. But in these systems, convergence toward this critical orbit will not
continue unscathed, if two-body encounters set in and upset the quasistatic evolution. For
the same reason, this orbit is, in principle, secularly unstable, but a body placed on it will
remain in place for a long time, provided that another orbiting body does not come close.
These results are established in Appendix A, and their significance and repercussions are
discussed in Section 4.

3.3. Free-Energy Variational Approach

We briefly formulate the problem studied in Section 3.2 as a variation of the free
energy of the system of two bodies with masses m; (i = 1,2) orbiting around a central
mass M >> m; and stepping out of equilibrium and into a new state while still obeying
conditions (4), (7), and (9). The two bodies can move on to such a (generally nonequilibrium)
state only if this state is characterized by lower free energy (AE < 0) and the same total
angular momentum (AL = 0). The total mechanical energy (E; + E;) plays the role of the
free energy function [21] here; thus, we have

A(E1+E) <0, (14)
and
A(L; + Lp) =0. (15)
Combining these two relations with Equation (9) in the form AE; = —(1/2)n;AL;, we
find that
(7’[2 — Tll)ALz = (1’11 — nz)ALl > 0. (16)

For n; > ny (implying that the initial Keplerian radii obey r; < 1), we find that
AL; > 0and AL, < 0, respectively. Thus, in order for the system to begin its search for a
new equilibrium state of lower free energy, the inner body m; will move outward and the
outer body m, will move inward.

4. Summary and Discussion
4.1. Summary

We have used the conservation laws of energy and angular momentum to describe and
contrast the dynamical evolution of two interacting mass elements in a gaseous accretion
disk and the secular evolution of massive planets and large satellites. Both types of
subsystems were assumed to exhibit Keplerian orbital profiles around a dominant central
mass and to exchange angular momentum via weak tidal torques. But evolution takes
different paths in these two cases, and the reason is the (non)conservation of circulation. In
perfect-fluid disks (Section 2), circulation is conserved and the mechanical analog of the MRI
suffers a dynamical instability, as was first described by Balbus and Hawley [14]; whereas
in (extra)solar multi-body subsystems (Section 3), there is no analogous conservation law,
and dissipative evolution proceeds secularly via a sequence of quasistatic equilibrium
configurations [17] or via nonequilibrium states, both of which progressively lower the
total mechanical energy of the (sub)system.

Extending the analytical work of Papaloizou [19] to more than two orbiting bodies,
we have shown in Appendix A that tidal dissipation induced by the central mass leads to
clustering of multi-body systems generally toward the mean 7 of their initial mean motions
n;, wherei =1,2,--- ,N and N > 3. (In contrast, two orbiting bodies converge toward
an intermediate orbit with angular momentum L = (L; 4+ L;)/2 (Section 3.2)). Although
secularly unstable, this critical orbit may host a massive body for a long time, at least
comparable to the dissipation time 7g4;s that characterizes this part of the evolution of the
system (Tg;s is quantified in Appendix B). On the other hand, a close encounter with another
body can clear out the critical orbit, if the interaction between the two bodies continues
unimpeded for a long enough time.
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Convergence of major bodies toward an intermediate region of the radial distribution
of orbiting bodies should not come as a surprise, as it is observed in quite a few solar
subsystems (gaseous giants, Galilean moons, and Saturnian and Uranian moons) and many
exoplanetary systems (Section 1). These (sub)systems show an unmistaken clustering of
several (4-7) massive bodies at intermediate orbital locations that appear to be gathered
around the critical orbit with mean motion 7. (Neptune’s primordial satellite system
was obliterated by the arrival and retrograde capture of Triton, so it is not structurally
comparable to the satellite systems of the other gaseous giants).

The question then is, where and how does such radial convergence of orbiting bodies
stop? After all, the observed massive planets and satellites seem to be currently on very
long-lived, if not secularly stable, orbits, with no pair evolving toward an in-between
orbit. Therefore, the clustering process must be quelled somehow before the objects begin
interacting strongly via close paired encounters. The seminal paper of Goldreich [15] long
ago provided a substantial part of the answer: Goldreich [15] showed that several “special
cases of commensurable mean motions [of satellites] are not disrupted by tidal forces”.
This means that when some of the more massive satellites of the gaseous giants reach near
mean-motion resonances (MMRs), their angular momenta do not vary tidally any more;
thus, the satellites maintain their orbital elements in long-lasting dynamical configurations,
and they no longer contribute to the mean tidal field. In the process, the tidal field is
weakened, and it is damped out completely when all massive bodies reside in MMRs. We
have analyzed in Appendix C this type of gravitational Landau damping of the tidal field
generated by few bodies.

4.2. Global Mean-Motion Resonances

The most massive body must play an important role in the above process because it is
the one that evolves tidally slower than all the other bodies; so, it must be the body that lays
out the resonant structure of the global tidal field for the entire (sub)system. When other
massive bodies reach nearby global MMRs, their further evolution is impeded because
the most massive body does not affect them tidally any longer; they also refrain from
interacting with smaller orbiting bodies in the system. In this setting, the tidal field will
thus be severely damped and the remaining low-mass objects trying slowly to converge
will also be hampered, either because they encounter global MMRSs, or they are simply too
far away from the resonating massive bodies. In the end, the entire system will appear to
be relaxed (no more substantial imbalances from exchanges of angular momentum), with
all of its members lying in or near global MMRs and the mean tidal field erased since the
major bodies no longer contribute to it. At present, this is what is actually observed in all
(exo)planetary and satellite subsystems.

At this point, we should clarify what we perceive differently in reference to the
volumes of work carried out about (mostly local) MMRs (page https://en.wikipedia.org/
wiki/Orbital_resonance contains a comprehensive empirical summary of orbital MMRs
along with a listing of hyperlinks to ~100 professional citations) to date [8,10,12,13,15,28-34]:
We argue that multi-body resonances are not a local phenomenon; ‘principal MMRs” (1:k
and k:1, where k = 1,2,3,- - -) are global in each system, and their locations are set by
the most massive object that used to dominate the mean tidal field affecting the entire
system; and secondary global MMRs of the form p:q (p,q # 1) are also bound to lie at
in-between locations. In such a global layout, it is not helpful to focus on the relative
deviations of orbital elements from exact nearby MMRs and devise arbitrary thresholds
for objects to be, or not to be, locked in resonance. Though, unfortunately, we recognize
this to be the current state of affairs in studies of phase angles of local MMRs between
near-neighbors: for instance, the Earth is not thought to be in the 1:12 global MMR of Jupiter
because its orbital period is 4.2 days longer than the exact resonant value of 361.05 d; and
its phase angle would have to circulate slowly relative to the phase of Jupiter, so the same
pattern would only repeat once every 87 years (see section “Coincidental Near MMRs” in
https:/ /en.wikipedia.org/wiki/Orbital_resonance for the same argument). This is not the
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right way of thinking about global resonances in the mean tidal field of our solar system
(that is severely damped presently). We defer further discussion of this rather complicated
issue to Appendix C.

4.3. The Critical Orbit in Solar Subsystems

The main result of this work has ramifications beyond the particular systems that
we study. The orbits of the planets and satellites all have Keplerian radial profiles. The
Keplerian profile is just a special case of a power law, a profile with no critical or inflection
points, a property that makes it relatively simple, but also totally featureless.

