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Abstract: Gravitational waves produced by binary neutron star mergers offer a unique window
into matter behavior under extreme conditions. In this context, we analytically model the effect
of matter on gravitational waves from binary neutron star mergers. We start with a binary black
hole system, leveraging the post-Newtonian formalism for the inspiral and the Backwards-one-Body
model for the merger. We combine the two methods to generate a baseline waveform and we validate
our results against numerical relativity simulations. Next, we integrate tidal effects in phase and
amplitude to account for matter and spacetime interaction using the NRTidal model and test its
accuracy against numerical relativity predictions for two equations of state, finding a mismatch
around the merger. Subsequently, we lift the restriction on the coefficients to be independent of the
tidal deformability and recalibrate them using the numerical relativity predictions. We obtain better
fits for phase and amplitude around the merger and are able to extend the phase modeling beyond
the merger. We implement our method in new open-source, user-friendly Python code, steered by a
Jupyter Notebook, named RisingTides. Our research offers new perspectives on analytically modeling
the effect of tides on the gravitational waves from binary neutron star mergers.

Keywords: binary neutron star mergers; analytical modeling; gravitational waves; tidal deformability

1. Introduction

Neutron stars are extremely dense remnants of massive stars at the brink of collapsing
into a black hole, with masses comparable to that of the sun contained in only twenty
kilometers diameter. They are captivating celestial objects under the action of powerful
gravitational and magnetic fields, which cannot be replicated on Earth. These exceptional
properties present them as excellent astrophysical laboratories for investigating the behavior
of matter in extreme conditions of density, pressure, and temperature. When two neutron
stars collide and merge, they emit gravitational waves, accompanied by electromagnetic
radiation, matter, and neutrinos, carrying valuable information about their masses, sizes,
and interior structure.

The first direct detection of a gravitational wave (GW) signal from a binary neutron
star (BNS) collision, named GW170817 [1], was accompanied by a gamma-ray burst [2] and
ignited a new explosion, called a kilonova, powered by the radioactive decay of the heavy
elements synthesized in the merger [3]. This twin detection marked the onset of the golden
era in neutron star research, alluding to the precious metals such as gold synthesized and
expelled during the collision and has inspired intense theoretical investigations. These
studies provided us with a wealth of new insights into the yet unknown internal structure
of neutron stars [4-6], the characteristics of their magnetic fields [7], and the outflow of
heavy matter during collision [8].

Unfortunately, simultaneous detections of gravitational waves and light are few and far
between. Out of the almost 100 such events reported to date [9], the overwhelming majority
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came from binary black hole (BBH) collisions and only one other, named GW190425, was
produced by an unusually heavy BNS collision [10,11]. The two BNS mergers detected so
far have raised many questions, proving again that nature is more complicated than our
models [12,13]. It is thus imperative to revise our current understanding of the physics
involved in those models in order to gain insight on BNS mergers. This is a timely topic
because in the next decade, hundreds of such GW events might be detected [14] with the
advent of the new generation of gravitational wave observatories, including both ground-
based detectors such as Cosmic Explorer [15] and the Einstein Telescope [16] and space-
borne instruments such as LISA [17], DECIGO [18], and TianQin [19].

Efforts in the analytical modeling of the tidal interactions during BNS mergers have fo-
cused on developing post-Newtonian (pN) approximations for the late-inspiral phase [20-23],
relying on the effective-one-body (EOB) approach [24-27]. As those approximations become
less accurate near merger [28-30], alternative methods have emerged, notably the closed-
form tidal approximants [31-36], which combine pN, tidal EOB, and numerical relativity
(NR) data.

In this study, we employ the NRTidal approximant [31,33,34], an elegant model that
adjusts the analytically calculated BBH waveforms by adding a closed-form expression to
account for the tidal influences in the phase and amplitude of the GW. This model was used
for estimating source properties [37] and constraining the equation of state for ultra-dense
matter in the first two BNS detections [38], and it is implemented in the LIGO Scientific
and Virgo Collaborations Algorithm Library Suite (LALSuite) [39].

Our goal is to analytically model the effect of tides on the GW signal during the
inspiral of a BNS system and assess the quality of the implementation of tidal effects
described by the analytical NRTidal model against NR datasets that were not used in the
initial calibration. We also aim to accurately extend it through the merger of the BNS
systems considered by introducing a novel approach to analytically model the effects
of tides around the merger, thus obtaining a comprehensive modeling of tidal effects
throughout both the inspiral and merger phases. We create a new open-source, user-
friendly, easily replicable code RisingTides and use it to generate comprehensive analytical
templates for gravitational radiation during BNS collisions. In terms of accuracy, our
GW signal templates show a high degree of consistency with the numerical simulations
considered. By presenting our analytical model and the open-source code, we provide the
scientific community with a powerful and accessible tool for advancing the understanding
of these complex phenomena, especially for students and researchers who enter the field
or who need to explore the parameter space and generate reliable results quickly. Our
motivation in releasing RisingTides is to broaden participation in GW research and also to
enhance reproducibility and collaborative efforts. By doing so, we facilitate independent
consistency checks and assist in defining the domains of validity for the approximation
models employed. Ultimately, our work contributes to the development of a universal
analytical model encapsulating the BNS dynamics and the effect of tides on GW emission.

This paper unfolds as follows: First, we present the point-particle system that charac-
terizes BBH collisions and calculate the GW by combining the pN formalism for inspiral
evolution with the Backwards-one-Body (BoB) model for the merger. As a baseline GW,
we use the fully analytical model for BBH collision we developed in [40] and expanded
in [41] based on [42] for the inspiral and [43] for the merger. We prove our model’s va-
lidity and efficiency through a comparison with NR, utilizing the SXS:BBH: 0180 template
from the Simulating eXtreme Spacetimes (SXS) catalog [44]. We then incorporate the tidal
deformability into the point-particle waveform, both as polynomial corrections and as
rational functions approximations to the phase and amplitude by using the coefficients
proposed in [33,34]. Next, we test our implementation against SXS:NSNS:0001/0002 for
two equations of state [45].