But now, the dynamics of multiple bodies evolving by applying torques and exchang-
ing angular momentum has given us a critical point in this profile, the mean 7 of the
initial mean motions n;, or, equivalently, the harmonic mean P of the orbital periods P;
(i=1,2,---,N,where we take N > 3), viz.,

P= (N > 3). (17)

Given P, the critical orbital radius can be determined from Kepler’s third law. We note,
however, that not many bodies are expected to occupy the critical orbits in their subsystems
because all bodies may have a priori circularized their orbits at or near MMRs—unless, of
course, the critical orbit coincides with an MMR, in which case the chances of finding a
body there improve considerably (see Section 4.4 below).

Our planetary system and Jupiter’s satellite subsystem each contain N = 4 dominant
adjacent orbiting bodies, the gaseous giant planets and the Galilean moons, respectively.
For the gaseous giants, we find that

P =2936y (whereas Ps, =29.46y),

so Saturn has settled just wide of the critical orbit as we see it presently. For the Galilean
moons, we find that at present,

P =3.82d (whereas Pg, = 3.55d),

so Europa was trapped into the renowned Laplace resonance (LR) and could not expand
its orbit farther out. We did not include inner low-mass bodies in these estimates for an
obvious reason; their fates were fully determined by weak tidal forces exerted on them by
the distant massive bodies, so they can be viewed as passive receivers of tiny amounts of
angular momentum having slowly worked their way outward and toward the common
goal. The Earth, in particular, may have taken angular momentum from nearby Mars,
preventing the outward movement of this tiny planet.

For the Earth, it is interesting to examine where our planet finally settled at the end
of the orbital evolution of the gaseous giants: our planet is currently orbiting just wide
of the 1:12 principal MMR of Jupiter (as already mentioned, its orbital period is only
4.2 d longer). It may not be surprising that the planet did not settle at the center of the
1:12 MMR. During secular evolution, it was only gaining angular momentum, working its
way outward toward the common goal. Such slightly wider orbits are observed in many
exoplanets as well [10,28]. Those inner ones with orbital periods shorter than P may be
understood along the same line of reasoning, as having moved outward during evolution
(but see also Refs. [35,36] discussing this issue).

4.4. The Critical Orbit in Exoplanets

In extrasolar systems, K2-138 [8,9] presents a transparent example of a planet on a
critical orbit. For the six planets known in this system, we find that

P =5.39d (whereas P; =5.404d),
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so planet d is effectively occupying the critical orbit. All planets are near global MMRs as
determined from the orbital period of the largest planet e. In order of increasing orbital
periods, these are 2:7, 3:7, 2:3 1:1, 3:2, 5:1, for planets b—g, respectively. In planets b—f,
all adjacent pairs have local period ratios P;,1/P; ~ 3/2 [8]; and the outermost planet g
resides in a higher-order harmonic ratio, i.e., Py /P, ~ (3/ 2)4 ~ 5. The resonant chain is
global, though not fully packed. If it were fully packed, then no planet would occupy the
hypothetical ‘8-planet’ critical orbit (P = 6.66 d).

Another example with the critical orbit being occupied is the TRAPPIST-1 system with
seven planets in a very compact configuration (rmax = 0.062 AU; [3,4]). We find that

P=P,=405d,

so planet d lies on the critical orbit. All planets are near global MMRs, as determined from
the orbital period of the largest planet g. In order of increasing orbital periods, these are
1:8, 1:5, 1:3, 1:2, 3:4, 1:1, 3:2, for planets b-h, respectively.

Author Contributions: D.M.C. and D.K. have worked on all aspects of the problems. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We thank the reviewers for comments and suggestions that helped us improve
the contents of this paper. NASA and NSF support over the years is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

GLD  Gravitational Landau Damping
LD Landau Damping

LR Laplace Resonance

MMR Mean-Motion Resonance

MRI  Magnetorotational Instability

Appendix A. Angular Momentum Transfer between Multiple Bodies
Appendix A.1. Three Bodies

We consider three bodies with equal masses m; (i = 1,2, 3) orbiting around a cental
mass M > m; in Keplerian orbits, as illustrated schematically in Figure Al. The mean
motions n; = 27t/ P; obey the inequality n; > ny > nz. We assume that the dissipation rate
L > 0is the same in all bodies and we use Equation (13) to calculate the initial transfer of

angular momentum L; « n;l/ 3 between pairs. We have

1dL, 1 1

iﬁ_nl—nz 1’11*1’[3/ (Al)

1dL, -1 1
iﬁ_nl—n2+n2—n3’ (A2)

and 1 dL 1 1
S — (A3)

i? ny —ns 1’12—1’13'
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The total orbital angular momentum of the system is indeed conserved; adding these
three equations and simplifying, we obtain

d
E(L1+L2+L3) =0. (A4)
Since ny > np > ng, then it becomes clear that dL.q /dt > 0 and dL3/dt < 0, so mq and
m3 will converge toward mjy. For body my, we rewrite Equation (A2) as
1 dL, ny — 2ny +ns

i? - (I”ll — 1’12)(1’12 — 7’13) ’ (AS)

We find that dL, /dt = 0 if and only if m, is orbiting at the average value of the mean
motions ny and n3 (i.e., if n; = (n1 + n3)/2), which, by a property of the arithmetic mean
of terms of a sequence, is also equal to the mean of the mean motions

_ 1
= g(nl—knz—i—ng); (A6)
in such a case, m; facilitates the transfer of angular momentum between 1 and m3 without

being subjected to a net gain or loss in L. Then, m; acts as a “forward-biased conduit’ that
transfers angular momentum exclusively from mj3 to m;.

A A

| | A

\ \ \

nq N9 > 3

P < b < P
Q rrrrrrrrrrrrrrrrrrrrrrrr QD@D <0
M my = A my = ms
r=20 1 < | T < T3

'Critical Point: 7 = % n;
1=1

Figure Al. Schematic diagram of three bodies in conjunction with equal masses m; (i = 1,2,3)
orbiting around (black arrows) a central mass M >> m; at radii r; with periods P;. The asterisk denotes
the location of the mean 7 of their mean motions n;. The blue arrows indicate how the orbits will
evolve initially via exchanges of angular momentum between the bodies.

Furthermore, if n; < 7 (as shown in Figure A1), then dL,/dt > 0 (Equation (A5))
and the orbit of m, will expand; whereas the opposite will occur for n, > 7. Thus, the
critical orbit characterized by 7 is secularly unstable, but a body placed on it may survive
for a long time, until it undergoes a close encounter with another approaching body. This
is shown in Figure A2, which depicts the evolution of 3 equal-mass bodies in Keplerian
orbits with initial conditions n; = 10, n; = 7 = 6, and n3 = 2. For some time, angular
momentum flows from the outer to the inner body, and mass m; remains on the critical
orbit; then, interaction with the inner body pulls pulls m; inward and closer to that body.
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Figure A2. Time evolution of the angular momenta of 3 equal-mass bodies with initial conditions
ng =10, np = 6, n3 = 2, L; = ni’l/S (Keplerian orbits), and 1 = (ny + ny + n3)/3. Time is
measured in units of QP, where Q is the effective tidal dissipation function and P is the orbital period
(QP > 14is ~ Q/2P; Appendix B). This early evolution does not depend on the chosen timestep.
Body 2 starts with 7, = 7rand Ly = Ly = (77) /3. The total angular momentum Lyt of the system is
conserved and L = Liot/3.

Appendix A.2. Four Bodies

As can be seen in Figures A3 and A4, the same behavior and conclusions can be de-
duced for four (or more) equal-mass orbiting bodies for the times before paired interactions
begin to occur. As one or two bodies may reach near the critical orbit with mean motion 7,
the remaining bodies will continue exchanging smaller amounts of angular momentum.
Left unimpeded, this process will lead to orbit coalescence (possibly after ejection of some
closely interacting pairs; see Figures A5 and A6), and this is why in (extra)solar subsystems
there must be another mechanism to quell or severely depress angular momentum transfer
before the orbits merge. As was discussed in Section 4, we believe that such a mechanism
(settling into MMRs) has been discovered by Goldreich [15] long ago.
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Figure A3. As in Figure A2, but for 4 equal-mass bodies with initial conditions 1y = 10, np = 7,
ny =5n4 =2,and 1 = 6.
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Figure A4. As in Figure A2, but for 5 equal-mass bodies with initial conditions 1y = 10, ny = 8,
n' =1=6n3=4,and ny = 2.
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Figure A5. Long-term (5X) evolution of the angular momenta of the 4 equal-mass bodies shown
in Figure A3. Close encounters between pairs and triplets are dependent on the chosen timestep
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Figure A6. Long-term (5x) evolution of the angular momenta of the 5 equal-mass bodies shown
in Figure A4. Close encounters between pairs and triplets are dependent on the chosen timestep
At=1x10"4
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Referring back to the results depicted in Figure A3, it is important to investigate the
early behavior of the two intermediate bodies (2 and 3) lying near the critical orbit with 7z in
a four-body system, when paired interactions between nearest neighbors are not too strong
yet. This is because the two most famous subsystems in our solar system, the gaseous giant
planets and the Galilean satellites of Jupiter, both contain four major bodies each. In the
N = 4 case, we find for intermediate bodies 2 and 3 that

1 dL, ny — 2ny 4 nj 1

2L dt ~ (m —np)(na — n3) * ny —ny’ (A7)

and 1 dL —2ns3 + 1
3 ny ns ng
— — . A8
2L dt (npy —n3)(nz —ny) np—ns (A8)

We see that a sufficient condition for dL, /dt > 0is that n, < (11 + n3)/2; and a sufficient
condition for dLz/dt < 01is that n3 > (ny + n4)/2. In this case, bodies 2 and 3 will initially
converge toward one another irrespective of the location of 7. In a variety of cases however,
the four major bodies are expected to have formed at some relative distances from one
another, and 77 may just as well have initially fallen between rn; and n3. Then, the two
intermediate bodies 2 and 3 will converge toward 7, as seen in Figure A3.

Appendix A.3. Five Bodies

Here, we investigate the critical orbit with 7 in the case of five interacting bodies. In a
four-body configuration, we initially place a fifth body with n’ and L’ at the critical orbit of
the other four bodies, 1-4, so that

n’:ﬁ:%(n1+n2+n3+n4). (A9)
The mean 7 remains unchanged for the five bodies. After some tedious algebra, the angular
momentum change of the added body is found to be proportional to the product of three
cyclic factors, viz.,
dL/ / / !/
ﬁa(1’11—|—112—21’l)(1’[24-113—211)(1’114-1’[3—211), (A10)

where all positive definite factors have been dropped for the sake of convenience. We see
that the initial condition n’ = 7 is not sufficient for the fifth body to be in an equilibrium
orbit with dL'/dt = 0, but another condition must also be met. If 4L’ is set to zero, the
above three factors determine the additional condition for n’ to be the average of any
of the specific three pairs of mean motions (1,2, 2,3, or 1,3). Each of these averages is
cyclically equivalent to yet another average between mean motions (1,2—3,4; 2,3—4,1; and
1,3—4,2), for a total of six combinations between any two paired mean motions. The first
two averages (1,2 and 3,4) cannot occur, but the remaining four combinations are viable.

Any one of the four viable conditions, along with n’ = 7, is sufficient for the fifth
body to be initially in equilibrium. Such an equilibrium state is unstable due to interaction
of the fifth body with any other body that may come close in the long run. But this state
can be long-lived if the nearest neighbors take a long time to approach the fifth body. An
example of the entire process, complete with two- and three-body interactions at later
times, is shown in Figures A4 and A6, respectively, in which the initial setup of the four
mean motions is symmetric about the fifth mean motion n’ = 7 = 6. In the early evolution
depicted in Figure A4, the fifth body remains in place at n’ = 7 while virtually all angular
momentum rains down to the innermost body, the only one that expands its orbit; then, it
is pulled inward by the pair of the inner bodies already interacting.

Appendix A.4. Time Evolution of the Critical Orbit

The only constant plotted for reference in the figures above is the mean angular
momentum L. The corresponding mean motion ny = (1/L)? of this ‘intermediate’ Ke-
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plerian orbit is also constant in time. This orbit is far less important for systems with
four or more bodies, and for three bodies one of which occupies initially the critical orbit
(Figures A2—-A4). On the other hand, the important critical orbit with initial values 7 and
Ly does not remain constant in time; it relocates slowly toward the constant intermediate
orbit with L (this is not shown in the figures).

As the critical orbit moves toward the constant intermediate orbit, its angular momen-
tum Ly always increases and its mean motion 7 always decreases in a Keplerian setting.
That is, schematically,

Ly < L = constant, (A11)
and
S ny = (L)% = constant. (A12)
Proving one of these inequalities is not a trivial matter (the other one follows immediately
for Keplerian rotation). With the help of Mathematica, we have shown that inequality (A12)
is an identity for N = 2 and N = 3 bodies, so an inductive proof may be possible.

Appendix B. Dissipation Timescale, Velocity Fluctuations, and Related Scales
Appendix B.1. Dissipation Timescale

We estimate the dissipation timescale 745 for interacting bodies such as massive
planets and large satellites. We begin with the Kolmogorov microscales, in which viscosity
dominates and a small part of the kinetic energy is converted to heat. Although these
microscales are used to describe diffusion in fluids, the equations are relevant to our
problem as well because they imply a Reynolds number of Re = 1 [37], a value that is
appropriate for stellar systems and multiple bodies evolving quasistatically under the
influence of weak tidal interactions. For Re = 1, the square of the dissipation time is

v
2. = = (A13)

where v is the kinematic viscosity coefficient and € is the specific (per unit mass) energy
dissipation rate. These quantities are related by € = 2veje;;, where e;; (i # j) is the
symmetric strain-rate tensor that appears in the equations of motion [25]. Thus, 14 in
Equation (A13) is the root mean square value of the reciprocal terms 1/e;;. This property
allows us to estimate v and € from the macroscopic scales of interest (one cycle with orbital
period P) without altering the microscopic gradients of the strains that literally perform
all the work. That the specific energy dissipation rate € is determined over much larger
(macroscopic) length scales than the turbulent dissipative microscales dg;5 is well-known in
studies of turbulent fluids (see Appendix B.3 below and Ref. [38]).