Finally, we push this model past the merger by performing a new fit to the numerical
BNS data for the tidal phase and amplitude from which we derive updated values for
the polynomial coefficients, thus expanding its applicability. Upon determining the new
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coefficients, we reconstruct the tidal correction in phase and amplitude beyond the merger
and analyze the tidal influence on the early stages of the collision, revealing the effect of
the matter interaction on the system’s orbits.

In this work, we consider two neutron stars with total mass M = M4 + Mg, M4 < Mg,
and a mass ratio § = Mp/ My > 1. We express time, space, and energy in geometric units
(with G = ¢ = 1), in terms of the binary mass M, written as a multiple of the sun mass M.
Our implementation allows systems with unequal mass ratios; however, in this work we
present results only for the equal-mass case.

2. Implementation of the Baseline Model

We start with assembling the baseline analytical model for the calculation of the GWs
from a BBH collision by following a common procedure as we detailed in [40,41]. First,
we split the binary motion in two regions—the weak field, during the inspiral and the
strong field, during the merger—and apply different mathematical formalisms to obtain
the waveform for each region. We then generate the complete GW template for the whole
binary evolution by matching those two regions in frequency around the last stable orbit
and building the hybrid waveform. Lastly, we compare our model against a numerically
generated equal mass BBH collision to uphold its validity.

2.1. The Baseline Inspiral Model

Let us consider a tight binary system of separation r in a quasi-circular orbit. By
defining the reduced mass jt = (M4 Mp)/M and the symmetric mass ratio 5 = /M, we
reduce it further to a single particle of mass u and position r orbiting around the mass
M located at the center of mass. We require the system to dissipate GWs and are led to
following the balance equation:

dE(t)
- )

This formula states that the GW flux F(t) is emitted at the expense of the orbital energy
E(t), causing the orbit to shrink. Equation (1) can be rewritten in terms of a small factor

xpn = (v/ c)? called the post-Newtonian parameter, where v is the orbital velocity of the
binary and c is the speed of light (see [46—49]).

F(t) = —

dxpn(t) E(t)
Izit T dE(t)/dxpn(t)’ @

Using the pN approximation, we expand the deviation from Newtonian gravity as
a perturbation in the power series of x,y. From the many different methods of solving
Equation (2), in this work we chose the TaylorT4 approximant, shown to agree best with
numerical simulations [50]. Within this method, Equation (2) becomes [40,42]:

N
dun(H) |2 On() N /2
()7 _ 2 ]gg].x;N(t). &)

where N /2 denotes the pN expansion order. In this work, we go up to 3.5 in the leading
PN order, adding self-force and hereditary correction terms up to 6pN order to increase the
accuracy in modeling the region near the merger [42]. By integrating Equation (3) with the
coefficients ¢;, we obtain the evolution of the pN parameter x,y. Next, we use Kepler’s
third law v? = (MQ(t))?/® where Q is the angular orbital velocity to obtain the equation
for the orbital phase:

dppn(t) — o) = xpN(t)s/z_ @

dt M
We readily integrate Equation (4) to find the time evolution of the orbital inspiral phase.
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We reuse Kepler’s third law written as v = v/ M/r to extract the orbital separation as
r = M/xpN, which we then expand in powers series of x,y for increased accuracy:

M 2 :
rpn(t) = —= ) ojxpn(E). ®)
p xpn (F) Jg PiXp
Lastly, we calculate the GW amplitude for optimal orientation of the source,

d 2 dr 2
Ar(t) = —2% {WMU) +rpN(t)2(‘PPTAt’(t)) _ (%(t)) }

Az(t) = —4kr,y (1) 22D v ©

Now, we have all the pieces necessary to construct the dimensionless strain, defined
as follows:

hpn (1) = Apn (e 20 @)

Mathematically, the strain is decomposed into two transverse quadrupolar polarization
modes with /| representing the real part of Equation (7) and h« the imaginary part,

hypn(t) = AR(t) cos (2¢,N) +1Az(t) sin (2¢,n),
hy pN(t) = AR(t) sin (2¢,N) — 1Az (t) cos (2¢N)- ®)

This is because the GWs compress the space in one direction while simultaneously
stretching it in the orthogonal direction such that the signal goes twice through maxima
and minima during one orbital cycle, making the frequency of the GW twice the orbital fre-
quency. This technique, albeit powerful, is valid only if the gravitational field is sufficiently
weak and the orbital velocity is smaller than the speed of light.

2.2. The Baseline Merger Model

Going beyond the pN approximation brings us up against the strong gravitational
field around the merger. The transition between the weak and strong field is marked by
the innermost stable circular orbit (ISCO), defined as the last stable orbit that a particle
would have when orbiting around a black hole. When the masses of the celestial objects
are comparable, this location is not well defined [51] but can be approximated with the last
stable photon orbit, called the light ring (LR), which is close to the peak of the curvature
potential [52]. The light ring (or the photon sphere) represents the orbit where the orbital
velocity equals the speed of light (for a detailed discussion, see [53]). Its location plays
an important role in determining the boundary between inspiral and merger, which is
essential for the matching procedure [54].

From there on, through the merger and ringdown, we use the Backwards-one-Body
(BoB) formalism [43]. This technique starts from the perturbed final black hole resulting
after collision and builds the GW signal back in time to the end of the inspiral, assuming
we know the mass, spin, and ringdown frequency of the remnant. In this model, the strain
of the GW signal can be modeled analytically as exponentially decaying sinusoids that
break free from the LR on null geodesics [55]:

hBaB (t) _ Z Almneit (wlnm - ﬁ) , (9)

Imn

where [ is the principal, |m| < I the azimuthal, and # is the overtone index of a mode.
This kind of perturbation is called quasinormal (QNM) ringing with frequency wy,,, and
damping time 7j,,,. The frequency of the lower mode is (Il = 2,m = 1,n = 0), coincides
with the orbital frequency, and we will denote it as QQNM- The (I = 2,m = 2,n = 0)
mode can be derived from this mode with the simple relation w»; = 2Qgnpm. This mode



Astronomy 2024, 3

171

carries away most of the GW’s energy (~95%) [56], while the higher harmonics, being
much quieter, can be usually neglected. We will drop the (I, m, n) indices and consider that
the strain is well described by the dominant mode.