For the viscosity coefficient v with dimensions of area over time, we write for one
cycle that 2

- Al4
V= (A14)

where r and P are the orbital radius and orbital period, respectively; and for the specific
energy dissipation rate € with dimensions of power per unit mass, we write

1/ dE\ _ L

where £ > 0 and y is the distorted mass in which dissipation occurs in each cycle (i.e., the
mass of the tidal bulges in a body). Combining Equations (A13)—(A15), we find that
2
2 Tur

B = "H (A16)
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We relate L to the effective specific tidal dissipation function Q [39-41] by estimating
the kinetic energy loss of mass y over one cycle P, viz.,

dE _2r
LpP = j’i (—dt)dt =5 (A17)

where Ty = uQ?r? /2 is the orbital kinetic energy of mass y, and Q > 1 is a dimensionless
function. (In the pioneering works cited above [39-41], the dissipation function Q contains
implicitly ko, the Love number of order 2 [42]; see, in particular, Equations (6) and (27) in
Ref. [39]). Here, we assume that the rotational kinetic energy Tr of mass y is negligible
compared to Ty. Equation (A17) implies that

2,2
e= ﬁ - ”gpr ) (A18)
and substitution into Equation (A16) gives
(Q14)* = Q, (A19)
o 1/2 1/2
QT _Q7y (A20)

TdiS = Q 2 T

where we have used () = 271/ P. These equations may be useful for estimating dissipation
times 145 > P (where Q > 1), but they do not provide clear physical insight. For this
reason, we recast Equation (A16) in the form

L

2

Tis = 5 (A21)
where L = uQr? is the orbital angular momentum of bulge mass y, and for an average
energy dissipation rate of £ = AE /1y (taking now AE > 0), we find that

L L

_ L _ & A22
His = 5AF ~ 2A¢’ (A22)

where ¢ = L/u and Ae = AE/y are the corresponding specific quantities, respectively.
We see now that 1y is the time it takes to dissipate a part AE of the energy at constant
bulge angular momentum L; or in microscales, the time to dissipate a part Ae of the specific
energy at constant specific angular momentum £.

Equation (A22) can also be recast in the familiar form

AE = % [1@?, (A23)

where I = L/} is the orbital moment of inertia of mass ¢ and
@=1/0(t4), (A24)

is the geometric mean of the two characteristic frequencies of the problem. Equation (A23)
justifies the presence of the factor of 1/2 in Equations (A21) and (A22) above; whereas
Equation (A24) shows how the dissipation couples to orbital dynamics and regulates the
energy loss AE of the tidal bulges during quasistatic evolution. Clearly, the geometric mean
@ places more weight to (Tg;s) ~1, the much shorter one of the two frequencies. This is seen
also in the equivalent relation w = 3/ QY4 where Q > 1and @w < Q.
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Appendix B.2. Velocity Fluctuations

We relate the tidal dissipation function Q to the characteristic velocity vg;s of small-
scale fluctutions which, for Re = 1, is given by [37]

véis =ve. (A25)

Using Equations (A13), (A18), (A20) and (A25), we find that

1 4
Q:(U"’> >1 (A26)
4 \ v4is ’
or, in terms of the long azimuthal angle Q743 = QY2
1 Z)¢ 2
OTy = = : A27
dis 2 < Udis ) ( )

where vy = Qr is the orbital velocity. Equation (A27) corresponds to Equation (A19) above;
divided by 27, it gives an estimate of the number of orbits

_ Qs _ Tdis (A28)

k 27T P

in one dissipation time, albeit for fixed .

Equation (A26) reveals a fourth-power dependence of Q on the ratio vy /vgis > 1. The
factor of 1/4 in it derives from the 1/2 seen in Equation (A22), which (multiplied by ()
also gives the same relation for / = rvy and Ae = U?ﬁs ; since from Equation (A15),

pe = (%) oo = e, (A29)
whereas from Equations (A13) and (A25),
Vi = € Tais - (A30)

Appendix B.3. Integral Length

The remaining scale in our problem, the so-called integral length scale I [43], derives
from the above scales. For Re = 1, we find that

o3
I= 28 = 0gigTais- (A31)

This ] is not the tiny length scale d4;5 over which energy is dissipated (the microscopic length
Sdis = vgis/Q is found to be 8y = 7/ (4Q)* < r or, equivalently, dgs = 1/QV? < 1);
scale [ is an observable macroscopic length scale of the bulk kinetic energy of the bulges,
some of which will be transferred to the much smaller dissipative scales ~ dg4;5 Over times
comparable to Tyi. Its importance lies in the fact that the dissipation rate (¢ = Ufﬁs /1) is
primarily determined at this length scale via Equation (A31), and not by the corresponding
microscale d4; of the ‘turbulent regime’ [38].
Using Equations (A26), (A27) and (A31), we find that

2
(Z> = Llag, (A32)

1/4
(2)-9)"

and that
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Perhaps a simpler interpretation derived from Equation (A32) (divide both sides by )
is that /2 is the cumulative area k(7r72) that will be swept by the radius vector of a body
after k orbits having taken place over one dissipation time (Equation (A28)). The large
value of I? is characteristic of the largest motions of the turbulent flows [44] in the bulk
of an orbiting body, which explains the relation I? > r? in our astrophysical setting. It is
also worth noting that, in this setting, /N2 = Vé4isl , i.e., the geometric mean of the two
extreme turbulent scales describes the rms value of the orbital radius of the body.

Appendix B.4. Damping Rate

The damping rate 7y (dimension [time] 1) of a wave-like perturbation on the surface of
an incompressible fluid was derived by Landau and Lifshitz [45] in their study of gravity
waves of amplitude A, wavelength A > A, and frequency w > v/A?, where v is the
kinematic viscosity coefficient. Their calculation appears to differ from the calculation above
in two subtle respects: (a) Landau and Lifshitz [45] define -y as the coefficient of the decay
of the amplitude A, not of the specific energy Ae (Equation (A29)); and (b) they purport to
calculate dissipation of the total mechanical energy, not only of the kinetic energy.

Concerning difference (a), a relation between v > 0 and our 74 is obtained by
comparing the decay of the damped wave’s energy Ae at any time ¢, viz.,

exp(—27t) = exp(—t/Tais),
so that the damping rate of the amplitude A is

1
2Tdis '

04 (A34)

Difference (b) above is more subtle because it does not seem to affect the scales of the
problem; for example, using our notation and differentiating Ae o< exp(—27t) with respect
to t, we find from the definition of 7y and Equation (A34) that

€ 1
£ == — Equation (A29),
585 =7 oo quation (A29)

so there is no difference between the two results. The reason is that despite the discussion
preceding equation (25.3) in Ref. [45], the energy they used is actually one-half of the
mechanical energy of the perturbation, so the kinetic energy of the wave was actually used
in their calculation as well.

Appendix B.5. Remarks on Protostellar Disks

We note that Kepler’s third law was not used in the above calculations, so (2 was not
assumed to necessarily be the Keplerian equilibrium value, which is also fitting for the
variational principle used in Section 3.3 above. In both cases, however, the bodies obey the
two quasistatic conditions (4) and (7) or, equivalently, that Q >> 1.