The BoB model requires the QNM frequency and damping time, which are determined
by the spin and mass of the final black hole. We will estimate the final spin of the resulting
black hole with a polynomial of coefficients s;;, as given in [57,58]:

Xf= Z 51]77 ngf (10
i,j=0

We define an effective spin:

MzquA + MBXB

X , (1)
I M MR

with xap = Sap/ M? 4.p as the dimensionless individual spins and S 4 p as the spin angular
momentum of each black hole entering the merger. In our calculations, we choose x4 5 =0,
as in the NR simulations we use for comparison, although the mean spin for low-spinning
astronomical neutron stars is x4 g ~ 2 X 1073 [59].

For the final mass, we use the fit to NR given in [60] for comparable mass binaries,

My = M(1— Ecw) — Mgis (12)

where Eqyw = Eo + E> )(J% + E4 )(j% is the dimensionless energy released in GWs. For the disk

mass, we take an upper limit of My; ~ 1072M [61]. The coefficients for E; are given in
Table III of [60].
Next, we calculate the dominant resonant frequency with a polynomial fit:

MQonm = fi + f(1—xp)?, (13)

and use a similar formula for the quality factor:

Q=q1+q21—xs)". (14)
The pairs (f;, q;) are taken from Table VIII of [56]. Lastly, the damping time is as follows:
2Q
= . ].
TONM = o (15)

The orbital angular frequency Qp,p(t) is given in this model by a hyperbolic tangent
describing the evolution of the orbital frequency during the merger and ringdown (see

Equation (7) in [43]):
to ti—to\ 1\ 4
)—tnh( . )D . 16)

Here, (); is the initial frequency, t is the time at which the strain of the GW reaches
its peak amplitude, and ¢; the initial time, marking the transition between the weak and
strong regime. The parameter x in Equation (16) assures continuity between the end of the
inspiral and the beginning of the merger and is given by the following:

Opop(t) = (Q;4+K{tanh(f

4 4
QQNM B Qi

1- tanh(@)

K = (17)
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The essential variable in the BoB model is the initial time ¢;, which locks in the
frequency (); at the beginning of the merger to the frequency at end of the inspiral:

Qb — O
T ONM i
b=tg— —In| —DM_ 7 _q), 18
=i 2“( 20030 ) (18

We obtain the phase ¢p,p(t) by integrating Equation (16) between ; and a final time ¢ :

tf
Ppop(t) = /t Qpop(t)dt. (19)
The amplitude of the GW signal is modeled with a simple function (see Equation (5)
of [43]):
Apop(t) = Aosech(t Tto), (20)

where A is a scaling factor. This amplitude is taken to correspond to the Weyl scalar
|'¥4(t)|, which is related to the strain by the formula

?hgw(t
Yau(t) = 75:2\]( )

(21)

The model rests upon the assumption that the amplitude changes much slower com-
pared to the phase during the merger and uses the simple expression for the strain given
by Equation (32) in [62]:

— _ALM —2i¢pop (t)

hpop (t) Wron(£)2° , (22)
where wp,p(t) = 2Qpyp(t) is the frequency of the dominant mode. Please note that in this
model the influence of the proportionality coefficients arising from the double integration
of Equation (21) over time is overlooked. In reality, both the magnitude and the peak
location of the amplitude are affected by this integration. As a result, we expect this model
to yield a slight time deviation in predicting the merger position. We assessed the strengths
and weaknesses of the BoB model in a previous work [62].

2.3. The Complete Baseline Model

Let us now assemble the two forms of the GW strain by gluing the waveform around
the LR at the transition between the weak and strong field, estimated by [54]:

"R = 2M {l—i—cos (; cosl(—xf)ﬂ. (23)

Frequency and phase matching is robust against slight variations around this location,
while the continuity of the amplitude is best ensured by choosing 11 r = 4M, representing
the location of the retrograde photon orbiting a maximally rotating BH.

We stitch the amplitudes of the two models together by first normalizing the BoB
amplitude with its peak value and then rescaling the pN amplitude with the normalized
BoB amplitude at ¢; by using the following formula:

- Apop(t)
An=A
PN PN Apn(te)

where the quantities with an overhead bar represent their rescaled values. We build the
complete hybrid model by gluing together the waveforms of the two domains at ; with
the following simple piecewise (step) function:

o(t) :{ ) o (25)

, (24)
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For example, the hybrid orbital frequency of the GW has the form:

Oy (1) = (1= 0 (£))Qpn (= 1) + 0 (1) Qpop (£ — £7), (26)

We form the hybrid amplitude, phase, and strain of the GW with the same technique.

Before moving forward, we must test the accuracy of our implementation with a
numerical waveform. We chose SXS:BBH: 0180 corresponding to an equal-mass, a non-
spinning BBH configuration of normalized mass, and an initial separation of 18M in
geometric units [44]. We use the same configuration but start our analytic model at a
separation of 15M, which for a regular equal-mass BNS with a total mass of 2.8 M translates
to a distance of about 45km between the centers of mass. We start the BoB model with
the initial orbital frequency (€);, );) of the pN model at the end of the inspiral marked
by the LR and build the hybrid baseline model. Next, we interpolate the NR data onto a
time array of constant time steps, as used by the analytical model, to align the strains. We
first must decide on an event at which the two waveforms should agree and choose an
alignment where the initial frequency of the analytical model matches with the frequency
of the numerical data. We then extend this alignment over a window equal to a complete
period or GW cycle, between the two initial peaks of the /iy component of the strain.

In Figure 1, we plot a comparison between the evolution of the /i strain component
obtained with our hybrid model and the + polarization of the GW strain from the NR
simulation, as well as the differences in phase and amplitude (lower insets). We observe a
significant overlap between the strain from the analytical model and the NR simulation
throughout the entire inspiral, extending up to the LR. The faster merger occurring in
the analytical model is primarily attributed to the post-Newtonian (PN) approximation’s
limited reach into the strong field domain. In subsequent studies, we aim to refine this
model by including higher-order post-Newtonian (pN) terms as they become available. The
shift in the position of the merger is accentuated by the BoB model because, as we explained
earlier, it assumes a simplified expression for the amplitude. We analyzed this deviation
from the NR-predicted waveform at the merger in [62], and in future work, we intend to
correct the merger amplitude by incorporating the neglected integration coefficients. The
phase concordance between the analytical model and the NR data is consistent throughout
the entire waveform during the inspiral phase, remaining within the sub-radian accuracy of
the BBH numerical waveforms [45]. We see an increase in the phase difference above 1 rad
only at the LR and reaching 2.8 rad by the time of merger, which is within the numerical
BNS dephasing due to tidal disruptions [45]. Similarly, the amplitude correlates well up to
the LR, with the discrepancy becoming more pronounced as the merger approaches. The
addition of tidal effects to this analytic model will overwrite the errors around the merger
because a BNS system reaches merger earlier than its corresponding BBH system.