The above dissipation time 74;5 should be accounted for in planetary and satellite
systems after the gaseous accretion disk has dispersed because torques from the disk are
expected to interfere in the early evolution of these bodies. Most protostars (~90%) lose
their inner disks after about 3-8 My [46,47], although some young stars apparently lose
them within the first 1 My of their lifetimes, and some older stars are found with inner
disks after about 8-16 My. These timescales are shorter than the times over which terrestrial
planet formation was completed in our solar system (30-100 My [48]). Owing to the soft
dependence of 7455/ P on QY2 seen in Equation (A20), all of the above times are longer than
the dissipation times 7g4;5 of interacting solar subsystems, so there is ample time available for
the solar nebula and gaseous protosatellite disks to disperse; and for the few (usually 4-7)
developing massive cores to complete their accretion processes, differentiate themselves
from their surroundings [48], and begin their next phase of quasistatic evolution driven by
their own mean tidal field, in the absence of other external torques. What occurs in this
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latter phase (after disk dispersal), and the fate of the mean tidal field itself, are the subjects
of Appendix C.

Appendix C. Landau Damping of Tidal Waves near Mean-Motion Resonances

Goldreich [15] studied local mean-motion resonances (MMRs) between pairs of satel-
lites and found that the resonant configurations are not disturbed by tidal forces. This
treatment confirmed that the tidal field created by the massive bodies in each (sub)system
seems to be absent when the bodies all settle near MMRs. But these local paired calculations
did not provide a reason for the absence of the field. Nor could they, because MMRs are a
global phenomenon that takes place over the entire (sub)system. Goldreich [15] could not
imagine that the underlying field is nowadays severely curtailed or dispersed altogether,
so he hypothesized that the resonant body pairs may regulate the transfer of angular
momentum in ways that maintain their resonant configurations. Of course, this cannot
be the case; the results in Appendix A show that each body, resonant or not, receives and
distributes angular momentum based on the conservation of the total amount and the small
dissipation rate. Therefore, no body is capable of regulating transfer globally, although the
most massive body will be perturbed much less, solely on the basis of its larger inertia.

Thus, we think that the most massive body is responsible for laying out the global
resonant structure of the (sub)system, just as it provides the largest part of the tidal field
for its near-neighbors. It becomes apparent that when other massive bodies also encounter
principal MMRs of the most massive body (Section 4.2), they will no longer contribute
to the mean tidal field that they helped create in the first place, which, in turn, would be
severely damped. Once the mean field (the collective mode of radial oscillations) is damped
thus, there is no mechanism to get it back. Minor bodies can no longer exchange angular
momentum efficiently, thus they will also relax near global MMRs.

Based on the above picture, we sought an physical explanation for the freezing of ra-
dial motions in Landau damping (LD) [49], an analogous effect that takes place in elec-
trons in a plasma. Gravitational Landau damping (GLD) has already been applied to stellar
systems [26,50-52], but not to the few-body (4-7) systems that we envision. Thus, the histor-
ical trend in calendar time shows dramatic leaps from 102 electrons in the 1940s, down to
10'! galaxy stars in the 1960s, and down again to 4-7 (extra)solar-system bodies presently.

To justify the leap down to just a few bodies, we argue as follows: There is no
element in the derivation of LD that requires a large number of particles. Furthermore,
the fundamental assumption of a collisionless system is easier satisfied by few bodies as
compared to 10'! stars or 103 electrons. All that is required is a confinement mechanism,
whether this be ionic Coulomb attraction in a plasma, or central gravitational attraction
in a galaxy or in a few-body system. The first astrophysical studies made the connection
between stellar systems and electronic plasmas because of the large numbers of ‘particles’
involved in both systems (also GLD operates only at wavelengths that are stable to the
Jeans instability [20,26,53]); and they discovered that very small regions of the phase space
of stellar systems contain the important particles (the so-called ‘resonant particles’) with
speeds comparable to the phase velocity v, of the tidal wave.

Appendix C.1. Damping Mechanism

A complete satisfactory physical interpretation of LD was lacking until recently, al-
though the outcome is no longer disputed. In plasmas, LD has been verified experi-
mentally [54,55] and by simulations [56]; it is also used to stabilize electron beams in
accelerators ([57] and references therein). Recently, following the tradition of Dawson [58],
the seminal works of Ryutov [59] and Wesson [60] gave clear descriptions of LD using only
real variables, and their derivations make the physics behind the damping mechanism of
the mean field much better understood. On the other hand, some detailed descriptions
using complex variables are found in influential books on plasma physics [61-64], although
such convoluted mathematical treatments may obscure the physics behind the effect.
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The damping mechanism in plasmas and stellar systems operates as follows. Resonant
particles gain energy from the mean field and become nonresonant, i.e., they move at speeds
substantially higher than the phase velocity v, of the mean wave. Then, other, slower-
moving particles become resonant and they also gain energy from the field. The process
continues until the field is robbed of its energy and dissipates away. This mechanism
cannot work in exactly the same fashion in few-body systems because of the small number
of ‘particles’ involved. Instead, the mean field is weakened every time a massive body
becomes resonant (i.e., it ‘levitates” at the top of a wave crest), and the mean tidal field
disappears altogether when the few major bodies all end up near resonances, where they
no longer support collective tidal interactions.

In what follows, we adopt the treatments of the linear LD by Trigger et al. [20] and
Fitzpatrick [63], two resources providing clear physical insights, and we customize their
analyses to the few-body gravitating systems of interest. We provide four theoretical
derivations related to GLD that are illuminating despite the mild use of complex variables;
they nicely complement the real-value calculations recommended above [58-60]. First, we
derive the characteristic screening length (analogous to the plasma Debye length [61,62]) for
few-body systems (Appendix C.2). Second, we verify that this screening length is formally
applicable to planetary (sub)systems, and we quantify the GLD rate [20] for Jeans-stable
waves (Appendix C.3). Third, we show a crucial elementary proof [63,64], that bodies near
the phase speed of such a wave will interact strongly with the wave; thus, they are the ones
participating in substantial energy exchanges and causing linear LD (Appendix C.4). Fourth,
we describe the longitudinal oscillations of a single body, initially in phase with the tidal
wave, and trapped in a potential trough of the decaying tidal field (Appendix C.5). Finally,
we close with an application of the results to two important four-body subsystems in our
solar system, the gaseous giant planets and the Galilean moons of Jupiter (Appendix C.6).

Appendix C.2. Jeans Wavenumber and Hill Radius

GLD operates at short wavelenths A = 27 /k, where k is the wavenumber. The
question is, how short? With an eye on GLD in stellar systems, Binney and Tremaine [26]
determined the condition that k > kj for standing waves to be necessarily damped (there
are no traveling waves in the system), where kj is the critical Jeans wavenumber defined by
the equation oY

k; ) (A35)

ag

where () is the gravitational (Jeans) frequency and ¢ is the velocity dispersion of stars.
(They also perpetuated a common misconception that linear LD results from singulari-
ties in Landau’s integrals. We point again to the calculations that did not use complex
variables [58—60]; there are no singularities in any of them).