1.00

BBH 14
h+,NR
_____ BBH

h+,mm

075 04

0.50 1

3350 3400 3450 3500 3550 3600
0.251 R A

£0.00
—0.251
3 04
—-0.501 5] —— APNR-Ana J —— AANr-ana 1
-1 | [So2 ;
0751 14 /‘\} |
0 ‘ : ‘ 0.0 ; ‘ ‘ J
-1.001 "o 1000 2000 3000 0 1000 2000 3000
0 500 1000 1500 200 2500 3000 3500
1

Figure 1. Comparison between the numerical and the analytic /11 matched over one period around
the initial frequency. The upper inset shows that the strain peaks are slightly displaced, but the
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merger is well modeled if we overlap them (dotted red curve). The dashed vertical yellow line marks
the LR. The two lower insets contain the difference in phase (lower left) and amplitude (lower right)
between our model and SXS:BBH:0180. Only expected small differences before the merger are visible.

3. Implementation of the Tidal Model

Thus, far, we have not taken into consideration the internal structure of the neutron
stars, which is determined by the equation of state and accounts for the effect of the tidal
interactions. It is expected for all neutron stars in the universe to be described by a unique
equation of state, but its expression is not currently known, only estimated by theory [63]
and experiments [64] in nuclear physics. Tidal effects become important in the late stage
of the inspiral, inducing deformations in the stars and driving them to merge faster, thus
affecting the emitted GW signal both in phase and in amplitude. It is this effect that
will allow us to determine the equation of state corresponding to the dense matter inside
neutron stars from the direct observations of the amplitude and phase of the gravitational
waves emitted during BNS collisions.

We can encode the tidal effects into the tidal correction to the strain:

hr(t) = Ap(t)e 291" (27)

where At and ¢r are the analytic tidal corrections to the GW amplitude and phase.

To express the physical influence of tidal effects on the GW amplitude and phase in a
manner proportional to the point-particle waveform, we write the BNS strain as follows:
hpns(t) = hBBH<t) + 5hT(t) = hBBH(t)(l + (ST(t)) ~ hBBH(t)hT(t)r where hppy () is the
point-particle baseline strain, dhr(t) is the additive correction due to tidal effects, and dr(¢)
is the relative tidal correction factor. We choose to write the hr(t) factor this way to capture
how tidal deformations scale the baseline strain. An equivalent expression is implemented
in the LALSuite [39] and given by Equation (9) in [33]. We find the analytical GW strain of
the BNS model by multiplying Equation (27) to the strain of the baseline model:

T (t) = Apns (t)e 2950 = gy ()l (t) = AppuAr(t)e 20 Her) - (28)
This equation tells us that we must add the tidal phase correction to the baseline,

Pans(t) = ¢pr(t) + ¢1(t), (29)

while for the amplitude, we should multiply the tidal correction to the baseline:

Apns(t) = Appu(t)Ar(t). (30)

We implement the tidal effects as polynomial functions of the variable x = (Mthb)z/ 3
and build the analytical expressions for the BNS phase and amplitude provided by the
pN and NRTidal models, then we validate our implementation by comparing it with two
open-source BNS simulations from the SXS catalog [45].

3.1. The BNS Tidal Phase

As the stars become closer together, their tidal deformability increases, affecting the
binding orbital energy. Looking back to Equation (1), we should not be surprised to see
that this will change the flux of gravitational waves emitted as the orbit shrinks. The tidal
correction becomes significant only as the stars approach the merger, not entering in the
pN decomposition until the 5th pN correction term [65]. The correction to the GW phase
induced by the tidal deformation of one star due to the gravitational pull produced by its
companion is known up to 7.5-pN [66], and can be written as follows:
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13x>° 15 2 2.5
¢r = TR (1 Feanx +cansx” +capx” +cppsx” ) +[A < B (31)

with x from the baseline BBH model and the pN tidal phase coefficients c|4 p| ; depending
on the mass ratio, as given in [34]. The tidal effects are encoded in x4 p) ,, named the
effective tidal coupling constant, introduced in [31]:

3 . - 3 .
Keff = KA eff + KB eff = 33 (AA + AB) = EA, (32)
where
Al 16 (Ma +12Mp) M} Aa i._16 (Mg + 12M5)MEAp 33)
A7 13 M5 S T M5

are the symmetric mass-weighted tidal deformabilities [28], defined in terms of A4 pj,
the dimensionless tidal deformability of each star in the binary [67]. Let us take a closer look
at this quantity, because it is its dependence on the equation of state and mass that can reveal
the internal structure of the neutron stars in the binary by measuring the phase of their
GW emission and fitting it with analytical or numerical templates. In general, the nuclear
models give numerical values for the dimensionless tidal deformability between 10 and
103, varying inversely proportional with the mass and the compactness of the star [68]. So-
called hard nuclear equations of state models describe less compact stars, predicting higher
values for the tidal deformability, while nuclear models with soft equations of state favor
more compact stars and tidal deformabilities towards lower values. The dimensionless
tidal deformability calculated from the GW170817 event gave, for a neutron star of mass
1.4Ms, a value somewhere in the middle range, namely A ~ 400 [69].

We now return to the tidal correction of the GW phase, and, as mentioned before,
choose the NRTidal model for supplying the expression of the tidal phase evolution. This
analytical approximation, first introduced in [31] and subsequently improved in [33,34], is
calibrated to NR, and because of the scarce availability of numerical simulations of BNS
systems with unequal mass ratio, includes only non-spinning, equal-mass configurations.
However, the model was recently extended to include systems with high-mass ratio systems
and a wider range of equations of state in [70].