For the few-body systems of interest, there is no predetermined Jeans wavelength,
although we know empirically that the systems are dynamically stable, so they are not in
any danger of suffering the dynamical Jeans instability. We need, however, to determine a
threshold akin to kj. We proceed as follows: In plasma physics, the Debye length is used to
determine the volume inside which the field of one electron dominates relative to the mean
field produced by all electrons. In our case, an analogous screening length is the Hill radius
h [65], viz.,

m

h=r (37\/1)1/3’ (A36)

where 7 is the orbital radius, M is the central mass, and m is the mass of an orbiting body.
Although not a systemic constant [66], the approximate radius / is a fair description of the
sphere of gravitational influence around individual orbiting bodies.

It turns out that the above two scales are reciprocal. To show this, we need to redefine
our concepts of Jeans frequency and velocity dispersion for few bodies with m < M in
Keplerian orbits about central mass M. We adopt the usual Keplerian orbital parameters,
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ie, 0% = GM/r3 and Ué = GM/r, where G is the gravitational constant. The Keplerian
orbital frequency is naturally the de facto gravitational frequency in this case, i.e.,

»  GM

Of = 25~ (A37)
We also use the radial derivative of the vé given above, i.e., 20|Av,| = (GM/1?)|Ar|,
0 = |Av|, and |Ar| = 2h. Then, combining these equations, we find that
o=0Qh, (A38)
and then Equation (A35) gives
k = % (A39)

Another important relation is obtained when we transform the Jeans frequency that
dictates the zeroth-order tidal field to a corresponding Hill frequency Qy localized to
individual bodies. Combining Equations (A36) and (A37), we find that

om 302, (A40)

0% =
h

As will be seen below, the factor of 3 in this relation is significant. For later reference,
h = 0.355 AU and Py = 27/Qy = 6.855 y for Jupiter in our planetary system now; and
h = 31.72 Mm and Py = 4.131 d for Ganymede in Jupiter’s satellite subsystem now.

Appendix C.3. Regimes of Jeans Instability and Gravitational Landau Damping

The above relations describe fundamental parameters that appear in the dispersion
relation and the Landau damping rate for few-body systems. The same parameters have
also been derived for a stellar system by Trigger et al. [20] (hereafter TEvS) in a fundamental
piece of work that has been flying under the radar of the astronomical community for
20 years. In particular:

(@) TEVS considered an “infinite’ self-gravitating collection of masses with uniform density
p, in which case the Hill frequency Q) is a constant defined by the equation

04 = 4rGp. (A41)

(b) This idealized system contains two species of particles with masses m and M > m. To
rewrite Q2 as a ‘global’ quantity, we imagine a spherical volume of radius r containing
amass M (smaller masses ~ m are neglected) with mean density p = 3M/ (47tr3), in

which case we obtain
_ 3GM
==

47tGp =307, (A42)

or 02 = 3012, which is the same as Equation (A40) for few-body systems. Now it

becomes evident why we used the symbol Oy here for the frequency /47 Gp (TEvVS
call it (), just as we did in Appendix C.2 above. The need for radius r to be taken
around a mass M stems from the peculiarities of this infinite uniform self-gravitating
model (any mass M can be a central mass in its vicinity, where the geometry then
becomes spherically symmetric).
(¢) The linear stability analysis of this Jeans-like model also establishes the local ‘Debye
length’ D, viz.,
D=_—, (A43)

which TEvS call the Debye—Jeans radius, although they point out that this D is not
related to screening (a minor oversight that neglects the role of the Hill radius in
gravitating bodies). Here, vt is the thermal velocity of fast particles belonging to
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the m-species in three dimensions. In one dimension, the velocity dispersion o will
then be
oc* =v2/3, (A44)

and then we find that

p= V3 _1_, (A45)

Qg \/EQ] k]
Thus, the precise correspondence between parameters in the two models
(Appendices C.2 and C.3) is formally established.

(d) Collisions between heavy and light particles must be included in the TEvS model,
otherwise the number of particles is not conserved. On the other hand, few-body
systems are collisionless in the long run (some ejections of lower-mass bodies by the
massive bodies are expected in early evolution); thus, for our application, we reduce
the equations of TEVS to the limit of zero collision frequency (f — 0).

(e) The TEvVS dispersion relation in the limit of f — 0 (their Equation (15)) reads

(kvr)*> = Of[1-J(B)] =0, (A46)

where k is the wavenumber and
f—=0 w

p=(wtif)/(kor) — —, (A47)
oT
of a radial mode with frequency w. The function J(p) is given by
_ B /°° exp(—x*/2)
= dx, A48
J(B) r)e Bogx X (A48)
where, in our case, x = v, /v, with the asymptotic behavior
.
()~ iy 2, for I8l <1. (A%9)

In Equation (A48), the denominator § — x is generally not singular, owing to the
presence of the collisional term +if (Equation (A47)). We distinguish two physical
regimes in the dispersion relation (A46):

1. CLASSICAL JEANS INSTABILITY REGIME—For || > 1, when collisions are retained
(thatis, for B = (w +1if)/(kvt) in Equation (A47)), Equation (A48) can be integrated along
the real axis. The dispersion relation takes the f-dependent form of Equation (19) in TEvS.
In the limit of f — 0, this form reduces to the dispersion relation

w? =3(kvr)? — OF. (A50)

Evidently, the two-species model exhibits the classical Jeans instability for long-
wavelength modes (k < kj), provided that the characteristic ‘sound speed’ cs is defined as

cs = V30r. (A51)

In comparison to the few-body system of Appendix C.2 with parameter set {c, 1, Q },
the two-species Jeans model then shows the following parametric relations:

v} =302, ¢s=30, D=h, and Q% =4nGp = 3012. (A52)

2. GRAVITATIONAL LANDAU DAMPING REGIME—For |B| < 1 and for short wave-
lengths kD > 1, Equations (A46), (A47) and (A49) combine to give

Re(w) =0, Im(w) = \/zva (1 - k2D2) <0, (A53)
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in the limit of f — 0. These are the Landau-like modes and they are all damping since
Jm(w) < 0 for kD > 1. For wave amplitudes £(t) « exp(—7t) = exp[Im(w)t], the
damping rate (y > 0) is

v = |Im(w)| = \/Zva(kZDZ - 1), (kD > 1). (A54)

For the few-body systems of interest, D = I and the damping rate 7 takes the form

y= \/Z O (kh) (k2h2 - 1), (k> k). (A55)

Thus, in this model, the damping rate is proportional to the local Hill frequency
(Gm/h3®)1/? (Equation (A40)), whereas in the TEVS two-species infinite model, +y is propor-
tional to the constant frequency (471Gp)!/? (Equation (A41)). In both models, waves with
very short wavelengths (k > kj or kh > 1) are damped at much higher rates (y « k). On
the other hand, waves with kh 2 1 and wavelengths stable to Jeans modes of size

A <2mh, (A56)

tend to persist for the longest times. In Appendix C.6, we describe an application of this
result to the gaseous giant planets in our solar system and the Galilean satellites of Jupiter.

Appendix C.4. Bodies Interacting with Their Collective Tidal Field

A one-dimensional radial tidal field £(r, t) generated by a few massive gravitating
bodies is described by the equation

E(r,t) = &E(r) expli(kr — wt)], (A57)

where & is the amplitude (dimension of [acceleration]), k is the radial wavenumber, and
w is the frequency of the wave. Any of the major bodies in this field feels an acceleration
dv, /dt due to the collective influence of the other massive bodies of the same form, viz.,

d
% = &o(r) exp[i(kr — wt)]. (A58)
In the absence of the field, a body initially at » = ry with initial radial velocity v, = v,9
will move to r = 1y 4 v0 t, and we can introduce the initial conditions to the perturbation by
substituting the zeroth-order solution into the exponential term of Equation (A58) [63,64], viz.,

do,

I Eo(r) expli(krg + (kv — w)t)]. (A59)

Integrating in time, we find for the radial velocity v, that

o — 09 = Eo(r) [expi(li{kro)} {exp[ik(z;:(()J :(:)Uéllcc)t)} -1 } . (A60)

For initial radial velocities v, of bodies that are close to the wave’s phase velocity
Uph = w/k, (A61)

we resolve the indeterminate form in the last bracket of Equation (A60) by de L'Hospital’s
rule, and we find that

vy — 00 = Eo(r)[exp(ikro)] £, (vr0 — Vpn) - (A62)
Thus, bodies with velocities close to vy, (resonant bodies) will be subjected to linear

velocity perturbations that grow in time. They will lose energy to the wave or gain energy
from the wave, and they are responsible for the overall damping of the wave when it occurs
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eventually. This explains why in all related calculations, the damping rate oy depends on
the negative slope of the distribution function F(v) evaluated at v = Uph (e.g., [60]). But it
does not explain why wave damping predominates wave growth, as the perturbed bodies
may gain or lose energy in their interactions with the wave, depending on their phases.

More detailed considerations are needed in order to understand the damping of the
mean field. Following the clear descriptions given by [60,63], we make the following
important points for plasma fields and for tidal fields:

(a) It is certainly not the case that slightly faster-moving bodies will lose energy and
slightly slower-moving bodies will gain energy from the wave, as is commonly quoted.
This misconception invalidates the analogy with the famous example of a surfer riding
an ocean wave. Whether a resonant body will gain or lose energy depends on the
phase of the wave upon energy exchange. In other words, a radially oscillating body
trapped within its Hill radius with radial velocity near the wave’s phase velocity will
rob the wave of some of its energy only if its oscillation is in phase with the wave (see
Appendix C.5 below).

(b) The ‘density” perturbation generated by a displaced body is not in phase with the
wave [60], so the initial wave cannot generate an initial distribution in which energy
gain or loss by bodies is favored [63].

(c) Considering only resonant bodies starting with velocities v 2, vpy, if they gain energy,
they will move away from resonance, whereas if they lose energy, they will move
closer to the resonant velocity vpp,. The end result is that the latter bodies interact more
efficiently with the wave and, on average, the field gains energy from bodies with
vz vph- The opposite holds for bodies with v < pn for which the gainers are more
efficient and the field is damped.

(d) InaMaxwellian radial velocity distribution (even a sparse one with just 4-7 bodies),
or in any other distribution with a roughly similar (bell-shaped) profile, there will
be more bodies with v < Uphs thus, on average, the wave will have to push on most
of them and it will be damped. It is for this reason that the negative gradient of the
distribution function at v = v}, determines the damping rate [60].

We note that items (c) and (d) above are not as dominant in few-body systems because
the few bodies have another mechanism available to them (settling into MMRs) in order
to stop contributing to the mean tidal field, thereby undermining it to a large extent. We
describe GLD occurring in just a few gravitating bodies in Appendices C.5 and C.6 below.

Appendix C.5. A Resonant Body Trapped in the Tidal Potential

Consider a resonant body, initially at » = rq, trapped in a trough of the mean tidal
potential ®(r) = — [£(r)dr of a standing tidal wave, in a reference frame that moves with
the phase velocity vpp, of the wave (e.g., [64]), as shown in Figure A7. The turning points
of the potential are specified by the value ®j. The body will bounce around the potential
minimum at r = ryin according to the harmonic oscillator equation

d%r

Z=- (R0 ) (r = rinin), (A63)

with 7(0) = rg, v,0 = %(0) = 0, and solution

= Fmin — A cos(\/CDO kt), (A64)

where the amplitude A = (rmin — 79). Any small amount of dissipation ~ 2(dr/dt) (such
that 7 < k/®p) in Equation (A63) will modify the amplitude A in Equation (A64) to
Ay = Aexp(—1t) and will drive A, (t) toward zero and and the radius r — 7in. When
the body manages to relax at 7 = rpy, it will levitate—i.e., it will keep moving with the
wave without gaining or losing energy or angular momentum. When the massive bodies
in a few-body system all relax near such potential minima, then the mean field will be
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damped out. This is how the tidal field is weakened and is finally dispersed, when all
major bodies no longer contribute to it.

For the wave described by Equation (A57), the frequency of the bounce is
w% = k?®; = k&y. The characteristic period of the bounce, then, is Pg « 1//&, ie.,
it becomes longer as the wave amplitude &) decays in time. For this reason, the bouncing
body should always be found near r = rmin at times t > 7g4;5 (long after the tidal wave has
effectively dissipated).

!

o(r)

<« 21/k ———>

)

‘ ‘Wave Frame

To Tmin T —>

Figure A7. Schematic diagram of a body of mass m trapped in a trough of the potential ®(r) due to
the standing tidal wave £(r) = k®(r) described in Appendix C.4 above. The body starts at r = rg
with relative velocity v, = 0 in the wave frame. As it is settling toward r = 7y (exact resonance),
it bounces back and forth radially between turning points of opposite phases, such as the points
indicated by blue circles.

For the longest and slower-damped modes with k 2 kj (i.e., k = 1/h), then & = Q%{h,
and the bounce frequency is wp = Q. In this limit, the maximum period of the bounce is
(PB)max = P (characteristic values were given in Appendix C.2 for the radial movements
of Jupiter and Ganymede). It turns out that (Pp)max is 1/ /3 & 0.577 of the orbital period
of each body, and the corresponding wavelengths from Equation (A56) are

A} =2233AU and Ag =0.2Gm, (A65)

for Jupiter and Ganymede, respectively. These values will be used in the applications of
Appendix C.6 below.

In general, the relaxed bodies in a system in which the tidal field has been damped
are not expected to be found all in phase because of the radial bouncing around in their
potential troughs that preceded their settling to noninteracting orbits. We have experienced
this situation first-hand in the work of Goldreich [15], who found only seven pairs of
satellites of the gaseous giants having related phase angles. In expanding the search for
mean-motion resonances in (exo)planetary subsystems, we need to search, not only for
approximate resonant scalings of the orbital-period ratios and the phase angles, but for
spatial wavelength-dependent scalings as well. To carry out the latter part, we first need to
obtain an estimate of the longest wavelength of the mean tidal field long gone (see, e.g.,
Equation (A56)), but this may not be a difficult task, as is demonstrated in Appendix C.6
below and in the recent study of the multiplanetary system of HD 110067 [67].

Appendix C.6. Signatures of Tidal Fields Long Gone

1. IMPRINTS—According to the results of our study, major planets in our solar system
and massive moons in satellite subsystems moved around in their collective tidal fields
until they became caught in potential troughs, where they settled near potential minima
and contributed to the damping of the field. Damping occurred because most, if not all,
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bodies developed radial speeds equal to the phase velocity of the longitudinal wave. In
such a levitating configuration, tidal interactions ceased and the wave was severely and
permanently suppressed.