In this work, we consider the equal-mass case, for which Equation (31) simplifies to a
polynomial of constant coefficients:

13x%5 N : 13x%5
PTeq = T8y (1 + Zéci/le”) = 8 Kef P (). (34)

Here, ¢ is the tidal correction to the GW phase for the equal-mass binary. In order to
fit Equation (34) to NR data, NRTidal replaces the polynomial P(x) with a rational function
R(x) given by a Padé approximant of constant coefficients:

1+ mx + npsxt + nox? + npsx%0 + nzxd

R
(x) 1+dix+ d1,5x1-5 + dyx2

, (35)
determined from the NR, and restricted to enforce consistency with the analytical coeffi-
cients entering the polynomial P(x).

Using one set of coefficients for c; and two sets of coefficients for (n;, d;) from [31,33,34],
we implement the tidal correction to our hybrid baseline model as follows:

13x%° 13x%°
PT N = W’%ﬁp(x); 1 F1(F2) = WKeffR(x) (36)

We denote the pN polynomial approximation to the tidal phase correction as ¢r,N,
using the set of coefficients for c; taken from [31,34]. Next, we indicate the NRTidal
fit as ¢ p; with (n;,d;) given in [31,33] and we denote the NRTidalv2 fit as ¢ with
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the coefficients (n;,d;) given in [34]. Although mass-ratio dependence is included in
Equation (36) through the symmetric mass ratio 7, the coefficients are derived for equal
mass systems. Very recently, the NRTidalv3 fit that extends the model to unequal mass ratio
BNS systems was presented in [70]. We will include this model in future work. Note that,
in contrast to the corresponding equations presented in [31,33,34], we found it necessary to
use a positive sign in Equation (36) in order to obtain the expected behavior for the BNS
phase evolution when we use Equation (29) to obtain the analytic BNS phase.

It is time to verify our implementation and test the NRTidal model’s ability to predict
the tidal phase against numerical simulations. We choose two equal-mass, non-spinning
BNS systems with two different equations of state [45], publicly available in the SXS GW
catalogue [44]. The first numerical GW used is SXS:NSNS:0001, with mass M; = 2.8 and
an ideal gas equation of state of polytropic index I' = 2 corresponding to a dimensionless
tidal deformability Ary = 791. The second is SXS:NSNS:0002, with mass M, = 2.7 and
a piecewise polytropic equation of state for cold dense matter called MS1b [71], with a
dimensionless tidal deformability Ajg7;, = 1540. While these tidal deformabilities surpass
the one estimated from the GW170817 observation, they are not yet ruled out and are
useful as an upper bound. We also note that in the pN and NRTidal models the tidal
correction to the phase depends only linearly on the dimensionless tidal deformability,
and the coefficients should remain independent of it.

We start with the assumption that at a considerable distance from the merger, the tidal
effects are negligible and the BNS signal is virtually indistinguishable from that of the BBH.
This allows us to rescale the phase and shift the time of the numerical BNS simulations
to start from zero at the reference frequency of each simulation, marking when the initial
burst of spurious transient radiation has dissipated in the NR simulation [44]. Then, we
find the time and phase corresponding to the same frequency in the numeric BBH model
and align the numerical BNS waveforms with the corresponding values of the numeric
BBH model over a window of one GW cycle using the same procedure as before. We then
calculate the difference in phase between the numeric BNS and BBH data up to the merger
frequency, taken where the numeric BNS amplitude reaches its peak.

We plot in Figure 2 the phase comparison between our analytic baseline hybrid model,
SXS:BBH:0180, SXS:NSNS:0001 (BNS1), and SXS:NSNS:0002 (BNS2). The insets in Figure 2
contain the analytical models for the BNS tidal phase ¢,y and ¢1 ngsi from Equation (36)
compared to the numerical BNS tidal phase. We mark the phase of 2 rad with a dashed
yellow curve, representing the upper limit of uncertainty in phase due to numeric errors [45].
The maximum modeling error of our baseline BBH phase in the domain considered is
below 0.5 rad. We observe that the NRTidal phase (dash-dot-dot red and magenta) slightly
overestimates both the pN (dotted maroon) and the NR phase and is more accurate for
the BNS1 case, corresponding to the smaller tidal deformabiliy. This suggests that the
assumption of the coefficients being independent of the tidal deformability may be too
restrictive. In Section 4, we will delve into the behavior of the phase around the merger
and propose new coefficients for the tidal correction to push the model past the merger.
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Figure 2. Phase comparison between the baseline model (solid orange), SXS:BBH: 0180 (solid black),
SXS:NSNS:0001 (dashed blue), and SXS:NSNS:0002 (dash-dot green) overlapped at the reference
frequencies of the NR simulations. The insets contain our analytical BNS phase calculated with the
pN (dotted maroon) and NRTidal (dash-dot-dot red and magenta) corrections, plotted up to the
merger against the numerical phase difference for the two cases. The horizontal dotted yellow curve
marks the maximum uncertainty in phase of 2 rad.

3.2. The BNS Tidal Amplitude

The amplitude of the GW is extremely small, and its increase is less dramatic than
the phase accumulation observed up to the merger, defined as the point of maximum
amplitude [72]. This makes the task of accurately modeling analytic tidal contributions to
the amplitude more difficult compared to the phase. Taking advantage of the relatively
small change in the GW amplitude, we can effectively use a low-order polynomial within
the context of the pN approximation of the form [34,66]:

8SM T . N
Ar(x) = J\/ gx6Keff,A(CA,o +¢4,1%) + [A < B], (37)

Dy
where Dy is the distance from the detector to the BNS system and ¢ 4 p) ; are the pN tidal
amplitude coefficients, given in [34,66]. Let us assume again a similar-mass binary, where
only the symmetric mass ratio # retains the information on the mass ratio. Now, the pN
tidal correction in amplitude Equation (37) simplifies to the following:

M T
ArpN(x) = Areq(x) = 5 gL \Ex%ff(én —11x). (38)

As expected, this approximation becomes less reliable as the binary approaches the
merger. The NRTidal model corrects it by adding a dependence of x:

AT,pN(x)
Ara(x) = 525, (39)
where the parameter d is fixed by the identity [34]:
1/A x
d— 2 (TPN() _ 1) (40)
X Amrg

X=Xmrg
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We compute the merger amplitude Ay;rg using an analytically predicted quasi-universal
relation valid at the moment of merger [73], that provides the peak amplitude only as a
function of the tidal coupling constant kg [34]:

My 1.6498(1 + 2.5603 x 102k — 1.024 x 10~°k%)
™ME T Dy 1+4.7278 x 10 2k5

. (41)

As a cautionary remark, Equation (40) requires that we provide an analytical expres-
sion for xyr, as well, without relying on numerical data. A good approximation is to
assume that the stars merge when they come in contact, and x4 is given by the following:

M

=, 42
R4+ Rp 42)

Xc
where R4 p are the radii of the stars, for which we use the value of 11.5km as specified
in [45]. Please note that this simplified expression does not account for the deformations
in the stars. To address this, we use an alternative route and calculate x;q = (Merg)z/ 3
from the analytic expression for the merger frequency given in [74]:

0.178(1 + 3.354 X 10 %k + 4.315 x 10~k

147542 % 10 21y +2.236 x 104

MQyig = /7 (43)

We chose to use the result calculated with Equation (43) in our implementation. Work-
ing within the same assumption that the BNS and BBH waveforms have indistinguishable
amplitudes far from the merger, we rescale the numeric BNS amplitude to coincide with the
numeric BBH amplitude for a binary with the same total mass at the reference frequency.
We align the BNS and BBH amplitudes and plot them in Figure 3. This is not fulfilled exactly,
as we see in the inset of Figure 3, where we plot a comparison of their /i strain because at
the BNS reference frequency tidal effects are already present in the NR waveforms.
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Figure 3. Amplitude comparison between SXS:NSNS:0001 (dashed blue) and SXS:NSNS: 0002 (dash-
dot green) rescaled at the reference frequencies of the NR simulations. The inset contain a comparison
of the numerical /1 between the BNS and BBH data.

Let us now add the tidal amplitude correction to our baseline model, using Equation (30).
We assume that the amplitudes are indistinguishable at the reference frequency of the
numerical BNS data, although the waveform is already in the regime where tidal effects
are non-negligible. Nonetheless, we assume that this error in amplitude is not essential for
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our analysis and consider that At s = 1. We capture this behavior for the evolution of our
analytic BNS amplitude by changing A to the following;:

Ar(x) = 1+ Ar(x). (44)

In Figure 4, we plot the ratio of the amplitudes for BNSI (SXS:NSNS:0001) and BNS2
(SXS:NSNS:0002) to the amplitude of the numeric BBH (SXS:BBH:0180) compared with
the ratio of our hybrid analytic baseline amplitude to the numeric BBH amplitude. The
insets in Figure 4 contain the analytical approximations for the BNS tidal amplitude, as in
Equations (38) and (39), up to the corresponding BNS merger frequency. We observe that
both analytical approximations underestimate the steep increase in amplitude around the
merger. We will return to this comparison in Section 4, when we will make a new fit for the
analytical amplitude to the numerical data and taper the amplitude past the merger using
a Hann window.
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Figure 4. Amplitude comparison between the baseline model (solid black), SXS:NSNS: 0001 (dashed
blue) and SXS:NSNS:0002 (dash-dot green) overlapped at the reference frequencies of the NR sim-
ulations and divided by the amplitude for SXS:BBH:0180. The insets contain (left) the amplitudes
for the tidal pN (dotted maroon) approximation and (right) for the NRTidal (dash-dot-dot red)
approximation, plotted up to the merger against the numerical BNS amplitude for the two cases.

4. Modeling the BNS Merger

Up to this point, we presented the analytical formulas we implemented in our code
RisingTides to model the tidal effects on GWs from BNS systems up to the merger. Our
tests confirmed that both the pN and NRTidal approximations hold reasonably well in
comparison with the two numerical relativity simulations considered, although they were
not included in the original calibrations [31,33,34]. Let us now take a closer look at the
behavior of the analytical models for the tidal phase and amplitude as we approach the
merger. Indeed, we shall see a heightening of the mismatch with the numerical simulations
and will attempt to improve the model by performing our own fit only up to the merger.
Because of the smooth evolution of the phase and amplitude even after the moment of
the merger, we can use the new coefficients obtained from our fit to push the model past
the location where the stars touch. We extend the model for the phase beyond the merger
and devise a method to determine how far we can reach, where we end it with a taper and
continue with the baseline model. We carry the amplitude up to the merger and terminate
it with a Hann taper to ensure a smooth and continuous transition into the post merger.

4.1. New Fit for the Tidal Phase

Let us proceed by first taking the difference between the numerical BNS and BBH
phase for the two systems considered. This is the true tidal correction (up to +2rad.
numerical error [45]) that we subsequently use to compare with the analytical models for
the tidal phase. We plot in the left side of Figure 5 the difference between the numerical
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tidal phase and the three analytical approximations for ¢ N, ¢1,r1, and ¢r 2 with the
coefficients from [31,33,34]. We start at a time about 1000M before the merger, where the
differences between the analytic and numerical phase become noticeable. We then extend
the model past the merger, until the approximation exhibits a sharp increase and breaks
down. We observe an increased difference between the analytical and numerical tidal
phase near the merger, above the uncertainty of +2rad. In the right side of Figure 5 we
plot the true tidal phase (upper plot), as well as the scaled tidal deformability (lower plot).
The true tidal phase scales with the tidal deformability before the merger, as expected,
but after the merger is larger for the first (BNS1) system compared to the second (BNS2),
appearing to scale inversely with the tidal deformability. The analytical phase, which
depends linearly on the tidal deformability, does not provide an accurate estimation after
the merger. Specifically, the post-merger tidal phase is underestimated for the first system
and overestimated for the second.
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Figure 5. Left plots: Difference between the numerical tidal phase correction and the analytic pN and
the three NRTidal models (pN, F1 and F2) for the tidal phase applied to the two BNS systems close
to the merger and extended beyond it. Right plots: true and rescaled tidal phases for the two BNS
systems, overlapped at the merger time. The vertical yellow dotted line marks the merger.