In this case, there must be imprints left over in the presently settled orbits of major
bodies, signatures of a tidal dissipative evolution that took place in the distant past. Some
imprints were found by Goldreich [15] in the phase angles of some resonant satellite
pairs and in the Laplace phase of the three innermost Galilean moons. Below, we pursue
additional evidence in the characteristic wavelengths of the long-gone tidal fields.

2. WAVELENGTHS—We search for the most obvious imprints of GLD in solar-system
subsystems. As we pointed out long ago, the orbital radii of the three innermost terrestrial
planets and the three outermost gaseous giants are obviously in arithmetic progression, in
clear contradiction with the geometric progression favored across all planetary orbits by
the empirical Titius-Bode rule [68,69]. This old observation fits quite well in the present
context of equidistant potential minima in the expired solar tidal field.

In order to search for radial regularities in the current orbits of solar-system bodies,
we need to have some prior knowledge about the longest wavelength A of the long-gone
tidal field. Equation (A56) is a suitable starting point, but this is not the regularity condition
we seek for the following reason: Neighboring massive bodies cannot generally settle
into adjacent potential minima (Appendix C.5) because their Hill spheres would then
intersect. Therefore, nearest-neighboring bodies must generally be separated by at least
two wavelengths of the tidal field. Thus, we define Spin, the minimum separation between
adjacent bodies, by the equation

Smin = 2\ = 47th, (A66)

where h is the Hill radius of the most massive body in the subsystem. Then, for the
wavelengths of the tidal fields of the gaseous giant planets and the Galilean satellites given
in Equation (A65), we find that the minimum separations are

Smin ~ 4.5 AU (Gaseous Giants), (A67)

and Smin =~ 0.4 Gm (Galilean Moons), (A68)
respectively. We apply, in turn, these Sp,in estimates to the corresponding solar subsys-
tems below.

3. GASEOUS GIANTS—We consider the gaseous giant planets in our solar system. It
is well known that their orbital radii are ~5, 10, 20, and 30 AU, respectively. If these four
massive planets are largely responsible for the damping of the collective wave during
dissipative evolution in the past, then they must have finally settled near the bottoms of
what used to be wave troughs of the standing tidal wave that pushed them around for
a time.

This is clearly confirmed by the present-day orbital radii of the gas giants. Using the 4.5 AU
minimum separation (Equation (A67)), we find that, relative to Jupiter (r; = 5.20 AU), the outer
three gaseous giants settled at about 2, 6, and 11 wavelengths away; the predicted radii are

9.70, 18.7, and 30.0 AU; (A69)

to be compared with the actual semimajor axes of 9.58, 19.2, and 30.1 AU, respectively
(relative deviations < 3%). Thus, Jupiter and Saturn are confirmed to be adjacent neighbors,
and Kepler’s third law gives an orbital period ratio of (9.70/5.20)3/? ~ 5/2 with a relative
deviation of only 2%. On the other hand, the precise ratio of orbital radii is 1.842, and
Kepler’s third law then gives a period ratio of 1.8423/2 = 5/2 precisely. It becomes obvious
then that this is a pristine resonant subsystem with the four gaseous giants having settled
(at increasing orbital periods) near the 1:1, 5:2, 7:1, and 14:1 MMRs of Jupiter, with Uranus
showing the largest relative deviation of ~1% in both semimajor axis and orbital period.
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4. GALILEAN MOONs—Next, we consider the four Galilean moons of Jupiter (lo,
Europa, Ganymede, and Callisto) in some detail. Their orbital radii are

0.42, 0.67, 1.07, and 1.88 Gm, (A70)

respectively. Using the 0.4 Gm minimum separation found for Ganymede (Equation (A68)),
we find that Europa is 2 wavelengths inward and Callisto is 4 wavelengths outward of
Ganymede. The precision of this orbital configuration is astounding by astronomical
measures. It has not been quoted or discussed in the past because a physical model such as
GLD of the tidal field was lacking.

On the other hand, Io appears to have settled at 3.25 wavelengths inward of Ganymede,
and its location reveals that it is adjacent to Europa (the number of wavelengths is not an
integer probably because Io was locked into the LR early on, and its radial motions were
suppressed). Although not expected, this ~1A separation is permitted because, owing
to their smaller masses, the Hill radii of Io and Europa are much smaller than that of
Ganymede (by factors of 0.33 and 0.43, respectively). Thus, although these smaller moons
are adjacent neighbors, their Hill spheres do not at all intersect.

Scaled to the orbital radius of Io (r; = 0.4217 Gm), the orbital radii of the four Galilean
moons are

1, 1.6, 2.5, and 4.5, (A71)

respectively (the small moon Europa is necessarily a bit off of 1.5 in this linear scale for
the reason noted in Section 4—it was also locked into the LR early on). Thus, counting
out by +0.5 from Io occupying wave trough #1, the next three Galilean moons have settled
very close to the potential minima of tidal-wave troughs #2, 4, and 8. This is how the LR is
realized in the spatial dimension of the long-gone tidal field, but only in conjunction with
Kepler’s third law, which must be valid for the observed spatial layout to be confirmed as
resonant: in particular, relative to the orbit of Io, the Keplerian period ratios are 1.6%/2 = 2.0
for Europa and 2.5%/? = 4.0 for Ganymede, thus completing the LR.

The outermost moon Callisto is the third most massive moon in the solar system
behind Ganymdede and Saturn’s Titan; its mass is 72.6% of Ganymede’s and 80.0% of
Titan’s; it is famous for not participating in the 1:2:4 LR of the three inner moons, and having
to settle down to the 7:3 global MMR relative to the most massive moon Ganymede [31].
From the spatial sequence (A71), we obtain for Callisto and Ganymede 4.5/2.5 = 1.8 and
a period ratio of 1.8%/2 ~ 7/3 with a relative deviation of 3.5%. On the other hand, the
precise observed ratio of semimajor axes is 1.759, in which case Kepler’s third law then
gives a period ratio of 1.7593/2 = 7/3 exactly.

Finally, we note that Callisto could not have settled closer to Ganymede than 4A, as
presently observed. With Callisto at the 1A or 2A potential minimum (orbital radius of
1.27 Gm and 1.47 Gm, respectively), the Hill spheres of the two major moons would overlap.
At the 3\ potential minimum (radius 1.67 Gm), the Hill spheres would not overlap, but
Callisto would then occupy the 2:1 global MMR of Ganymede, thus extending the Laplace
chain to four moons. Such configuration has never been observed in the solar system or in
extrasolar systems [67], so it seems that the 2:1 MMR (following immediately past 1:1, with
no body in-between) must be vacant in all systems.

We believe that the prospect of being in the 2:1 global MMR is precisely what made
the orbit at 3A from Ganymede unreachable to Callisto. There is ample evidence (but no
proof or explanation) in the satellite subsystems of our solar system and in exoplanetary
systems that the 1:2 global MMR is strictly ‘forbidden’ [67], unless it is a building block
of a Laplace triple chain (see, e.g., GJ 876; [12,13]), or the in-between 3:2 resonant orbit is
also occupied (HD 110067; [29]). Investigation of this important empirical discovery is just
beginning (see also [67,70,71]).
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