We assume that the Padé approximant from Equation (35) is complex enough to model
the smooth increase in the tidal phase at the merger and proceed with performing new
curve fits for the analytical tidal phase to the numerical tidal phase scaled by the tidal
deformability. As initial guesses, we use the coefficients from the pN [31], F1 [33] and
F2 [34] NRTidal model and stop the fit at the merger. Irrespective of the initial fitting
coefficients, we obtain comparable sets of new coefficients for the polynomial modeling the
tidal interaction of a BNS system with a given deformability. However, in contrast to the
original fits, we no longer find a one-size-fits-all set of coefficients, namely, our coefficients
depend on the equation of state considered.

To select the best fit among the three variations of the analytical model, we calculate
and compare the sum of squared residuals (SSR) for each numerical dataset. For BNS1, we
select new parameters obtained by fitting to the numerical data, using the F2 coefficients as
the initial guess. For BNS2, we choose the parameters derived from fitting the numerical
data with the F1 coefficients as initial guess. Subsequently, we compare the residuals for
the chosen coefficients between the two datasets and select the optimal fitting parameters
for BNSI as the new coefficients.

In Table 1, we provide the average values of the new coefficients obtained for BNS1
in comparison with the F2 NRTidal coefficients.
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We need to alert readers that the large differences between our new fitting coefficients
and the original ones are primarily due to our efforts to model the highly nonlinear
tidal interactions during the merger, which is a step beyond the bounds of the analytical
approximation. The assumptions made in the original model that the coefficients were
independent of the equation of state are no longer applicable.

We use the new fitting coefficients to reconstruct the analytical tidal phase, then we
incorporate it into the baseline framework, thus obtaining a new analytical model for the
BNS phase that extends beyond the merger. Following this, we develop a procedure that
determines the termination point of our phase, where we apply a Heaviside function,
allowing only the phase of the baseline model to continue from then on. First, we calculate
the difference between our new analytical tidal phase and the true tidal phase. After that,
we determine the time derivative of this difference. Next, we identify potential cutoff
points at locations where this derivative switches sign. Lastly, we select the final cutoff
point as the last point for which the deviation from the numerical phase is less than 3%,
to optimize the fit with the true tidal phase. Here we terminate our analytical tidal phase
with a Heaviside function and continue smoothly with the baseline phase, obtaining a
complete phase representation.

In Figure 6, we plot our newly modeled phase. In the main plot, we show our
new analytic fit for the BNS phase tailored to the two BNS systems against the true tidal
phase. Although we applied the curve fit only up to the merger, we see that it is able
to accurately follow the numerical tidal phase beyond the merger. In the two insets, we
include a comparison between our reassembled tidal phase for the two BNS systems
with the Heaviside taper applied at the cutoff point and the numerical BNS phase. We
test our new model for BNS1 against the NR data for BNS2 and include the new fit in the
second inset (dash-dot-dot light green). We see that our model is accurate up to the moment
of the merger, but it underestimates the steep increase in phase in the early post-merger,
which is motivated by our findings that in the post-merger the phase does not scale linearly
with the tidal deformability.
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Figure 6. Comparison between our analytic new fit to the tidal phase (dashed blue and dash-dot
green) to the numerical tidal phase (solid and dotted black), as well as the original F2 fit (solid orange)
for the two BNS systems up to the merger then continued beyond the merger. The insets contain the
reconstructed BNS phase for the two BNS systems extended beyond the merger as well as the new fit
with the chosen coefficients for BNS1 to BNS2 (dash-dot-dot light green). The vertical yellow dotted
line marks the merger, and the vertical brown dotted line delineates the end point where tapered.
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Table 1. New merger fit for tidal phase dependent on the tidal deformability.

Coefficient Original F2 Fit! New Fit
ny —15.2452 —214.95
n1s 31.5423 201623
ny —80.9260 —7743.40
na5 312.482 13,772.45
ns —342.155 —9381.96
dq —20.2372 —42.62
dis 39.3962 151.06
dp —5.36163 —150.08

L as given in [34].

4.2. New Fit for the Tidal Amplitude

We use a similar procedure to model the analytical amplitude at the merger and start
by calculating the numerical tidal amplitude as the ratio between the numerical BNS and
BBH amplitudes for the two systems considered. This is the true tidal amplitude that we
use next to compare with the analytical approximations Aty and A7 4y. We attempt to
improve the amplitude modeling by applying a curve fit for Equations (38) and (39) to
the true tidal amplitude up to the merger, using the coefficients given in [34] as the initial
guesses. Again, we obtain similar sets of new coefficients regardless of the model we
start with but depending on the value of the tidal deformability. We apply again the same
procedure of calculating and comparing the sum of squared residuals (SSR) and select the
optimal fitting parameters for BNS1 amplitude as the new coefficients.

In Table 2, we give the values of the new coefficients resulting from the new tidal
amplitude fit in comparison with the At ; NRTidal coefficients.

Table 2. New merger fit for tidal amplitude dependent on the tidal deformability.

Coefficient Original At 4 Fit 1 New Fit
d —5.96 —1.3176
p 1 0.1318

Las given in [34].

With these coefficients, we proceed to reconstruct the new analytical amplitude. This
time, we cannot track the amplitude beyond the merger due to its unphysical steep increase.
While the model is precise enough to capture the sharp rise in amplitude before the merger,
it is too basic to accurately follow its evolution beyond the peak point. To complete the
waveform beyond the merger, we taper the amplitude at the merger with a Hann window
that terminates to zero at the phase cutoff time.

In Figure 7, we plot a comparison between the numerical BNS amplitude and our
new amplitude with tides. The two insets display our fit to the numerical tidal amplitude,
contrasted with the pN and NRTidal tidal amplitudes for the two BNS systems. We again
apply our new model for BNS1 to BNS2 and test it against the NR data for BNS2, including
the new fit in the second inset (dash-dot-dot light green), and observe an improvement
comparing to the original fit.
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Figure 7. Comparison between the two numerical BNS amplitudes (solid and dotted black) and our
new fit for the amplitudes (dashed blue and dash-dot green) up to the merger, then tapered by a
Hann function between merger and the cutoff time for the phase. The insets include our fit to the
numerical tidal amplitude compared with At ; as well as the new fit with the chosen coefficients for
BNSI to BNS2 (dash-dot-dot light green). The vertical yellow dotted line marks the merger.

4.3. A Toy Model for the Complete Analytic BNS Waveforms

With these new fits obtained for the phase and amplitude, we build a complete
analytical GW strain for the BNS merger using Equation (28). Although we overlooked the
amplitude complexity after the merger, we modeled the phase accurately up to the cutoff
time. This allows us to recompute the orbital frequency Qpys by taking the time derivative
of the phase ¢pns. Then, we recalculate xgys and follow with the radial separation rpys,
using Equation (5). We also reevaluate the orbital and radial velocities and compare their
evolution through the merger. Looking at their ratio we observe that even at the merger,
where the radial velocity reaches its maximum, it represents at most 6% of the orbital
velocity, after which it falls abruptly. In contrast, the orbital velocity keeps increasing even
after the merger, reaching its peak soon thereafter, after which it starts decreasing as well.
The domain between merger and cutoff time is very short, extending only up to 240M for
BNS1 and 180M for BNS2. For the systems considered, this is between 2 ms and 3 ms, not
enough to inform us on the fate of the remnant. Most likely, we reach the early stages of a
rapidly rotating, tidally deformed remnant. The GW170817 event indicates that a remnant
with a total mass of 2.8 M, will settle as a neutron star, with the collapse to a black hole
being less likely [4].

Note that our toy model does not account for the mass ejected due to the tidal inter-
actions during coalescence or the dynamically ejected mass during the collision-induced
shock of the neutron star crust when the stars come in contact. The matter expulsion at
the contact interface is called shock ejecta and represents a significant source of ejecta for
systems with similar masses to those considered in this work. Additionally, our model
excludes the neutrino-driven wind ejecta emitted by the HMINS remnant as it cools down.
The different types of ejecta produced during the BNS evolution form a rotating disk
surrounding the remnant. The total mass ejected by the GW170817 event was estimated to
be about 0.04 M), and this is the value we consider in our work.

In Figure 8, we plot the h component of the strain for the baseline model in compar-
ison with the BNS strain for the two equations of state considered. While our model for
the amplitude past the merger is simplified, the phase modeling remains accurate. In the
left plot of Figure 8, we show the evolution of the separation between the neutron stars for
the two equations of state considered continued beyond the merger, depicted with the red
dotted circle, in comparison to the separation of the baseline BBH model. We see how the
value of the tidal deformability and thus of the equation of state influence the early stages
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before and beyond the collision, revealing the effect of the matter interaction on the orbits.
A larger tidal deformability (dashdot cyan) speeds up the merger of the stars, leading to a
larger-radius remnant, whereas a smaller value for it (dotted blue) prolongs the inspiral
and yields a denser remnant with a smaller radius.
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Figure 8. Our analytical strain (left plot) and separation (right plot) for the baseline BBH (solid black),
the A = 791 BNSI1 (dotted blue) and the A = 1520 BNS2 (dashdot cyan) for the last ~10 orbits
extended to the early stages of the collision. The dotted red line marks where the neutron stars touch.

5. Discussion

The gravitational waves emitted during a BNS merger offer insights into the behavior
of matter under extreme conditions. To understand the impact of matter on the evolution of
such systems and on their gravitational waves signature, we embarked upon an analytical
modeling journey. Initially, we focused on a BBH system, employing the post-Newtonian
formalism for the inspiral and the Backwards-one-Body model for the merger. By com-
bining them, we established a baseline waveform, which we validated against numerical
relativity simulations to ensure a robust foundation for our next step. To incorporate the
effects of tides, we introduced corrections to the phase and amplitude of the point-particle
waveform by using the polynomial expressions proposed by the NRTidal model. We then
verified the model’s accuracy and efficiency through careful comparison with numerical
relativity data for two equations of state.

However, we encountered a mismatch around the merger when solely relying on
the NRTidal model. To address this limitation, we lifted the restriction on the coefficients’
independence from tidal deformability and recalibrated them with the numerical relativity
predictions. By performing new fits to the numerical BNS data, we obtained updated
values for the polynomial coefficients. Armed with these new coefficients, we reconstructed
the tidal corrections and achieved improved fits for the phase and amplitude, successfully
extending the phase modeling beyond the merger. To achieve a comprehensive phase
representation, we devised a method to determine its extent and applied a taper at the end,
seamlessly continuing with the baseline model. Regarding the amplitude modeling, we
have successfully carried it up to the merger, where we employed a Hann taper to ensure a
smooth and continuous transition into the post-merger. We ended by reconstructing the
complete analytical BNS strain and by investigating the tidal influence on the system’s
orbits around the BNS collision.

We developed RisingTides, a Python code guided by a user-friendly Jupyter Notebook
for the analytical modeling the tidal effects on the gravitational waves emitted during BNS
inspiral and merger. We make our implementation available to the scientific community
to foster learning and facilitate further investigations.

In our future work, we aim to enhance our model by incorporating a broader range
of numerical relativity BNS simulations encompassing diverse equations of state. We
will seek to uncover a consistent pattern for the dependence of the phase on the tidal
deformability around the merger, ultimately leading to a universal set of polynomial
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coefficients. Furthermore, we will explore universal relations for BNS systems, which
may offer deeper insights into their behavior and characteristics. Additionally, we are
committed to refining the accuracy of the amplitude modeling beyond the merger, thus
increasing the overall predictive power of our approach. Our research will contribute to a
better understanding of BNS mergers and their gravitational wave signatures.

Author Contributions: M.C.B.H. initiated and led the project, led the writing and editing of the
manuscript, analyzed the data, and produced the figures. A.O. led the code development and con-
tributed to the data analysis. Both authors listed significantly contributed directly and intellectually
to this work and give their approval for its publication. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported in part by the National Science Foundation under Grant No.
NSF PHY-1748958.

Data Availability Statement: The datasets generated and analyzed during the current study are
openly available at https:/ /github.com/mbabiuc/RisingTides.git (accessed on 20 June 2024), linked
to the open-access Zenodo repository, at https://zenodo.org/badge/latestdoi/671997364 (accessed
on 20 June 2024).

Acknowledgments: The authors are wishing to acknowledge the Physics Department and the College
of Science at Marshall University.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

GW  Gravitational Wave

BNS  Binary Neutron Star

BBH  Binary Black Hole

pN post-Newtonian

EOB  Effective-One-Body

NR numerical relativity

BoB Backwards-one-Body

SXS Simulating eXtreme Spacetimes
ISCO innermost stable circular orbit
LR light-ring
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